
Computers and Concrete, Vol. 23, No. 5 (2019) 311-320

DOI: https://doi.org/10.12989/cac.2019.23.5.311 311

Copyright © 2019 Techno-Press, Ltd.
http://www.techno-press.org/?journal=cac&subpage=8 ISSN: 1598-8198 (Print), 1598-818X (Online)

1. Introduction

The finite element method has become a widely used

technique to numerically approximate the solutions of

partial differential equations that arise in different real-

world engineering problems. However, many professional

finite element software packages fail to meet the demand in

the computation speed and memory usage since meshes

often have large numbers of elements in large and highly-

complex problems. Partitioning an unstructured finite

element mesh into a set of subdomains can reduce

computational cost and memory usage since a large set of

equations is decomposed to several smaller sets of

equations. However, the path of mesh partitioning remains a

topic of concern. In addition to balancing the computational

cost between substructures, the boundary nodes should be

minimized to reduce the boundary set of equation. These

conflicting objectives make the mesh partitioning an Np-

complete problem (Gary and Johnson 1979) and optimum

solutions are practically intractable in a reasonable amount

of time.

The first substructuring method was introduced by

Przemieniecki (1963) to calculate the stresses and

deflections in an aircraft structure and analyze different

components separately. The recursive bisection (RB)

algorithms are the most commonly used partitioning

method where the mesh is divided into two pieces and these

pieces are recursively divided to two pieces consecutively.

Ansari et al. (2017) have represented a thorough survey of

the general field of domain decomposition methods. Simon

(1991) proposed a decomposition algorithm which is based

on the computation of an eigenvector of the Laplacian

Corresponding author, Ph.D.

E-mail: h.moslemi@shahed.ac.ir

matrix associated with the mesh and distribute the

subdomains over a large number of processors in a MIMD

machine with distributed memory. However it was shown

that the RB methods may produce a partition that is very far

away from the optimal one. A multilevel version of RB

method was introduced by Bernard et al. (1995) contracting

the grid by selecting successive maximal independent sets

of vertices and connecting these vertices into a coarser

graph, finding the eigenvectors efficiently, and interpolating

eigenvectors from coarser to finer graphs. Yang and Hsieh

(2002) proposed an iterative mesh partitioning optimization

for parallel nonlinear dynamic finite element analysis in

which the partitioning results are adjusted iteratively until

the workloads among the substructures are balanced

reasonably.

Another category of partitioning methods is non-spatial

mesh partitioning algorithm which completely rely on the

adjacency information of the mesh elements and devoid of

geometrical structures and the partitioning. A greedy

approach is proposed by Farhat and Lesoinne (1993) which

bites into the mesh in order to construct every subdomain

and proved that this algorithm is quite versatile. Pothen et

al. (1990) considered an algebraic approach to compute the

vertex separators for partitioning sparse matrices. However,

this method is expensive since it requires the solution of a

complex eigenvalue problem. Pan and Zhou (2013) applied

the substructuring technique to simulate the crack

extension. They gather the elements involving the crack as a

substructure. The size of substructure expands when the

crack propagates. They agglomerated the stiffness matrix to

express additional freedoms by the freedoms of original

mesh. A parallel stabilized finite element method is

proposed by Hussain et al. (2013) which parallelize the

system using message passing interface specification and

employed it for darcy flow in distributed systems. They

augment the conjugate gradient method for the solution of

stabilized mixed finite element. Predari et al. (2017)

An optimized mesh partitioning in FEM based on element search technique

V. Shiralinezhad and H. Moslemi


Department of Civil Engineering, Shahed University, Persian Gulf Highway, Tehran, Iran

(Received December 6, 2018, Revised March 9, 2019, Accepted April 9, 2019)

Abstract. The substructuring technique is one of the efficient methods for reducing computational effort and memory usage in

the finite element method, especially in large-scale structures. Proper mesh partitioning plays a key role in the efficiency of the

technique. In this study, new algorithms are proposed for mesh partitioning based on an element search technique. The

computational cost function is optimized by aligning each element of the structure to a proper substructure. The genetic

algorithm is employed to minimize the boundary nodes of the substructures. Since the boundary nodes have a vital performance

on the mesh partitioning, different strategies are proposed for the few number of substructures and higher number ones. The

mesh partitioning is optimized considering both computational and memory requirements. The efficiency and robustness of the

proposed algorithms is demonstrated in numerous examples for different size of substructures.

Keywords: substructuring; finite element method; mesh partitioning; computational cost optimization; genetic algorithm

V. Shiralinezhad and H. Moslemi

modeled additional constraints with fixed vertices by a

direct k-way greedy graph growing partitioning that

properly handles fixed vertices. A layer-by-layer

partitioning of finite element meshes for multicore

architecture was presented by Novikov et al. (2016) using a

neighborhood criterion to partition the mesh into layers and

combining them into blocks and assigning them into

different parallel processors. Badia and Verdugo (2018)

investigated the use of domain decomposition

preconditioners for unfitted finite element methods such as

extended finite element method defining the coarse degrees

of freedom in the definition of the preconditioner.

Due to the NP nature of the mesh partitioning

optimization, several metaheuristic approaches have been

proposed to address this problem. Khan and Topping (1993)

employed a genetic algorithm linked to a neural network

predictive module for partitioning the coarse initial

background mesh and showed that near optimal partitions

for finer graded meshes may be obtained economically.

Mohan Rao et al. (2002) employed genetic algorithm for

mesh partitioning and used hierarchy of graphs to obtain the

final graph partition. Float-encoded genetic algorithms are

proposed by Kaveh and Bondarabady (2003) for mesh

partitioning and several acceleration techniques like

constraining the search space, local improvement after

initial global partitioning have been attempted. Float-

encoded genetic algorithm is proposed by Mohan Rao et al.

(2004) in such a way that the number of variables

considered in the chromosome construction was constant

irrespective of the size of the problem. Colonies of artificial

ant-like agents were employed by Korosec (2004) to

restructure the resources in their environment in a manner

which corresponds to a good solution of the underlying

problem. Bahreininejad and Hesamfar (2006) applied the

ant colony optimization for partitioning finite elements

meshes using the swarm intelligence concept. They also

improve the quality of the solutions by a recursive greedy

algorithm optimization method. Mohan Rao (2008)

presented an algorithm for generating sub-meshes with

optimal shape using a steady state elite preserving

evolutionary algorithm. In iterative algorithms the asperct

ratio of finite element mesh is also important for faster

convergence. Diekmann et al. (2000) designed the load

balancing to maintain good partition aspect ratio and

showed that cut size is not always the appropriate measure

in load balancing. They presented a new center-based

partitioning method of calculating the initial distribution

which implicitly optimizes this measure. A new distributed

multi-objective mesh-partitioning algorithm using

evolutionary computing techniques was proposed by Mohan

Rao (2009) to optimize the interprocessor communications

and the submesh aspect ratios. A multilevel tabu search

algorithm for balanced partitioning of unstructured grids

proposed by Mehrdoost and Bahrainian(2016). They

introduced A new tie-breaking strategy in selection of

maximum gain vertices. Kaveh and Mahdavi (2015) used

recently developed meta-heuristic algorithm, so-called

Colliding Bodies Optimization (CBO) in conjunction with

k-median method and compared it with standard Particle

Swarm Optimization (PSO) to indicate that the CBO is

capable of performing better decomposition using smaller

or equal computational efforts. A hybrid ant colony together

with genetic algorithm was employed by Kaveh and

Shojaee (2008) for decomposing large-scale finite element

meshes. Mohan Rao (2009) used the master-slave concept

and proposed a new synchronous model to optimize the

performance even on heterogeneous parallel hardware.

Alternatively, a multiple population model was also

developed which simulates its sequential counterpart. The

advantage of the second model was that it could fit in large

size problems with large population even on moderate

capacity parallel computing nodes.

In recent years, several hopeful researches have been

accomplished in the domain decomposition field. Marot et

al. (2019) presented a new scalable parallelization scheme

to generate the 3D Delaunay triangulation of a given set of

points. They improved the Delaunay kernel to a

multithreaded version that was able to concurrently insert

vertices. A GPU domain decomposition solution for spectral

stochastic finite element method was proposed by

Stavroulakis et al. (2017) to address to address the intrusive

stochastic mechanics problems. The solution of the

resulting finite element algebraic equations was performed

with the dual domain decomposition method, implementing

specifically tailored preconditioners. Fu et al. (2017)

proposed a novel partitioning method for block-structured

adaptive meshes utilizing the meshless Lagrangian particle

concept. They used high analogy of the problem to the

relaxation of a multi-phase fluid to steady state. A new

parallel domain decomposition algorithm based on integer

linear programming (ILP) presented by Jordi et al. (2017)

for the coastal ocean circulation models. Yui and Nishmura

(2018) developed a cost effective graph-based partitioning

algorithm and employed the nested dissection method to

heuristically divide a system of linear equations, based on

graph partitioning.

In this study, the mesh is partitioned via element search

technique where each element is allocated to a substructure.

In this manner, substructures may consist of some sparse

elements which pass through the bounds of the neighboring

substructures domain. The process of element allocation is

accomplished by the genetic algorithm similar to the well-

known hub allocation problem which has been applied to

sensor networks, transportation systems, etc. The cost

function in the optimization process can be regarded from

two different aspects: the computational speed and memory

usage. The most time-consuming parts of finite element

method are iteratively solving linear systems derived from

partial differential equation discretization. The most

memory using parts of the method are the large coefficient

matrices of these iterative solving linear systems. Thus, the

focus of the cost functions is restricted to these decisive

parameters. Since the number of internal and boundary

nodes have different effects on the computational cost and

memory usage, different partitioned meshes may be

obtained via each of these cost functions. Thus a third

combinatorial case of these two functions is defined to

balance the computational speed and memory usage. In

finite element meshes with millions of elements, the size of

chromosome would increase drastically and GA algorithm

312

https://www.scopus.com/record/display.uri?eid=2-s2.0-84956579055&origin=resultslist&sort=plf-f&cite=2-s2.0-0028419680&src=s&imp=t&sid=67b095f66ceaaa2238f51ded94edca02&sot=cite&sdt=a&sl=0&relpos=18&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84956579055&origin=resultslist&sort=plf-f&cite=2-s2.0-0028419680&src=s&imp=t&sid=67b095f66ceaaa2238f51ded94edca02&sot=cite&sdt=a&sl=0&relpos=18&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85032811913&origin=resultslist&sort=plf-f&src=s&st1=a+gpu+domain&st2=&sid=36d13a8323b873aceca5746c415dbc1b&sot=b&sdt=b&sl=19&s=TITLE%28a+gpu+domain%29&relpos=7&citeCnt=2&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85032811913&origin=resultslist&sort=plf-f&src=s&st1=a+gpu+domain&st2=&sid=36d13a8323b873aceca5746c415dbc1b&sot=b&sdt=b&sl=19&s=TITLE%28a+gpu+domain%29&relpos=7&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55410923000&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85044192187&origin=resultslist&sort=plf-f&src=s&st1=%22a+cost+effective%22+graph&st2=&sid=399f0c6f63a0bb89d58cda1f15afe1c2&sot=b&sdt=b&sl=31&s=TITLE%28%22a+cost+effective%22+graph%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85044192187&origin=resultslist&sort=plf-f&src=s&st1=%22a+cost+effective%22+graph&st2=&sid=399f0c6f63a0bb89d58cda1f15afe1c2&sot=b&sdt=b&sl=31&s=TITLE%28%22a+cost+effective%22+graph%29&relpos=0&citeCnt=0&searchTerm=

An optimized mesh partitioning in FEM based on element search technique

convergence would be disturbed. However, the proposed

algorithm can afford problems up to 10,000 elements as

shown in first example.

The remainder of this paper is organized as follows.

Section 2 introduces the basic concepts of mesh partitioning

theory relevant to our algorithm. Next, in Section 3, the

optimization algorithm for mesh partitioning is presented

with three cost functions: computational cost, memory

usage and a combinational case of these two items. In each

case, two different algorithms are introduced for the few

number of substructures and higher number ones. Some

numerical examples are presented in Section 4 to

demonstrate the robustness and efficiency of the proposed

mesh partitioning algorithms. Finally, several concluding

remarks are given in Section 5.

2. Mesh partitioning

Przemieniecki (1963) first proposed

substructuring ‎method for first-level breakdown of complex

systems ‎for the displacement and force method. In this

method, the whole structure is separated into smaller units

called substructure. Each substructure consists of several

elements and nodes. Each element corresponds to an

exclusive substructure, but each node may be located at one

or more substructures. From this point, the nodes of the FE

model can be classified into two categories: The nodes that

belong to an exclusive substructure called internal nodes

and those which reside in two or more substructures called

boundary nodes. This should be noted that global boundary

nodes of the structure may be classified as internal node by

this definition. The equilibrium equation for linear and

nonlinear systems leads to an iteratively solving linear

system which for the complete structure may be represented

by

KU F (1)

This equation can be partitioned with the boundary

displacements and forces separated from the interior ones as

follows

 }}
[] [] {

[] [] {

{ }

{ }

i

b

ii ib i

bi bb b

K K u

K K u

F

F

  
     

(2)

where subscripts i and b denote the internal and boundary

nodes, respectively. The displacement of internal nodes can

be expressed in terms of displacements of boundary nodes.

This elimination process is called static condensation.

Solving Eq. (2) for {u}i and {u}b gives the internal and

boundary degrees of freedom.

          
1

u K F K u
i i bii ib


 

(3)

   
1

b
u K F



   
 (4)

where the assembled condensed stiffness matrix and

condensed force vector are defined as

       
1

bb bi ii ib
K K K K K


    

(5)

         
1

b ibi ii
F F K K F


  (6)

It is obvious that the linear solving system after
condensation in Eqs. (3)-(4) is very smaller than linear
solving system before condensation in Eq. (1). This effect
increases the computation speed and reduces the memory
usage. However, the efficiency of the technique depends on
how the mesh is partitioned among the substructures. In
next section, a set of algorithms based on element search
technique are presented to optimally partition the mesh
minimizing computational cost and memory usage.

3. Algorithms for partitioning

In this section some algorithms are presented to partition

the mesh among substructures. The element search

technique is used to assign each element to a substructure.

The number of substructures is predefined in the problem

and a permutation of these numbers can be assigned to each

element. Different combinations of these assignments can

be compared with respect to a cost function. Since the

computation speed and memory usage are the main limiting

parameters in a finite element analysis, these two

parameters are considered in cost functions. Although a

combinational case of these two cost functions is considered

to optimize the mesh partitioning with respect to both

parameters. Balancing the number of boundary nodes and

internal node as defined in section 2, has a great effect in

optimizing the cost functions. In problems with smaller

number of substructures, the number of boundary nodes in

initial population is small and it should be increased in

iterations of the algorithm, but in problems with higher

number of substructures the conditions are reversed and the

number of boundary nodes should decreased iteratively.

Thus, different strategies are proposed for mesh partitioning

of the problems with a few number of substructures and

higher number ones.

3.1 Optimization with respect to computational cost

Different paths of substructuring may lead to iterative

solving systems with various dimensions and consequently,
mesh partitioning has a key role on the time of finite
element analysis. Thus, the mesh partitioning can be
controlled in such a way that minimizes the computational
cost of finite element procedure. The most time-consuming
parts of finite element method are iteratively solving linear
systems derived from partial differential equation
discretization and the cost function is defined with respect
to these parts of analysis. It can be seen from Eqs. (5)-(6)
that for each substructure, the dimension of solving linear
equations is the number of internal degrees of freedom of
that substructure. It is also obvious from Eq. (4) that a linear
system should be solved with dimension of the total
boundary degrees of freedom. The floating point operations
needed for solving linear equation with n unknowns, is in
order of n3. Thus, the computational cost function in a
substructuring analysis process can be approximated by





NS

i

ib NNFunctionCostTime
1

33 (7)

313

V. Shiralinezhad and H. Moslemi

where Nb denotes the total number of boundary degrees of

freedom, NS indicates the number of substructures and Ni

denotes the number of internal degrees of freedom in each

substructure. It is evident that this function is minimized if

all of the parameters set to be equal. Thus, the internal

nodes should be distributed equally between substructures

and the total boundary nodes should have the same size too.

These parameters have reverse relation and decreasing the

internal nodes will lead to the increase of boundary nodes

and vice versa. Therefore, several algorithms are proposed

for finding the optimized case based on element search

technique. Equalizing the number of the internal nodes is

very simple, but the challenging task is the adjustment the

size of the boundary nodes with them. The relation of

boundary nodes and internal nodes of substructures is

complicated and cannot be expressed mathematically. In the

problems with small number of substructures, the initial

number of boundary nodes is small and some algorithms are

needed to increase them. In return, in problems with large

number of substructures, the number of the boundary nodes

is high initially and some strategies should be taken to

reduce them. Thus, two different types of algorithms are

proposed for these two cases. The choice of the appropriate

case depends on the number of nodes and substructures and

can be distinguished by comparing the number of boundary

nodes and internal nodes in the initial partitioning state.

An appropriate initial population has a vital effect on the

efficiency of the proposed genetic algorithm. In the process

of the generation of the initial population, if the elements

are distributed randomly between substructures, the number

of the boundary nodes will be very high and the internal

nodes will be negligible. Therefore the number of iterations

in the genetic algorithm will increase drastically. The

adjacency of the elements is utilized for the proper

generation of the initial population. This means that first an

element is selected randomly for each substructure, and

then from each of these elements another adjacent element

is added to the corresponding substructure. The adjacent

element in 2D elements is defined as an element with two

common nodes. In this way, the area of each substructure

will grow and this process is repeated until all of the

elements are located at one of the substructures. This

algorithm avoids from the dispersion of the substructures

and leads to the reduction of the boundary nodes. It should

be noted that in the initial population, each member of the

population is correspondent with a different mesh

partitioning. The differentiation between the members is

achieved by random selection of initial elements. The size

of each chromosome is equal to the number of elements and

the chromosome contains the substructure labels

correspondent with each element. The size of the initial

population depends on the number of substructures and

would be increased accordingly.
After the generation of initial population, the number of

boundary nodes is small and the genetic algorithm is
employed to make the substructures sparse and balance the
internal and boundary nodes. In first step the cost function
is estimated for each member of the population according to
Eq. (7) and the population is sorted with respect to the cost
function. In next step, several parents are selected using
roulette wheel, and crossover operation is accomplished. In

Fig. 1 Flowchart of the proposed genetic algorithm

this problem, the length of each chromosome is equal to the

total number of the elements and each gene contains the

substructure number of corresponding element. Uniform

crossover is employed for generation of offsprings and each

bit from the offspring's genome is independently chosen

from the two parents according to a random distribution.

Since individual genomes correspond to elements of the

model and have no significant difference, uniform crossover

is more proper than single-point or double-point crossovers.

Thus, new generated mesh partitioning is a combination of

the previous ones. In addition, mutation occurs during

evolution according to a user-definable mutation

probability. Since the number of internal and boundary

nodes in initial population have a considerable difference,

high probability of 10% is set in this study. In the mutation

process, the content of some of the bits are changed

randomly. This means that the substructure number of some

elements is altered. For efficient of the mutation process,

the elements will be renumbered which are located in the

substructure with highest number of internal nodes to

balance the internal nodes. Finally, individual genomes are

314

An optimized mesh partitioning in FEM based on element search technique

chosen from the initial population, offsprings and mutated

members during a roulette wheel selection process. The

process of crossover and mutation is accomplished for new

population repeatedly until the best mesh partitioning with

minimum cost function is not changed in some predefined

iterations. The entire flow of the proposed algorithm is

shown in flowchart in Fig. 1.

If the problem consists of many substructures, the

number of boundary nodes will exceed the internal nodes in

that very initial population and the previous algorithm will

lead to the increasing of the boundary nodes and

consequently the cost function and analysis time. In this

condition, the following algorithm will be applied. In this

algorithm, a virtual master substructure is defined which

distributes elements to the real substructures. First element

assignment to the substructures is random, but in the next

levels the elements are transferred from the master

substructure to the real substructures considering the

adjacency of elements to the substructures. Since several

different elements may have adjacency conditions, that

element will be transferred which produces fewer cost

function according to Eq. (7).

It should be noted the cost function is evaluated for

elements that are excluded from master substructure and the

elements of the master substructure are ignored in cost

function before transfer. The elements are transferred to the

substructures continuously until there would be no adjacent

element for the target substructure. Thus, the growth of a

substructure may stop earlier than others which lead to the

formation of unequal substructures. In the next step, the

produced substructures are balanced by exchanging the

elements. The substructure with minimum internal nodes is

chosen and then the largest adjacent substructure is selected

and the adjacent elements are transferred from larger

substructure to smaller one. This process is repeated until

the difference between internal nodes reach a predefined

value. However, the balanced substructuring does not create

optimum case necessarily. Thus, a final modification is

accomplished to check the possibility of cost function

reduction in exchange of the elements. The adjacency of

element and substructure is the necessary condition in this

step. Unlike the previous algorithm, the equality of internal

and boundary nodes is not usually attained in this algorithm.

3.2 Optimization with respect to memory usage

In finite element analysis of large-scale structures, a
common problem which users encounter is the insufficient
required memory which denies the start of the analysis. One
of the advantages of the mesh partitioning is the reduction
of the dimension of matrices and gradual creation of them
in the analysis process. In this way, the allocated memory
can be released in next steps. One of the main ideas in
substructuring is to partition the mesh in such a way that the
minimum memory will be required in the analysis process.
The main memory using parts of the algorithm are the large
coefficient matrices of the iterative solving linear systems.
Thus, the memory units needed in different steps of the
substructuring procedure is computed primarily and then
the partitioning is optimized with respect to this cost
function. In computation of the cost function, the inactive

memory is released whenever it is not required in next
steps. Investigating the Eqs. (3)-(6) it can be seen that the
maximum required memory is in the computation of the
displacements of the boundary nodes.

The memory units needed for storing the coefficient

matrices with n degrees of freedom, is in order of n2. Thus,

the memory units needed in the computation of boundary

nodes displacements equivalent Nb
2 where Nb denotes the

total number of boundary degrees of freedom. In addition,

in the process of solving the displacements of the internal

nodes, required memory units are equivalent to Ni
2.

However the displacements of internal nodes can be

computed independently for each substructure and used

memory in previous substructures can be released in each

step. Thus, the maximum required memory in this part

corresponds to the substructure with the most internal nodes

which is denotes by Ni,cr. Consequently the memory cost

function can be approximated by

2

,

2 crib NNFunctionCostMemory  (8)

Similar to the time optimization, there are two distinct

algorithms for meshes with large number of substructures

and those with smaller ones. The bounding limit of these

two cases is the balance of the number of boundary nodes

and internal nodes in the initial partitioning state. The

algorithms presented in section 3.1 can be applied in this

case too, but the memory cost function in Eq. (8) should be

employed for comparison and sorting. In addition, in the

balancing stage, the elements should be transferred from

substructure with critical internal nodes Ni,cr.

3.3 Combinational optimization

In the two previous sections, the mesh partitioning

algorithm was described on the basis of computational time

and memory usage. Since there are different cost functions

in these two cases, two distinctive mesh partitions can be

achieved through each strategy for a certain structure. Each

of these partitions has a shortcoming with respect to

computational speed or memory usage. Thus, a third

combinational case has been defined to have efficiency in

both speed and memory. For this purpose, new cost function

is formed from the combination of the time cost function

and memory cost function as expressed in Eqs. (7)-(8).

However, these two cost functions are two distinct

quantities, one of them shows the memory units and another

indicates the number of floating point operations.

Therefore, to make them combinable, they have been

normalized firstly. In the procedure of normalizing, an

arbitrary uniform mesh partitioning is created for the

specified structure and time cost function and memory cost

function are computed for this partitioning according to

Eqs. (7)-(8) labeled by TCFu and MCFu. These two

parameters are set as the reference costs for all of the

probable partitions and cost functions are normalized with

respect to these two parameters. For the combination of

these two normalized cost functions, different weights can

be assigned to each of these cost functions, depending

whether speed or memory is more important factor in the

analysis. Defining the weighting factor r, the combinational

315

V. Shiralinezhad and H. Moslemi

Fig. 2 The retaining wall; geometry and loading

cost function will be obtained by normalizing Eqs. (7)-(8)

3 3
2 2

,1 (1)

NS

b i
b i cri

u u

N N
N N

r r
TCF MCF






   


(9)

It is evident that r=1 corresponds to the computational

optimization while r=0 coincide with the memory

optimization. The mesh partitioning algorithm is similar to

one described in section 3.1 for small and large number of

substructures. In this algorithm the comparison between the

various members of the population is accomplished

considering combinational cost function given in Eq. (9).

4. Numerical examples

To demonstrate the capability and efficiency of the

proposed optimization algorithm described in section 3,

some examples are analyzed numerically. Three different

examples are investigated where their mesh partitioning is

optimized with respect to computational speed, memory

usage and combinational case, respectively. To illustrate the

generality of the algorithm, there are both small and large

number of substructures in the examples. The complex

geometry is selected for the examples to challenge the

ability of the algorithm in such problems. All of the

problems are meshed with two dimensional triangular

elements. The mesh density is not uniform and is adapted to

have a fine mesh in critical points of the problem. In all of

the examples, half of the population is transferred to next

generation using roulette wheel. The mutation is

accomplished on 5% of population and in this mutated

population, 10% of the bits of the genome have been

Fig. 3 The retaining wall; convergence rate of cost function

changed. The termination condition of the iterations is the

stability of the best solution in 10 consecutive iterations for

all of the examples. The results of mesh partitioning and

their costs are compared with those reported by

Bahreininejad et al. (2006) which employed greedy

algorithms for subdomain generation.

4.1 Optimization of the concrete retaining wall with
respect to computational cost

The first example is of a concrete retaining wall under

soil pressure as shown in Fig. 2. The wall and its foundation

is modeled and meshed with 10710 elements and 5749

nodes. This example is chosen to illustrate the ability of the

proposed algorithm in problems with high number of

elements. The model is analyzed with three substructures.

In this example the mesh partitioning optimized with

respect to computational speed. Since there are a lot of

elements and a little substructures in the model, the internal

nodes of each substructure overcome the total boundary

nodes of the model (1769 vs. 147). Thus, the algorithm

which proposed for small number of substructures would be

applied.

As it was described section 3, in such conditions, the

genetic algorithm will make the element distribution sparse

to equalize the number of internal nodes of each

substructure and total boundary nodes. The solutions have

been converged after 27 iterations and the absolute

minimum of the time cost function is attained. The element

distribution in initial population and final mesh partitioning

Table 1 The retaining wall; Summary of element distribution in initial population and final mesh partitioning

Time

Cost Function

Number of

iterations

Total boundary

nodes
Substructure3 Substructure2 Substructure1

Number of nodes: 5749

Number of elements: 10710

Number of restrained nodes: 200

1.91e11

27

147 1752 1881 1769 Internal nodes Initial

population - 3590 3541 3579 Number of elements

8.62e10
1387 1387 1387 1388 Internal nodes Final mesh

partitioning - 3501 3627 3582 Number of elements

1.25e11 -
369 1564 1791 1825 Internal nodes Greedy

algorithm - 3530 3557 3623 Number of elements

316

An optimized mesh partitioning in FEM based on element search technique

Fig. 4 The retaining wall; final mesh partitioning, each

color corresponds to one of the substructures

Fig. 5 Cracked rectangular plate; geometry and boundary

conditions

and greedy algorithm is summarized in Table 1. It is

obvious that the proposed algorithm have decreased time

cost function more than greedy algorithm.

It can be seen that the cost function is decreased about

55% in the process of the proposed genetic algorithm.

Eventual number of internal nodes of each substructure and

total boundary nodes have been converged to 1387 which

corresponds to absolute minimum of cost function.

Downward trend of cost function in consecutive iterations

are illustrated in Fig. 3. The high rate of convergence is

obvious in this figure. The final mesh partitioning obtained

after 27 iterations is sketched in Fig. 4. Each color indicates

the elements distributed in one of the substructures. The

sparse elements in the substructures are clear in this figure

which cannot be seen in the classic mesh partitioning

methods. It is due to the property of the proposed element

search technique that permits the sparse elements to gather

in a substructure for minimizing the cost function.

4.2 Optimization of the cracked rectangular plate with
respect to memory cost

The second example is a rectangular plate with two off-

center holes which is subjected to a prescribed displacement

in one edge as shown in Fig. 5. Two symmetric edge cracks

are considered in the plate. The plate analysis is distributed

over eight substructures and finite element discretization

contains 619 nodes and 1033 elements. The memory is

taken as the deciding factor for optimization in this

example. The algorithm proposed for large number of

substructures is applied in this example, because the

Fig. 6 Cracked rectangular plate; growth of the internal and

boundary nodes in the process of the transferring of the

elements

Fig. 7 Cracked rectangular plate; final mesh partitioning

number of the total boundary nodes exceeds the internal

nodes in the initial population (103 vs. 81).

In this condition, the elements are transferred from a

virtual master substructure to the real substructures. The

process of accumulation of internal nodes of the

substructures is illustrated in Fig. 6. It is obvious that the

proposed algorithm have retained the balance between the

substructures. However, the rate of the growth of the

boundary nodes is higher than the internal nodes. Thus, the

sparse elements are avoided in this model unlike the

previous example. The final mesh partitioning of the model

is presented in Fig. 7 which confirms the mentioned

strategy.

Table 2 shows the number of internal nodes in eight

substructures in the initial population and after convergence

of the proposed algorithm and greedy algorithm. As it was

described in Section 3 in large number of substructures, the

equal substructures is not the optimum case necessarily and

the final mesh partitioning has balanced the boundary nodes

with internal nodes. It can be seen that the number of

elements in substructure-8 is half of those in substructure-1.

Balancing these values would lead to tremendous growth in

boundary nodes as described in Section 3 in large number

of substructures. This process has reduced the memory cost

function from 133896 units to 33587 units (about 75%

reduction in memory cost with respect to initial population

and about 20% reduction with respect to greedy algorithm).

4.3 Combinational optimization of the knee lever

The last example presents a knee-lever which is notched

in its middle part as shown in Fig. 8(a). This example is

chosen to present a combinational optimization in a

317

V. Shiralinezhad and H. Moslemi

(a)

(b)

Fig. 8 The knee lever; (a) geometry (b) final mesh

partitioning

complicated geometry, which illustrates the capabilities of

the proposed mesh partitioning procedure in handling

complex structures. The importance of the computational

speed and memory usage is considered to be equal in this

example and consequently the weighting factor is set r=0.5.

The structure is subdivided to four substructures. The finite

(a) (b)

(c)

Fig. 9 The knee lever; combinational optimized mesh

partition with different weighting factors (a) r=0 (b) r=0.5

(c) r=1

element model has been implemented using 897 elements

and 550 nodes. Since both memory and computation are

present in cost function, an intermediate state of the two last

examples has been achieved in this problem. The sparse

elements are present in the substructures, but not as dense

as the first example which was optimized with respect to the

computational cost only. The final mesh partitioning is

shown in Fig. 8(b). The computational and memory cost

Table 2 Cracked rectangular plate; Summary of element distribution in initial population and final mesh partitioning

Number of nodes: 619

Number of elements: 1033

Number of restrained nodes:23

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8
Total boundary

nodes

Memory

cost function

Initial

population

Internal nodes 80 81 61 76 54 64 39 38 103

133896 Number of

elements
148 147 135 147 113 147 125 71 -

Final mesh

partitioning

Internal nodes 88 89 71 76 53 65 38 36 80

33587 Number of

elements
151 148 135 146 112 148 125 68 -

Greedy

algorithm

Internal nodes 82 71 65 71 85 40 58 32 92

42096 Number of

elements
148 160 146 145 153 72 136 73 -

Table 3 The knee lever; Summary of element distribution in initial population and final mesh partitioning

Number of nodes: 550

Number of elements: 897

Number of restrained nodes: 8

Sub1 Sub2 Sub3 Sub4
Total boundary

nodes

Memory cost

function

Computational

cost function

Combinational

cost function

Initial

population

Internal nodes 94 147 129 131 41

26941 8.40e6 2.0 Number of

elements
154 251 240 252 -

Final mesh

partitioning

Internal nodes 95 136 129 93 89

22049 7.03e6 1.66 Number of

elements
195 241 241 220 -

318

An optimized mesh partitioning in FEM based on element search technique

functions of the initial population were considered for

normalizing of the combinational cost function as was

expressed by Eq. (9). The reduction of computational and

memory cost functions via the proposed algorithm are given

in Table 3. It is obvious that in the combinational

optimization both memory and computational cost would

decrease relatively (18% reduction in memory cost and 16%

reduction in computational cost). The total combinational

cost ratio has decreased from 2 to 1.66.

To illustrate the effect of the weighting factor on the

combinational optimization, the last example is reanalyzed

with two substructures and three different weighting factors

r=0, r=0.5, r=1.0. The propagation of the elements to the

opposite substructure will grow with the increase of the

weighting factor as it is shown in Fig. 9.

5. Conclusions

In the present paper, an optimization algorithm was

presented for the mesh partitioning in the finite element

method. The proposed algorithm was based on the element

search technique which allows sparse elements in the

partitions unlike the classic algorithms. The genetic

algorithm was employed in the process of optimization and

different mesh partitions are taken as the population. The

genetic algorithm procedures such as selection, crossover

and mutation were modeled like the well-known hub

allocation problem. The optimization cost function was

investigated considering three different important factors:

computational speed, memory usage and combinational

case. The functions were approximated mathematically in

each case. Since the balance between the internal nodes and

the boundary nodes is a main target in this process, different

strategies were proposed for structures which were

subdivided to small number of substructures and those with

large number of substructure. Finally, the efficiency and

robustness of proposed optimization algorithm in mesh

partitioning were presented by three numerical examples

with complex geometries. The different mesh partitions

were achieved in computational, memory and

combinational optimization which illustrates the effect of

the optimizing parameter.

References

Ansari, S.U., Hussain, M., Mazhar, S., Manzoor, T., Siddiqui, K.J.,

Abid, M. and Jamal, H. (2017), “Mesh partitioning and efficient

equation solving techniques by distributed finite element

methods: A survey”, Arch. Comput. Meth. Eng., 26(1), 1-16.

https://doi.org/10.1007/s11831-017-9227-2.

Badia, S. and Verdugo, F. (2018), “Robust and scalable domain

decomposition solvers for unfitted finite element methods”, J.

Comput. Appl. Math., 344, 740-759.

https://doi.org/10.1016/j.cam.2017.09.034.

Bahreininejad, A. and Hesamfar, P. (2006), “Subdomain

generation using emergent ant colony optimization”, Comput.

Struct., 84, 1719-1728.

https://doi.org/10.1016/j.compstruc.2006.06.002.

Barnard, S.T., Pothen, A. and Simon, H. (1995), “A spectral

algorithm for envelope reduction of sparse matrices”, Numer.

Lin. Algebra Appl., 2, 317-334.

https://doi.org/10.1002/nla.1680020402.

Diekmann, R., Preis, R., Schlimbach, F. and Walshaw, C. (2000),

“Shape-optimized mesh partitioning and load balancing for

parallel adaptive FEM”, Parallel Comput., 2, 1555-1581.

https://doi.org/10.1016/S0167-8191(00)00043-0.

Farhat, C. and Lesoinne, M. (1993), “Automatic partitioning of

unstructured meshes for the parallel solution of problems in

computational mechanics”, Int. J. Numer. Meth. Eng., 36, 745-

764. https://doi.org/10.1002/nme.1620360503.

Fu, L., Litvinov, S., Hu, X.Y. and Adams, N.A. (2017), “A novel

partitioning method for block-structured adaptive meshes”, J.

Comput. Phys., 341, 447-473.

https://doi.org/10.1016/j.jcp.2016.11.016

Garey, M.R. and Johnson, D.S. (1979), Computers and

Intractability: A Guide to the Theory of NP-Completeness,

Freeman W.H. and Company, NY.

Hussain, M., Abid, M., Ahmad, M. and Hussain, F. (2013), “A

parallel 2D stabilized finite element method for darcy flow on

distributed systems”, World Appl. Sci. J., 27, 1119-1125. DOI:

10.5829/idosi.wasj.2013.27.09.15177.

Jordi, A., Georgas, N. and Blumberg, A. (2017), “A parallel

domain decomposition algorithm for coastal ocean circulation

models based on integer linear programming”, Ocean Dyn., 67,

639-649. https://doi.org/10.1007/s10236-017-1049-0.

Kaveh, A. and Bondarabady, H.A.R. (2003), “A hybrid graph-

genetic method for domain decomposition”, Finite Elem. Anal.

Des., 39, 1237-1247. https://doi.org/10.1016/S0168-

874X(02)00192-0.

Kaveh, A. and Mahdavi, V.R. (2015), “Optimal domain

decomposition using Colliding Bodies Optimization and k-

median method”, Finite Elem. Anal. Des., 98, 41-49.

https://doi.org/10.1016/j.finel.2015.01.010.

Kaveh, A. and Shojaee, S. (2008), “Optimal domain

decomposition via p-median methodology using ACO and

hybrid ACGA”, Finite Elem. Anal. Des., 44, 505-512.

https://doi.org/10.1016/j.finel.2008.01.005.

Khan, A.I. and Topping, B.H.V. (1993), “Subdomain generation

for parallel finite element analysis”, Comput. Syst. Eng., 4, 473-

488. https://doi.org/10.1016/0956-0521(93)90015-O.

Korošec, P., Šilc, J. and Robič, B. (2004), “Solving the mesh-

partitioning problem with an ant-colony algorithm”, Parallel

Comput., 30, 785-801.

https://doi.org/10.1016/j.parco.2003.12.016.

Marot, C., Pellerin, J. and Remacle, J.F. (2019), “One machine,

one minute, three billion tetrahedra”, Int. J. Numer. Meth. Eng.,

117, 967-990. https://doi.org/10.1002/nme.5987.

Mehrdoost, Z. and Bahrainian, S.S. (2016), “A multilevel tabu

search algorithm for balanced partitioning of unstructured

grids”, Int. J. Numer. Meth. Eng., 105, 678-692.

https://doi.org/10.1002/nme.5003.

Mohan Rao, A.R. (2008), “A mesh partitioning algorithm for

generation of shape optimized submeshes using evolutionary

computing”, Pollack Periodica, 3, 91-103.

https://doi.org/10.1556/Pollack.3.2008.3.8.

Mohan Rao, A.R. (2009), “Distributed evolutionary multi-

objective mesh-partitioning algorithm for parallel finite element

computations”, Comput. Struct., 87, 1461-1473.

https://doi.org/10.1016/j.compstruc.2009.05.006.

Mohan Rao, A.R. (2009), “Parallel mesh-partitioning algorithms

for generating shape optimised partitions using evolutionary

computing”, Adv. Eng. Softw., 40, 141-157.

https://doi.org/10.1016/j.advengsoft.2008.03.017.

Mohan Rao, A.R., Appa Rao, T.V.S.R. and Dattaguru, B. (2002),

“Automatic decomposition of unstructured meshes employing

genetic algorithms for parallel FEM computationss”, Struct.

Eng. Mech., 14, 625-647.

319

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=22133620500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55353932700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=36846121900&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6602851606&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7402135249&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603859330&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56012057600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6507671936&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701686520&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0027556252&origin=resultslist&sort=plf-f&src=s&st1=farhat&st2=lesoinne&nlo=&nlr=&nls=&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=47&s=%28AUTHOR-NAME%28farhat%29+AND+AUTHOR-NAME%28lesoinne%29%29&relpos=37&citeCnt=144&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0027556252&origin=resultslist&sort=plf-f&src=s&st1=farhat&st2=lesoinne&nlo=&nlr=&nls=&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=47&s=%28AUTHOR-NAME%28farhat%29+AND+AUTHOR-NAME%28lesoinne%29%29&relpos=37&citeCnt=144&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-0027556252&origin=resultslist&sort=plf-f&src=s&st1=farhat&st2=lesoinne&nlo=&nlr=&nls=&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=47&s=%28AUTHOR-NAME%28farhat%29+AND+AUTHOR-NAME%28lesoinne%29%29&relpos=37&citeCnt=144&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56949693400&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57195148412&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7404710267&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85007452255&origin=resultslist&sort=plf-f&src=s&st1=a+novel+partitioning&nlo=&nlr=&nls=&sid=e91ddee19c220667e2dd9e254f24e35a&sot=b&sdt=b&sl=27&s=TITLE%28a+novel+partitioning%29&relpos=25&citeCnt=5&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85007452255&origin=resultslist&sort=plf-f&src=s&st1=a+novel+partitioning&nlo=&nlr=&nls=&sid=e91ddee19c220667e2dd9e254f24e35a&sot=b&sdt=b&sl=27&s=TITLE%28a+novel+partitioning%29&relpos=25&citeCnt=5&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56778037500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57188808936&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55456461700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56402666600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56175416300&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6508144290&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7101876215&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7005396579&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6507566623&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7005396579&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55822895200&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7005396579&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=15063247100&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7404909237&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7005497688&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-38249003725&origin=resultslist&sort=plf-f&src=s&st1=khan&st2=topping&sid=f04c29254a11563d274765690f6b3cfe&sot=b&sdt=b&sl=44&s=%28AUTHOR-NAME%28khan%29+AND+AUTHOR-NAME%28topping%29%29&relpos=10&citeCnt=16&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-38249003725&origin=resultslist&sort=plf-f&src=s&st1=khan&st2=topping&sid=f04c29254a11563d274765690f6b3cfe&sot=b&sdt=b&sl=44&s=%28AUTHOR-NAME%28khan%29+AND+AUTHOR-NAME%28topping%29%29&relpos=10&citeCnt=16&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57205120374&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=37461847200&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7102755738&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=37661791000&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=34879443700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603105992&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603105992&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-70349977319&origin=resultslist&sort=plf-f&src=s&sid=0d1eac22133016673db633278ec8524b&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%286603105992%29&relpos=33&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-70349977319&origin=resultslist&sort=plf-f&src=s&sid=0d1eac22133016673db633278ec8524b&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%286603105992%29&relpos=33&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-70349977319&origin=resultslist&sort=plf-f&src=s&sid=0d1eac22133016673db633278ec8524b&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%286603105992%29&relpos=33&citeCnt=3&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603105992&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603105992&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701584457&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7003494508&zone=

V. Shiralinezhad and H. Moslemi

https://doi.org/10.12989/sem.2002.14.6.625.

Mohan Rao, A.R., Appa Rao, T.V.S.R. and Dattaguru, B. (2004),

“Generating optimised partitions for parallel finite element

computations employing float-encoded genetic algorithms”,

Comput. Model. Eng. Sci., 5, 213-234.

https://doi.org/10.1007/978-3-319-55669-7_9.

Novikov, A., Piminova, N., Kopysov, S. and Sagdeeva, Y. (2016),

“Layer-by-layer partitioning of finite element meshes for

multicore architectures”, Commun. Comput. Inform. Sci., 687,

106-117. https://doi.org/10.1007/978-3-319-55669-7_9.

Pan, Q. and Zhou, C. (2013), “A finite element sub- partition

method for simulating crack extension independent to global

mesh”, Acta Mechanica Solida Sinica, 34, 13-19.

Pothen, A., Simon, H.D. and Liou, K.P. (1990), “Partitioning

sparse matrices with eigenvectors of graphs”, SIAM J. Matrix

Anal. Appl., 11, 430-452. https://doi.org/10.1137/0611030.

Predari, M., Esnard, A. and Roman, J. (2017), “Comparison of

initial partitioning methods for multilevel direct k-way graph

partitioning with fixed vertices”, Parallel Comput., 66, 22-39.

https://doi.org/10.1016/j.parco.2017.05.002.

Przemieniecki, J.S. (1963), “Matrix structural analysis of

substructures”, AIAA J., 1, 138-147.

https://doi.org/10.2514/3.1483.

Simon, H.D. (1991), “Partitioning of unstructured problems for

parallel processing”, Comput. Syst. Eng., 2, 135-148.

https://doi.org/10.1016/0956-0521(91)90014-V.

Stavroulakis, G., Giovanis, D.G., Papadopoulos, V. and

Papadrakakis, M. (2017), “A GPU domain decomposition

solution for spectral stochastic finite element method”, Comput.

Meth. Appl. Mech. Eng., 327, 392-410.

https://doi.org/10.1016/j.cma.2017.08.042.

Yang, Y.S. and Hsieh, S.H. (2002), “Iterative mesh partitioning

optimization for parallel nonlinear dynamic finite element

analysis with direct substructuring”, Comput. Mech., 28, 456-

468. https://doi.org/10.1007/s00466-002-0310-6.

Yui, H. and Nishimura, S. (2018), “A cost effective graph-based

partitioning algorithm for a system of linear equations”, Int. J.

Comput. Sci. Eng., 16, 181-190.

https://doi.org/10.1504/IJCSE.2018.090440.

CC

320

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603105992&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6701584457&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55960677700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57193500600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=36813877400&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55961193600&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84877083828&origin=resultslist&sort=plf-f&src=s&st1=karypis&st2=contact&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=39&s=%28FIRSTAUTH%28karypis%29+AND+TITLE%28contact%29%29&relpos=0&citeCnt=15&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84877083828&origin=resultslist&sort=plf-f&src=s&st1=karypis&st2=contact&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=39&s=%28FIRSTAUTH%28karypis%29+AND+TITLE%28contact%29%29&relpos=0&citeCnt=15&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84877083828&origin=resultslist&sort=plf-f&src=s&st1=karypis&st2=contact&sid=45ef8d3c999bfbebca0fe62db2d2054b&sot=b&sdt=b&sl=39&s=%28FIRSTAUTH%28karypis%29+AND+TITLE%28contact%29%29&relpos=0&citeCnt=15&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55317817500&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56202280700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=56217105100&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55410923000&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55123094400&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7102512590&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=7006108469&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55148988700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55149996200&zone=

