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1. Introduction 
 

The finite element method has become a widely used 

technique to numerically approximate the solutions of 

partial differential equations that arise in different real-

world engineering problems. However, many professional 

finite element software packages fail to meet the demand in 

the computation speed and memory usage since meshes 

often have large numbers of elements in large and highly-

complex problems. Partitioning an unstructured finite 

element mesh into a set of subdomains can reduce 

computational cost and memory usage since a large set of 

equations is decomposed to several smaller sets of 

equations. However, the path of mesh partitioning remains a 

topic of concern. In addition to balancing the computational 

cost between substructures, the boundary nodes should be 

minimized to reduce the boundary set of equation. These 

conflicting objectives make the mesh partitioning an Np-

complete problem (Gary and Johnson 1979) and optimum 

solutions are practically intractable in a reasonable amount 

of time. 

The first substructuring method was introduced by 

Przemieniecki (1963) to calculate the stresses and 

deflections in an aircraft structure and analyze different 

components separately. The recursive bisection (RB) 

algorithms are the most commonly used partitioning 

method where the mesh is divided into two pieces and these 

pieces are recursively divided to two pieces consecutively. 

Ansari et al. (2017) have represented a thorough survey of 

the general field of domain decomposition methods. Simon 

(1991) proposed a decomposition algorithm which is based 

on the computation of an eigenvector of the Laplacian 
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matrix associated with the mesh and distribute the 

subdomains over a large number of processors in a MIMD 

machine with distributed memory. However it was shown 

that the RB methods may produce a partition that is very far 

away from the optimal one. A multilevel version of RB 

method was introduced by Bernard et al. (1995) contracting 

the grid by selecting successive maximal independent sets 

of vertices and connecting these vertices into a coarser 

graph, finding the eigenvectors efficiently, and interpolating 

eigenvectors from coarser to finer graphs. Yang and Hsieh 

(2002) proposed an iterative mesh partitioning optimization 

for parallel nonlinear dynamic finite element analysis in 

which the partitioning results are adjusted iteratively until 

the workloads among the substructures are balanced 

reasonably. 

Another category of partitioning methods is non-spatial 

mesh partitioning algorithm which completely rely on the 

adjacency information of the mesh elements and devoid of 

geometrical structures and the partitioning. A greedy 

approach is proposed by Farhat and Lesoinne (1993) which 

bites into the mesh in order to construct every subdomain 

and proved that this algorithm is quite versatile. Pothen et 

al. (1990) considered an algebraic approach to compute the 

vertex separators for partitioning sparse matrices. However, 

this method is expensive since it requires the solution of a 

complex eigenvalue problem. Pan and Zhou (2013) applied 

the substructuring technique to simulate the crack 

extension. They gather the elements involving the crack as a 

substructure. The size of substructure expands when the 

crack propagates. They agglomerated the stiffness matrix to 

express additional freedoms by the freedoms of original 

mesh. A parallel stabilized finite element method is 

proposed by Hussain et al. (2013) which parallelize the 

system using message passing interface specification and 

employed it for darcy flow in distributed systems. They 

augment the conjugate gradient method for the solution of 

stabilized mixed finite element. Predari et al. (2017) 
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modeled additional constraints with fixed vertices by a 

direct k-way greedy graph growing partitioning that 

properly handles fixed vertices. A layer-by-layer 

partitioning of finite element meshes for multicore 

architecture was presented by Novikov et al. (2016) using a 

neighborhood criterion to partition the mesh into layers and 

combining them into blocks and assigning them into 

different parallel processors. Badia and Verdugo (2018) 

investigated the use of domain decomposition 

preconditioners for unfitted finite element methods such as 

extended finite element method defining the coarse degrees 

of freedom in the definition of the preconditioner. 

Due to the NP nature of the mesh partitioning 

optimization, several metaheuristic approaches have been 

proposed to address this problem. Khan and Topping (1993) 

employed a genetic algorithm linked to a neural network 

predictive module for partitioning the coarse initial 

background mesh and showed that near optimal partitions 

for finer graded meshes may be obtained economically.  

Mohan Rao et al. (2002) employed genetic algorithm for 

mesh partitioning and used hierarchy of graphs to obtain the 

final graph partition. Float-encoded genetic algorithms are 

proposed by Kaveh and Bondarabady (2003) for mesh 

partitioning and several acceleration techniques like 

constraining the search space, local improvement after 

initial global partitioning have been attempted. Float-

encoded genetic algorithm is proposed by Mohan Rao et al. 

(2004) in such a way that the number of variables 

considered in the chromosome construction was constant 

irrespective of the size of the problem. Colonies of artificial 

ant-like agents were employed by Korosec (2004) to 

restructure the resources in their environment in a manner 

which corresponds to a good solution of the underlying 

problem. Bahreininejad and Hesamfar (2006) applied the 

ant colony optimization for partitioning finite elements 

meshes using the swarm intelligence concept. They also 

improve the quality of the solutions by a recursive greedy 

algorithm optimization method. Mohan Rao (2008) 

presented an algorithm for generating sub-meshes with 

optimal shape using a steady state elite preserving 

evolutionary algorithm. In iterative algorithms the asperct 

ratio of finite element mesh is also important for faster 

convergence. Diekmann et al. (2000) designed the load 

balancing to maintain good partition aspect ratio and 

showed that cut size is not always the appropriate measure 

in load balancing. They presented a new center-based 

partitioning method of calculating the initial distribution 

which implicitly optimizes this measure. A new distributed 

multi-objective mesh-partitioning algorithm using 

evolutionary computing techniques was proposed by Mohan 

Rao (2009) to optimize the interprocessor communications 

and the submesh aspect ratios. A multilevel tabu search 

algorithm for balanced partitioning of unstructured grids 

proposed by Mehrdoost and Bahrainian(2016). They 

introduced A new tie-breaking strategy in selection of 

maximum gain vertices. Kaveh and Mahdavi (2015) used 

recently developed meta-heuristic algorithm, so-called 

Colliding Bodies Optimization (CBO) in conjunction with 

k-median method and compared it with standard Particle 

Swarm Optimization (PSO) to indicate that the CBO is 

capable of performing better decomposition using smaller 

or equal computational efforts. A hybrid ant colony together 

with genetic algorithm was employed by Kaveh and 

Shojaee (2008) for decomposing large-scale finite element 

meshes. Mohan Rao (2009) used the master-slave concept 

and proposed a new synchronous model to optimize the 

performance even on heterogeneous parallel hardware. 

Alternatively, a multiple population model was also 

developed which simulates its sequential counterpart. The 

advantage of the second model was that it could fit in large 

size problems with large population even on moderate 

capacity parallel computing nodes. 

In recent years, several hopeful researches have been 

accomplished in the domain decomposition field. Marot et 

al. (2019) presented a new scalable parallelization scheme 

to generate the 3D Delaunay triangulation of a given set of 

points. They improved the Delaunay kernel to a 

multithreaded version that was able to concurrently insert 

vertices. A GPU domain decomposition solution for spectral 

stochastic finite element method was proposed by 

Stavroulakis et al. (2017) to address to address the intrusive 

stochastic mechanics problems. The solution of the 

resulting finite element algebraic equations was performed 

with the dual domain decomposition method, implementing 

specifically tailored preconditioners. Fu et al. (2017) 

proposed a novel partitioning method for block-structured 

adaptive meshes utilizing the meshless Lagrangian particle 

concept. They used high analogy of the problem to the 

relaxation of a multi-phase fluid to steady state. A new 

parallel domain decomposition algorithm based on integer 

linear programming (ILP) presented by Jordi et al. (2017) 

for the coastal ocean circulation models. Yui and Nishmura 

(2018) developed a cost effective graph-based partitioning 

algorithm and employed the nested dissection method to 

heuristically divide a system of linear equations, based on 

graph partitioning. 

In this study, the mesh is partitioned via element search 

technique where each element is allocated to a substructure. 

In this manner, substructures may consist of some sparse 

elements which pass through the bounds of the neighboring 

substructures domain. The process of element allocation is 

accomplished by the genetic algorithm similar to the well-

known hub allocation problem which has been applied to 

sensor networks, transportation systems, etc. The cost 

function in the optimization process can be regarded from 

two different aspects: the computational speed and memory 

usage. The most time-consuming parts of finite element 

method are iteratively solving linear systems derived from 

partial differential equation discretization. The most 

memory using parts of the method are the large coefficient 

matrices of these iterative solving linear systems. Thus, the 

focus of the cost functions is restricted to these decisive 

parameters. Since the number of internal and boundary 

nodes have different effects on the computational cost and 

memory usage, different partitioned meshes may be 

obtained via each of these cost functions. Thus a third 

combinatorial case of these two functions is defined to 

balance the computational speed and memory usage. In 

finite element meshes with millions of elements, the size of 

chromosome would increase drastically and GA algorithm 
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convergence would be disturbed. However, the proposed 

algorithm can afford problems up to 10,000 elements as 

shown in first example. 

The remainder of this paper is organized as follows. 

Section 2 introduces the basic concepts of mesh partitioning 

theory relevant to our algorithm. Next, in Section 3, the 

optimization algorithm for mesh partitioning is presented 

with three cost functions: computational cost, memory 

usage and a combinational case of these two items. In each 

case, two different algorithms are introduced for the few 

number of substructures and higher number ones. Some 

numerical examples are presented in Section 4 to 

demonstrate the robustness and efficiency of the proposed 

mesh partitioning algorithms. Finally, several concluding 

remarks are given in Section 5.  

 

 

2. Mesh partitioning 
 

Przemieniecki (1963) first proposed 

substructuring ‎method for first-level breakdown of complex 

systems ‎for the displacement and force method. In this 

method, the whole structure is separated into smaller units 

called substructure. Each substructure consists of several 

elements and nodes. Each element corresponds to an 

exclusive substructure, but each node may be located at one 

or more substructures. From this point, the nodes of the FE 

model can be classified into two categories: The nodes that 

belong to an exclusive substructure called internal nodes 

and those which reside in two or more substructures called 

boundary nodes. This should be noted that global boundary 

nodes of the structure may be classified as internal node by 

this definition. The equilibrium equation for linear and 

nonlinear systems leads to an iteratively solving linear 

system which for the complete structure may be represented 

by 

KU F  (1) 

This equation can be partitioned with the boundary 

displacements and forces separated from the interior ones as 

follows 
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where subscripts i and b denote the internal and boundary 

nodes, respectively. The displacement of internal nodes can 

be expressed in terms of displacements of boundary nodes. 

This elimination process is called static condensation. 

Solving Eq. (2) for {u}i and {u}b gives the internal and 

boundary degrees of freedom.  

          
1

u K F K u
i i bii ib


 

 
(3) 

   
1

b
u K F



   
 (4) 

where the assembled condensed stiffness matrix and 

condensed force vector are defined as 
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It is obvious that the linear solving system after 
condensation in Eqs. (3)-(4) is very smaller than linear 
solving system before condensation in Eq. (1). This effect 
increases the computation speed and reduces the memory 
usage. However, the efficiency of the technique depends on 
how the mesh is partitioned among the substructures. In 
next section, a set of algorithms based on element search 
technique are presented to optimally partition the mesh 
minimizing computational cost and memory usage.  

 

 
3. Algorithms for partitioning 

 

In this section some algorithms are presented to partition 

the mesh among substructures. The element search 

technique is used to assign each element to a substructure. 

The number of substructures is predefined in the problem 

and a permutation of these numbers can be assigned to each 

element. Different combinations of these assignments can 

be compared with respect to a cost function. Since the 

computation speed and memory usage are the main limiting 

parameters in a finite element analysis, these two 

parameters are considered in cost functions. Although a 

combinational case of these two cost functions is considered 

to optimize the mesh partitioning with respect to both 

parameters. Balancing the number of boundary nodes and 

internal node as defined in section 2, has a great effect in 

optimizing the cost functions. In problems with smaller 

number of substructures, the number of boundary nodes in 

initial population is small and it should be increased in 

iterations of the algorithm, but in problems with higher 

number of substructures the conditions are reversed and the 

number of boundary nodes should decreased iteratively. 

Thus, different strategies are proposed for mesh partitioning 

of the problems with a few number of substructures and 

higher number ones.  

  

3.1 Optimization with respect to computational cost 
 
Different paths of substructuring may lead to iterative 

solving systems with various dimensions and consequently, 
mesh partitioning has a key role on the time of finite 
element analysis. Thus, the mesh partitioning can be 
controlled in such a way that minimizes the computational 
cost of finite element procedure. The most time-consuming 
parts of finite element method are iteratively solving linear 
systems derived from partial differential equation 
discretization and the cost function is defined with respect 
to these parts of analysis. It can be seen from Eqs. (5)-(6) 
that for each substructure, the dimension of solving linear 
equations is the number of internal degrees of freedom of 
that substructure. It is also obvious from Eq. (4) that a linear 
system should be solved with dimension of the total 
boundary degrees of freedom. The floating point operations 
needed for solving linear equation with n unknowns, is in 
order of n3. Thus, the computational cost function in a 
substructuring analysis process can be approximated by 



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NS

i

ib NNFunctionCostTime
1

33     (7) 
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where Nb denotes the total number of boundary degrees of 

freedom, NS indicates the number of substructures and Ni 

denotes the number of internal degrees of freedom in each 

substructure. It is evident that this function is minimized if 

all of the parameters set to be equal. Thus, the internal 

nodes should be distributed equally between substructures 

and the total boundary nodes should have the same size too. 

These parameters have reverse relation and decreasing the 

internal nodes will lead to the increase of boundary nodes 

and vice versa. Therefore, several algorithms are proposed 

for finding the optimized case based on element search 

technique. Equalizing the number of the internal nodes is 

very simple, but the challenging task is the adjustment the 

size of the boundary nodes with them. The relation of 

boundary nodes and internal nodes of substructures is 

complicated and cannot be expressed mathematically. In the 

problems with small number of substructures, the initial 

number of boundary nodes is small and some algorithms are 

needed to increase them. In return, in problems with large 

number of substructures, the number of the boundary nodes 

is high initially and some strategies should be taken to 

reduce them. Thus, two different types of algorithms are 

proposed for these two cases. The choice of the appropriate 

case depends on the number of nodes and substructures and 

can be distinguished by comparing the number of boundary 

nodes and internal nodes in the initial partitioning state.  

An appropriate initial population has a vital effect on the 

efficiency of the proposed genetic algorithm. In the process 

of the generation of the initial population, if the elements 

are distributed randomly between substructures, the number 

of the boundary nodes will be very high and the internal 

nodes will be negligible. Therefore the number of iterations 

in the genetic algorithm will increase drastically. The 

adjacency of the elements is utilized for the proper 

generation of the initial population. This means that first an 

element is selected randomly for each substructure, and 

then from each of these elements another adjacent element 

is added to the corresponding substructure. The adjacent 

element in 2D elements is defined as an element with two 

common nodes. In this way, the area of each substructure 

will grow and this process is repeated until all of the 

elements are located at one of the substructures. This 

algorithm avoids from the dispersion of the substructures 

and leads to the reduction of the boundary nodes. It should 

be noted that in the initial population, each member of the 

population is correspondent with a different mesh 

partitioning. The differentiation between the members is 

achieved by random selection of initial elements. The size 

of each chromosome is equal to the number of elements and 

the chromosome contains the substructure labels 

correspondent with each element. The size of the initial 

population depends on the number of substructures and 

would be increased accordingly. 
After the generation of initial population, the number of 

boundary nodes is small and the genetic algorithm is 
employed to make the substructures sparse and balance the 
internal and boundary nodes. In first step the cost function 
is estimated for each member of the population according to 
Eq. (7) and the population is sorted with respect to the cost 
function. In next step, several parents are selected using 
roulette wheel, and crossover operation is accomplished. In  

 

 

Fig. 1 Flowchart of the proposed genetic algorithm 

 

 

this problem, the length of each chromosome is equal to the 

total number of the elements and each gene contains the 

substructure number of corresponding element. Uniform 

crossover is employed for generation of offsprings and each 

bit from the offspring's genome is independently chosen 

from the two parents according to a random distribution. 

Since individual genomes correspond to elements of the 

model and have no significant difference, uniform crossover 

is more proper than single-point or double-point crossovers. 

Thus, new generated mesh partitioning is a combination of 

the previous ones. In addition, mutation occurs during 

evolution according to a user-definable mutation 

probability. Since the number of internal and boundary 

nodes in initial population have a considerable difference, 

high probability of 10% is set in this study. In the mutation 

process, the content of some of the bits are changed 

randomly. This means that the substructure number of some 

elements is altered. For efficient of the mutation process, 

the elements will be renumbered which are located in the 

substructure with highest number of internal nodes to 

balance the internal nodes. Finally, individual genomes are 
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chosen from the initial population, offsprings and mutated 

members during a roulette wheel selection process. The 

process of crossover and mutation is accomplished for new 

population repeatedly until the best mesh partitioning with 

minimum cost function is not changed in some predefined 

iterations. The entire flow of the proposed algorithm is 

shown in flowchart in Fig. 1. 

If the problem consists of many substructures, the 

number of boundary nodes will exceed the internal nodes in 

that very initial population and the previous algorithm will 

lead to the increasing of the boundary nodes and 

consequently the cost function and analysis time. In this 

condition, the following algorithm will be applied. In this 

algorithm, a virtual master substructure is defined which 

distributes elements to the real substructures. First element 

assignment to the substructures is random, but in the next 

levels the elements are transferred from the master 

substructure to the real substructures considering the 

adjacency of elements to the substructures. Since several 

different elements may have adjacency conditions, that 

element will be transferred which produces fewer cost 

function according to Eq. (7).  

It should be noted the cost function is evaluated for 

elements that are excluded from master substructure and the 

elements of the master substructure are ignored in cost 

function before transfer. The elements are transferred to the 

substructures continuously until there would be no adjacent 

element for the target substructure. Thus, the growth of a 

substructure may stop earlier than others which lead to the 

formation of unequal substructures. In the next step, the 

produced substructures are balanced by exchanging the 

elements. The substructure with minimum internal nodes is 

chosen and then the largest adjacent substructure is selected 

and the adjacent elements are transferred from larger 

substructure to smaller one. This process is repeated until 

the difference between internal nodes reach a predefined 

value. However, the balanced substructuring does not create 

optimum case necessarily. Thus, a final modification is 

accomplished to check the possibility of cost function 

reduction in exchange of the elements. The adjacency of 

element and substructure is the necessary condition in this 

step. Unlike the previous algorithm, the equality of internal 

and boundary nodes is not usually attained in this algorithm. 

 

3.2 Optimization with respect to memory usage 
 

In finite element analysis of large-scale structures, a 
common problem which users encounter is the insufficient 
required memory which denies the start of the analysis. One 
of the advantages of the mesh partitioning is the reduction 
of the dimension of matrices and gradual creation of them 
in the analysis process. In this way, the allocated memory 
can be released in next steps. One of the main ideas in 
substructuring is to partition the mesh in such a way that the 
minimum memory will be required in the analysis process. 
The main memory using parts of the algorithm are the large 
coefficient matrices of the iterative solving linear systems. 
Thus, the memory units needed in different steps of the 
substructuring procedure is computed primarily and then 
the partitioning is optimized with respect to this cost 
function. In computation of the cost function, the inactive 

memory is released whenever it is not required in next 
steps. Investigating the Eqs. (3)-(6) it can be seen that the 
maximum required memory is in the computation of the 
displacements of the boundary nodes. 

The memory units needed for storing the coefficient 

matrices with n degrees of freedom, is in order of n2. Thus, 

the memory units needed in the computation of boundary 

nodes displacements equivalent Nb
2 where Nb denotes the 

total number of boundary degrees of freedom. In addition, 

in the process of solving the displacements of the internal 

nodes, required memory units are equivalent to Ni
2. 

However the displacements of internal nodes can be 

computed independently for each substructure and used 

memory in previous substructures can be released in each 

step. Thus, the maximum required memory in this part 

corresponds to the substructure with the most internal nodes 

which is denotes by Ni,cr. Consequently the memory cost 

function can be approximated by 

2

,

2  crib NNFunctionCostMemory   (8) 

Similar to the time optimization, there are two distinct 

algorithms for meshes with large number of substructures 

and those with smaller ones. The bounding limit of these 

two cases is the balance of the number of boundary nodes 

and internal nodes in the initial partitioning state. The 

algorithms presented in section 3.1 can be applied in this 

case too, but the memory cost function in Eq. (8) should be 

employed for comparison and sorting. In addition, in the 

balancing stage, the elements should be transferred from 

substructure with critical internal nodes Ni,cr.  
 

3.3 Combinational optimization  
 

In the two previous sections, the mesh partitioning 

algorithm was described on the basis of computational time 

and memory usage. Since there are different cost functions 

in these two cases, two distinctive mesh partitions can be 

achieved through each strategy for a certain structure. Each 

of these partitions has a shortcoming with respect to 

computational speed or memory usage. Thus, a third 

combinational case has been defined to have efficiency in 

both speed and memory. For this purpose, new cost function 

is formed from the combination of the time cost function 

and memory cost function as expressed in Eqs. (7)-(8). 

However, these two cost functions are two distinct 

quantities, one of them shows the memory units and another 

indicates the number of floating point operations. 

Therefore, to make them combinable, they have been 

normalized firstly. In the procedure of normalizing, an 

arbitrary uniform mesh partitioning is created for the 

specified structure and time cost function and memory cost 

function are computed for this partitioning according to 

Eqs. (7)-(8) labeled by TCFu and MCFu. These two 

parameters are set as the reference costs for all of the 

probable partitions and cost functions are normalized with 

respect to these two parameters. For the combination of 

these two normalized cost functions, different weights can 

be assigned to each of these cost functions, depending 

whether speed or memory is more important factor in the 

analysis. Defining the weighting factor r, the combinational  
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Fig. 2 The retaining wall; geometry and loading 

 

 

cost function will be obtained by normalizing Eqs. (7)-(8) 

3 3
2 2

,1 (1 )
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b i
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N N
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

   
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(9) 

It is evident that r=1 corresponds to the computational 

optimization while r=0 coincide with the memory 

optimization. The mesh partitioning algorithm is similar to 

one described in section 3.1 for small and large number of 

substructures. In this algorithm the comparison between the 

various members of the population is accomplished 

considering combinational cost function given in Eq. (9).  

 

 
4. Numerical examples 

 

To demonstrate the capability and efficiency of the 

proposed optimization algorithm described in section 3, 

some examples are analyzed numerically. Three different 

examples are investigated where their mesh partitioning is 

optimized with respect to computational speed, memory 

usage and combinational case, respectively. To illustrate the 

generality of the algorithm, there are both small and large 

number of substructures in the examples. The complex 

geometry is selected for the examples to challenge the 

ability of the algorithm in such problems. All of the 

problems are meshed with two dimensional triangular 

elements. The mesh density is not uniform and is adapted to 

have a fine mesh in critical points of the problem. In all of 

the examples, half of the population is transferred to next 

generation using roulette wheel. The mutation is 

accomplished on 5% of population and in this mutated 

population, 10% of the bits of the genome have been  

 

 

 

Fig. 3 The retaining wall; convergence rate of cost function 

 

 

changed. The termination condition of the iterations is the 

stability of the best solution in 10 consecutive iterations for 

all of the examples. The results of mesh partitioning and 

their costs are compared with those reported by 

Bahreininejad et al. (2006) which employed greedy 

algorithms for subdomain generation. 

 

4.1 Optimization of the concrete retaining wall with 
respect to computational cost 

 

The first example is of a concrete retaining wall under 

soil pressure as shown in Fig. 2. The wall and its foundation 

is modeled and meshed with 10710 elements and 5749 

nodes. This example is chosen to illustrate the ability of the 

proposed algorithm in problems with high number of 

elements. The model is analyzed with three substructures. 

In this example the mesh partitioning optimized with 

respect to computational speed. Since there are a lot of 

elements and a little substructures in the model, the internal 

nodes of each substructure overcome the total boundary 

nodes of the model (1769 vs. 147). Thus, the algorithm 

which proposed for small number of substructures would be 

applied. 

As it was described section 3, in such conditions, the 

genetic algorithm will make the element distribution sparse 

to equalize the number of internal nodes of each 

substructure and total boundary nodes. The solutions have 

been converged after 27 iterations and the absolute 

minimum of the time cost function is attained. The element 

distribution in initial population and final mesh partitioning  

 

 
 

Table 1 The retaining wall; Summary of element distribution in initial population and final mesh partitioning 

Time 

Cost Function 

Number of 

iterations 

Total boundary 

nodes 
Substructure3 Substructure2 Substructure1 

Number of nodes: 5749 

Number of elements: 10710 

Number of restrained nodes: 200 

1.91e11 

27 

147 1752 1881 1769 Internal nodes Initial 

population - 3590 3541 3579 Number of elements 

8.62e10 
1387 1387 1387 1388 Internal nodes Final mesh 

partitioning - 3501 3627 3582 Number of elements 

1.25e11 - 
369 1564 1791 1825 Internal nodes Greedy 

algorithm - 3530 3557 3623 Number of elements 
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Fig. 4 The retaining wall; final mesh partitioning, each 

color corresponds to one of the substructures 

 

 

Fig. 5 Cracked rectangular plate; geometry and boundary 

conditions 

 

 

and greedy algorithm is summarized in Table 1. It is 

obvious that the proposed algorithm have decreased time 

cost function more than greedy algorithm. 

It can be seen that the cost function is decreased about 

55% in the process of the proposed genetic algorithm. 

Eventual number of internal nodes of each substructure and 

total boundary nodes have been converged to 1387 which 

corresponds to absolute minimum of cost function. 

Downward trend of cost function in consecutive iterations 

are illustrated in Fig. 3. The high rate of convergence is 

obvious in this figure. The final mesh partitioning obtained 

after 27 iterations is sketched in Fig. 4. Each color indicates 

the elements distributed in one of the substructures. The 

sparse elements in the substructures are clear in this figure 

which cannot be seen in the classic mesh partitioning 

methods. It is due to the property of the proposed element 

search technique that permits the sparse elements to gather 

in a substructure for minimizing the cost function. 

 

4.2 Optimization of the cracked rectangular plate with 
respect to memory cost 

 

The second example is a rectangular plate with two off-

center holes which is subjected to a prescribed displacement 

in one edge as shown in Fig. 5. Two symmetric edge cracks 

are considered in the plate. The plate analysis is distributed 

over eight substructures and finite element discretization 

contains 619 nodes and 1033 elements. The memory is 

taken as the deciding factor for optimization in this 

example. The algorithm proposed for large number of 

substructures is applied in this example, because the 

 

Fig. 6 Cracked rectangular plate; growth of the internal and 

boundary nodes in the process of the transferring of the 

elements 

 

 

Fig. 7 Cracked rectangular plate; final mesh partitioning 

 

 

number of the total boundary nodes exceeds the internal 

nodes in the initial population (103 vs. 81). 

In this condition, the elements are transferred from a 

virtual master substructure to the real substructures. The 

process of accumulation of internal nodes of the 

substructures is illustrated in Fig. 6. It is obvious that the 

proposed algorithm have retained the balance between the 

substructures. However, the rate of the growth of the 

boundary nodes is higher than the internal nodes. Thus, the 

sparse elements are avoided in this model unlike the 

previous example. The final mesh partitioning of the model 

is presented in Fig. 7 which confirms the mentioned 

strategy. 

Table 2 shows the number of internal nodes in eight 

substructures in the initial population and after convergence 

of the proposed algorithm and greedy algorithm. As it was 

described in Section 3 in large number of substructures, the 

equal substructures is not the optimum case necessarily and 

the final mesh partitioning has balanced the boundary nodes 

with internal nodes. It can be seen that the number of 

elements in substructure-8 is half of those in substructure-1. 

Balancing these values would lead to tremendous growth in 

boundary nodes as described in Section 3 in large number 

of substructures. This process has reduced the memory cost 

function from 133896 units to 33587 units (about 75% 

reduction in memory cost with respect to initial population 

and about 20% reduction with respect to greedy algorithm). 

 

4.3 Combinational optimization of the knee lever 
 

The last example presents a knee-lever which is notched 

in its middle part as shown in Fig. 8(a). This example is 

chosen to present a combinational optimization in a  
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(a) 

 
(b) 

Fig. 8 The knee lever; (a) geometry (b) final mesh 

partitioning 

 

 

complicated geometry, which illustrates the capabilities of 

the proposed mesh partitioning procedure in handling 

complex structures. The importance of the computational 

speed and memory usage is considered to be equal in this 

example and consequently the weighting factor is set r=0.5. 

The structure is subdivided to four substructures. The finite 

 

 

  
(a) (b) 

 
(c) 

Fig. 9 The knee lever; combinational optimized mesh 

partition with different weighting factors (a) r=0 (b) r=0.5 

(c) r=1 

 

 

element model has been implemented using 897 elements 

and 550 nodes. Since both memory and computation are 

present in cost function, an intermediate state of the two last 

examples has been achieved in this problem. The sparse 

elements are present in the substructures, but not as dense 

as the first example which was optimized with respect to the 

computational cost only. The final mesh partitioning is 

shown in Fig. 8(b). The computational and memory cost 

Table 2 Cracked rectangular plate; Summary of element distribution in initial population and final mesh partitioning 

Number of nodes: 619 

Number of elements: 1033 

Number of restrained nodes:23 

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 
Total boundary 

nodes 

Memory 

cost function 

Initial 

population 

Internal nodes 80 81 61 76 54 64 39 38 103 

133896 Number of 

elements 
148 147 135 147 113 147 125 71 - 

Final mesh 

partitioning 

Internal nodes 88 89 71 76 53 65 38 36 80 

33587 Number of 

elements 
151 148 135 146 112 148 125 68 - 

Greedy 

algorithm 

Internal nodes 82 71 65 71 85 40 58 32 92 

42096 Number of 

elements 
148 160 146 145 153 72 136 73 - 

Table 3 The knee lever; Summary of element distribution in initial population and final mesh partitioning 

Number of nodes: 550 

Number of elements: 897 

Number of restrained nodes: 8 

Sub1 Sub2 Sub3 Sub4 
Total boundary 

nodes 

Memory cost 

function 

Computational 

cost function 

Combinational 

cost function 

Initial 

population 

Internal nodes 94 147 129 131 41 

26941 8.40e6 2.0 Number of 

elements 
154 251 240 252 - 

Final mesh 

partitioning 

Internal nodes 95 136 129 93 89 

22049 7.03e6 1.66 Number of 

elements 
195 241 241 220 - 
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functions of the initial population were considered for 

normalizing of the combinational cost function as was 

expressed by Eq. (9). The reduction of computational and 

memory cost functions via the proposed algorithm are given 

in Table 3. It is obvious that in the combinational 

optimization both memory and computational cost would 

decrease relatively (18% reduction in memory cost and 16% 

reduction in computational cost). The total combinational 

cost ratio has decreased from 2 to 1.66. 

To illustrate the effect of the weighting factor on the 

combinational optimization, the last example is reanalyzed 

with two substructures and three different weighting factors 

r=0, r=0.5, r=1.0. The propagation of the elements to the 

opposite substructure will grow with the increase of the 

weighting factor as it is shown in Fig. 9. 

 

  

5. Conclusions 
 

In the present paper, an optimization algorithm was 

presented for the mesh partitioning in the finite element 

method. The proposed algorithm was based on the element 

search technique which allows sparse elements in the 

partitions unlike the classic algorithms. The genetic 

algorithm was employed in the process of optimization and 

different mesh partitions are taken as the population. The 

genetic algorithm procedures such as selection, crossover 

and mutation were modeled like the well-known hub 

allocation problem. The optimization cost function was 

investigated considering three different important factors: 

computational speed, memory usage and combinational 

case. The functions were approximated mathematically in 

each case. Since the balance between the internal nodes and 

the boundary nodes is a main target in this process, different 

strategies were proposed for structures which were 

subdivided to small number of substructures and those with 

large number of substructure. Finally, the efficiency and 

robustness of proposed optimization algorithm in mesh 

partitioning were presented by three numerical examples 

with complex geometries. The different mesh partitions 

were achieved in computational, memory and 

combinational optimization which illustrates the effect of 

the optimizing parameter. 
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