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1. Introduction 
 

Many engineering problems are formulated as boundary 

value problems for second order elliptic differential 

equations. Elasticity, diffusion, heat conduction, Darcy’s 

flow are examples of phenomena modeled by second order 

elliptic problems. 

The finite element method (FEM) approximates the 

solution of partial differential equations based on the 

Galerkin method using a systematic way of generating 

subspaces or subset of approximating functions. Different 

finite element formulations have been developed to solve 

second-order elliptic problems. In fact, the expression finite 

element refers to a broad family of methods such as 

continuous, discontinuous Galerkin, mixed methods, hybrid 

methods, among others. Thus, before solving an 

engineering problem, one needs to choose the formulation 
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that is more suited to the kind of application at hand. That 

choice would be guided by different aspects concerning the 

quantity of interest. Depending on whether the application 

aims to compute the solution or the flux field, it would 

determine the choice of a primal or a mixed H(div)-

conforming formulation (Forti et al. 2016). Other concerns 

relate to local conservation property, ability to deal with 

solution discontinuities, etc. 

The discontinuous Galerkin finite element method 

(DGM) (Oden et al. 1998, Süli et al. 2000, Cangiani et al. 

2014) has become widely used as it possesses several 

qualities, such as: flexible mesh design as hanging nodes 

are admissible; easy implementation of hp-adaptive 

algorithms; a natural ability to deal with discontinuities; the 

accuracy is obtained by means of high-order polynomials 

within elements, without any regularity constraint at 

element interfaces.  Furthermore, unstructured meshes and 

parallelization can be easily handled. The combination of 

these properties leads to robust solvers with high precision 

in space and wide stability range. 

These properties however come with the drawback of an 

increased number of degrees of freedom. It means that 

discontinuous Galerkin is more accurate and stable solving 

problems with discontinuities but more costly than the 

classical continuous 𝐻1 finite element method. With this 

motivation, it seems a natural approach to combining both 

continuous and discontinuous elements in the same 

simulation obtaining the advantages of both methods. This 
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Abstract.  The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a 

natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the 

ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating 

cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. 

However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical 

continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the 

advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method 

(CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. 

The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using 

CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive 

zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of 

elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is 

submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second 

example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the 

literature. 
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approach was employed by Clint Dawson and Proft (2002), 

Devloo et al (2007), Cangiani et al. (2013). Following that 

strategy, discontinuous elements are placed in regions 

where the solution has discontinuities and continuous 

elements are adopted elsewhere, where the solution is 

smooth. 

The control of discontinuities across element interfaces 

in DGM can be adjusted by using the so-called jump 

penalization. Using excessive penalization within a DGM 

approximation is referred as the super penalty method 

(Cangiani et al. 2014).  

An important problem in engineering is the simulation 

of crack propagation in concrete structures or rocks 

(Gamino et al. 2010, Elsaigh et al. 2011, Yaylaci 2016, Kh 

et al 2016, Shaowei et al 2016, Lin et al. 2017, Feng and 

Wu 2018, Suárez et al. 2019, Kurumatani et al. 2019). 

Concrete is a very versatile material, applied in different 

types of constructions around the world. Advantages of this 

material is its ability to mold complex shapes, its fire 

resistance, and resistance to atmospheric conditions 

providing the structure the necessary durability. Economic 

factors also contribute to the wide use of concrete 

structures. However, its mechanical behavior is complex. 

One difficult in modeling concrete structures is the 

definition of constitutive laws that are able to describe its 

non-linear behavior and the process of cracking. Concrete is 

a material with low tensile resistance and many internal 

micro defects and micro cracks exist even before any 

loading is applied (Santos and Souza 2015). The 

mechanical behavior is strongly influenced by the initiation 

and propagation of these internal microcracks. The problem 

is characterized by a discontinuity (or several 

discontinuities) that evolves throughout the domain as 

external loads are applied. In this work, it is proposed to 

employ the combined continuous-discontinuous Galerkin 

method (CDGM) to simulate crack propagation in concrete 

structures. 

The work is organized as follows. Section 2 presents the 

formulation of CDGM for the 3D elasticity problem and 

discusses the cohesive fracture theory for describing crack 

propagation. Section 3 describes the algorithm adopted to 

solve the crack propagation problem. Numerical examples 

are presented in Section 4. The first one is a three-point 

bending test where numerical results are compared to 

published experimental data. Second example describes the 

application of the CDGM to a full-scale steel-fiber 

reinforced concrete ground slab. Section 5 concludes the 

paper. 

 

 

2. Formulation 
 

This section describes the formulation of the combined 

continuous-discontinuous Galerkin method (CDGM) for the 

3D elasticity problem. The elasticity problem is given by 

the equilibrium equation 

𝑑𝑖𝑣(𝜎) + �⃗� = 0⃗ , 𝑖𝑛 Ω 

where 𝜎 is the Cauchy stress tensor, �⃗� = {𝑏𝑥, 𝑏𝑦 , 𝑏𝑧}
𝑇
 are 

body forces, and Ω ⊂ ℝ3  is a bounded domain with 

boundary 𝜕Ω . Each component of �⃗�  is a function in 

𝐿2(Ω), the space of square-integrable functions. The stress 

tensor is given, in linear elasticity, by the constitutive law 

𝜎 = (

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧𝑧

) = 𝜆 𝑡𝑟(𝜖) �⃡� + 2 𝐺𝜖 

where 𝜖 is the strain tensor and 𝜆 and 𝐺 are the Lamé’s 

coefficients, related to the Young’s module 𝐸 and Poisson 

coefficient 𝜈 by the following expressions 

 =
   

( +  )(  2 )
 

G =
 

2( +  )
 

The infinitesimal strain tensor is given by 

𝜖 = (

𝜖𝑥𝑥 𝜖𝑥𝑦 𝜖𝑥𝑧
𝜖𝑥𝑦 𝜖𝑦𝑦 𝜖𝑦𝑧
𝜖𝑥𝑧 𝜖𝑦𝑧 𝜖𝑧𝑧

) =
 

2
(𝛻�⃗� + 𝛻�⃗� 𝑇) 

where �⃗� = {𝑢𝑥, 𝑢𝑦 , 𝑢𝑧}
𝑇
 is the displacement field. 

Boundary conditions can be prescribed displacements 

(Dirichlet type) or external forces (Neumann type) and a 

same boundary region can have both types, i.e., a prescribed 

displacement in 𝑥 and 𝑦 direction and an external force in 

𝑧  direction, for instance. A general description can be 

expressed by a mixed boundary condition in the form 

𝜎 ⋅ �⃗� = 𝑀(�⃗�  �⃗� 0) + 𝑔 , 𝑖𝑛 𝜕Ω 

where 𝑀 is a matrix of scalars and �⃗� 0 and 𝑔  are given 

functions with each component a function in 𝐿2(Ω).  

 
2.1 Continuous finite element formulation 
 
The classical 𝐻1  formulation (Oden et al. 1981) is 

stated as: find �⃗� ∈ 𝑈(Ω) such that 

∫ σ⃡: ∇w⃗⃗⃗  dΩ

Ω

= ∫ w⃗⃗⃗ ⋅ b⃗  dΩ

Ω

+ 

+ ∫ w⃗⃗⃗ ⋅ (M(u⃗  u⃗ 0) + g⃗ ) dω

∂Ω

 ∀w⃗⃗⃗ ∈ U(Ω), 

(1) 

where  

U(Ω) = ,H1(Ω)-3 = *v⃗ = *v1, v2, v3+
 : v ∈ H

1(Ω),

i =  ,2, +
 

H1(Ω) = {v ∈ L2(Ω);
∂v

∂x 
∈ L2(Ω), i =  ,2, )} 

 
2.2 Discontinuous Galerkin formulation 
 
The discrete version for the discontinuous Galerkin 

weak formulation (Oden et al. 1998) is constructed over the 

broken polynomial space 

  (  ) = {v⃗ = *v1, v2, v3+
 : v ∈ L

2(Ω); v  Ω  

∈   (Ω ), ∀Ω ∈    , i =  ,2, } 
 

where    is a partition of the domain Ω, 
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  = *Ω , e =  ,… , nel+, 

and Ω  are open subsets with Ω = ⋃ Ω̅n l
 =1  

, nel is the 

number of elements, and Ω ∩ Ω = ∅ for e ≠ i.   (Ω ) 

are locally defined polynomial spaces of maximum degree 

p. We also adopt the notation ΓΠh = ∂Ω ∪ Γ nt, where Γ nt 

is the union of all interelement boundaries. If elements Ω  
and Ωf  have a common inter-element boundary Γ f , the 

normal vector n⃗  is defined as n⃗ = n⃗ f = n⃗  , with e > f, 
being n  the outward normal of the boundary ∂Ω . Thus, 

the discrete weak formulation is given as: find u⃗ ∈   (  ) 

such that 

∑{  ∫ σ⃡: ∇w⃗⃗⃗  dΩ 
Ω 

}

n l

 =1

+

+ ∫(θ〈σ⃡w. n⃗ 〉 ⋅ ,u⃗ -  〈σ⃡. n⃗ 〉 ⋅ ,w⃗⃗⃗ -)dω

Γint

+

+ ∫ γ ,u⃗ - ⋅ ,w⃗⃗⃗ - dω

Γint

=∑  { ∫ w⃗⃗⃗ ⋅ b⃗  dΩ 
Ω 

}

n l

 =1

+

+ ∫ w⃗⃗⃗ ⋅ (M(u⃗  u⃗ 0) + g⃗ ) dω

∂Ω

 

 (2) 

for any w⃗⃗⃗ ∈   (  ), where 

σ⃡w =   tr (
 

2
(∇w⃗⃗⃗ + ∇w⃗⃗⃗  )) I⃡ + 2 G (

 

2
(∇w⃗⃗⃗ + ∇w⃗⃗⃗  )), 

〈σ⃡ ⋅ n⃗ 〉 and ,w⃗⃗⃗ - are the average and jump operators 

〈σ⃡ ⋅ n⃗ 〉 =
σ⃡ ⋅ n⃗ + σ⃡f ⋅ n⃗ 

2
, 

,w⃗⃗⃗ - = w⃗⃗⃗  ∂Ω  w⃗⃗⃗  ∂Ωf  

which are defined between two elements Ω𝑒 and Ω𝑓, with 

𝑒 > 𝑓, having a common boundary Γ𝑒𝑓. By setting 𝜃 =

+ , one would obtain the non-symmetric interior penalty 

formulation (Oden et al. 1998). By setting 𝜃 =   , a 

symmetric formulation is obtained. Parameter 𝛾 > 0 is the 

jump penalization parameter. 

The control of discontinuities across element interfaces 

can be exercised by tuning the value of 𝛾. Using excessive 

penalization is referred as the super penalty method 

(Cangiani et al. 2014). It is natural to expect that as the 

value of 𝛾  increases the interelement jumps in the 

numerical approximation decrease. Larson and Niklasson 

(2001) showed that the discontinuous approximation 

converges to the classical 𝐻1 approximation as the jump 

penalization parameter tends to infinity. Thus, it is proposed 

to simplify the DGM formulation presented in Eq. (2). In 

Eq. (2), there are two integral across interfaces: the natural 

DGM flux, given by 

𝐹𝑁 = ∫(θ〈σ⃡w ⋅ n⃗ 〉. ,u⃗ -  〈σ⃡ ⋅ n⃗ 〉 ⋅ ,w⃗⃗⃗ -)dω

Γint

 

and the penalty flux given by 

Fγ = ∫ γ ,u⃗ - ⋅ ,w⃗⃗⃗ - dω

Γint

. 

When super penalization is adopted the natural flux 

loses its numerical importance compared to the penalty 

flux. Therefore, Eq. (2) could be simplified by neglecting 

the natural DGM flux and the formulation is then stated as: 

find �⃗� ∈ 𝑉𝑝( ℎ) such that 

∑{  ∫ σ⃡: ∇w⃗⃗⃗  dΩ 
Ω 

}

n l

 =1

+ ∫ γ ,u⃗ - ⋅ ,w⃗⃗⃗ - dω

Γint

=

=∑  { ∫ w⃗⃗⃗ ⋅ b⃗  dΩ 
Ω 

}

n l

 =1

+ ∫ w⃗⃗⃗ ⋅ (M(u⃗  u⃗ 0) + g⃗ ) dω

∂Ω

  

 (3) 

for any �⃗⃗� ∈ 𝑉𝑝( ℎ) . A drawback of this simplified 

formulation is that exact solutions could never be achieved 

since there will always be a discontinuity across elements. 

However, the discontinuity can be reduced to any required 

precision by properly tuning the super penalization 

parameter 𝛾.  

 
2.2.1 Selection of the jump super penalization 

parameter 
The selection of the jump super penalization parameter 

is motivated by a physical argument. In a one dimensional 

problem where the stress state is a constant tension of value 

𝜎𝑥𝑥 the longitudinal strain 𝜖𝑥𝑥 is computed as 𝜖𝑥𝑥 =
𝜎𝑥𝑥

𝐸
 

and the elongation of a finite element of size 𝑕  is 

𝛿𝑢 = 𝜖𝑥𝑥  𝑕 =
𝜎𝑥𝑥

𝐸
 𝑕. An interface connecting two neighbor 

elements of size 𝑕, each one presenting an elongation of 

𝛿𝑢 =
𝜎𝑥𝑥

𝐸
 𝑕, would have a jump ,𝑢- given by  

,u- =
σ  
γ

 

This discontinuity is not part of the exact solution and, 

therefore, should be minimal. A trivial conclusion is to 

adopt the highest possible value for 𝛾 , but that would 

introduce numerical errors that could eventually spoil the 

approximate solution. Thus, it is proposed to search 𝛾 such 

that ,𝑢- < 𝛼 2 𝛿𝑢, with 𝛼 ≪  , limiting the influence of 

,𝑢- in the approximate solution. Then, we have 

,u- =
σ  
γ
<   2  u 

,u- =
σ  
γ
<   2 

σ  
 
 h 

γ >
 

  2h
 

obtaining an expression to 𝛾 which is a function of 𝛼. In 

consequence, one can choose the value of 𝛼 (𝛼 =  0−3, 

𝛼 =  0−6 etc) and obtain the adequate value of 𝛾. For 

instance, by choosing 𝛼 =  0−3, the impact of the interface 

discontinuity will represent only 0.1% of the total 

elongation. Moreover, the expression is function of the 

element size 𝑕  and therefore is compatible to mesh 

refinement. This expression is in accordance to the usually 

adopted values in the literature (Süli et al. 2000), which also 
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includes the square of the polynomial order of 

approximation 𝑝, resulting in 

γ =
  p2

  2h
. 

For hp adaptive meshes, the expression assumes the 

form 

γ =
 < p2 >

  (h + hf)
 

where < p2 >=
1

2
(p 
2 + pf

2) , p  and pf  the 

approximation order of neighbor elements e and f, and h  
and 𝑕𝑓 are their characteristic size. 

 
2.2.2 Cohesive fractures 
The adequate and careful choice of the model is 

determinant to the success of the finite element simulation 

of cracking propagation in concrete structures. An aspect of 

major importance is describing the crack and the 

mechanical behavior of the cracked material. Traditionally, 

three lines of research have been developed: discrete, 

distributed and embedded cracks. 

In the discrete crack modeling, cracks are modeled as 

displacement discontinuities between elements. These 

models are based in the idea of simulating only the 

continuous and non-damaged part of the domain while 

cracks form the boundary of the domain. Then, the cracks 

develop and propagate following the boundary of elements, 

which impose a restriction to their propagation path. 

Remeshing or 𝑕𝑝  adaptivity technologies aim to better 

describe the path of cracking. 

The fictitious crack model or cohesive zone model 

describes the fracture process zone as a discrete crack 

(fictitious) where softening effects are expressed by 

cohesive zones in the interface of elements (Barenblatt 

1962, Barenblatt 1959, Hillerborg et al. 1976, Asferg et al. 

2007, Yu et al. 2008, Dong et al. 2010, and Murthy et al. 

2015). The crack formation is considered as a gradual 

phenomenon. Initially, the material is under linear elastic 

stress. After reaching a certain tension stress value, crack 

starts to open. Then, an inelastic process takes place until 

the crack aperture reaches a critical value and the crack 

faces are completely separated. The cohesive stress is 

defined as function of the relative displacement (or crack 

aperture) ,𝑢- . Fig. 1 illustrates a cohesive curve. The 

cohesive model fits the proposed discontinuous Galerkin 

formulation and the penalty flux is changed to 

Fγ = ∫(  D) γ ,u⃗ - ⋅ ,w⃗⃗⃗ - dω

Γint

  

where   stands for a damage coefficient  = (0, ) which 

is function of the normal aperture ,un- = ,u⃗ - ⋅ n⃗ . The 

damage coefficient   reduces the cohesive stresses as the 

crack aperture evolves. Fig. 2 helps illustrating the 

calculation of the damage coefficient  . Initially, crack has 

not initiated and a linear elastic behavior is observed with 

 = 0. After the normal stress reaches the concrete tension 

strength 𝑓 , the cohesive stresses govern the problem and 

the damage value is  > 0. Taking point   of Fig. 2, we 

 

Fig. 1 Example of cohesive curve 

 

 

Fig. 2 Example of a numerical cohesive curve 

 

 

have σn
1 = γ1,un- = (  D1) γ ,un- from where we obtain 

the value of  1.  

The straight line from point A to B in Fig. 2 represents 

the penalty formulation from the DGM. Thus, it is 

important that this straight line be limited to the very 

beginning of the cohesive curve. 

The discontinuous Galerkin formulation is finally stated 

as: find �⃗� ∈ 𝑉𝑝( ℎ) such that 

∑{  ∫ σ⃡: ∇w⃗⃗⃗  dΩ 
Ω 

}

n l

 =1

+ ∫(  D) γ ,u⃗ - ⋅ ,w⃗⃗⃗ - dω

Γint

=

=∑  { ∫ w⃗⃗⃗ ⋅ b⃗  dΩ 
Ω 

}

n l

 =1

+ ∫ w⃗⃗⃗ ⋅ (M(u⃗  u⃗ 0) + g⃗ ) dω

∂Ω

 

for any �⃗⃗� ∈ 𝑉𝑝( ℎ). 

The problem was formulated for mode I crack. Other 

modes could be easily included in the model. Then, the 

damage coefficient   would be function not only of the 

normal aperture, but also of the sliding relative 

displacements. 

 

2.3 Continuous-discontinuous Galerkin formulation 
 
The continuous-discontinuous Galerkin (CDGM) 

formulation is obtained by splitting the mesh into two 

regions. In one region, the continuous 𝐻1  formulation is 

adopted. In the other region, the DGM is adopted. Coupling 

both regions is made by using the DGM flux between 

neighbor elements, in the same manner as the DGM. If we 

define Γ   as the union of all interface elements between 

the two mentioned regions, we have the penalty flux given 

by 𝐹 
  = ∫ (   ) 𝛾 ,�⃗� - ⋅ ,�⃗⃗� - 𝑑 

Γ  
. It couples the 

equations and allows the CDGM simulation. 
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3. Problem solving strategy 
 

The problem is simulated by applying the external loads 

in sub steps. For each sub step, a non-linear problem has to 

be solved. The CDGM formulation is non-linear because 

the cohesive curve, which defines the penalty fluxes in Γ nt 
and Γ  , is function of the relative normal displacement of 

interface neighbors. Moreover, the numerical cohesive 

curve, as illustrated in Fig. 2, is not monotonic. There are 

two possible ,u⃗ - ⋅ n⃗   values for a given normal stress. The 

first value is given while the material is in its linear elastic 

domain. The second one is given when softening is 

governing. Therefore, it is proposed to “flag” each 

integration point of interface elements with its state, which 

can be “linear” or “softening”. Thus, the incremental load 

step is an important issue to capture the transition of 

“states” properly. 

The algorithm can be summarized as 

1. All integration points are flagged as “linear state” 

2. Set the load step  

3. Solve the non-linear problem 

4. Update the state of integration points. If the normal 

stress at a given point is higher than the material 

tension strength, the point is flagged as “softening 

state”. 

5. If any point is changed to “softening state”, go back 

to step 3 

6. After converging the substep, post process solution: 

calculate support reactions and write plot files 

7. Increment load step and go back to step 2 until the 

full load is applied. 

The simulations were implemented in C++ language 

using the object-oriented scientific computational 

environment PZ (http://github.com/labmec/neopz). PZ is a 

general finite element approximation software, which 

incorporates a variety of element geometries, variational 

formulations, and approximation spaces. It contains 

modules for a broad classes of technologies such as system 

resolution, finite element geometric approximation, finite 

element approximation spaces (e.g., continuous, 

discontinuous, H(div), and others) and mesh adaptivity.  

 

 
4. Numerical experiments 
 

4.1 Problem 1: Three-point bending test  
 

The CDGM formulation is applied to solve a three-point 

bending test, illustrated in Fig. 3. The pre-notched beam has 

a cross-section width of 100 mm. The beam has a pinned 

support on the left and a roller support on the right. A 

vertical force is applied in the middle of the beam. The 

vertical force is actually imposed as a prescribed 

displacement 𝛿 and the reaction force   is read. 

Numerical results are compared to experimental data 

from Rosa et al. (2012). The cohesive curve is defined 

using Hordijk’s analytical equation (Hordijk 1991) 

𝜎  ℎ𝑒   𝑒 = ftc ((  ( 
w

wlt
)
3

) e
−6.93

w
wlt   

 

 

Fig. 3 Problem 1: (a) pre-notched beam (dimensions in 

mm); (b) definition of CMOD (crack mouth opening 

displacement) 

 

 

Fig. 4 Hordijk cohesive curve 

 

 

Fig. 5 Problem 1 mesh: perspective view of 3D elements 

and highlight of region with discontinuous (blue) and 

continuous elements (red) 

 

 

 28
w

wlt
e−6.93) , for w ≤ 5.  6

GF
ftc
; 

𝜎  ℎ𝑒   𝑒 = 0, otherwi e. 

where 𝑤  = 5.  6
  

𝑓  
, 𝑓   is the concrete tension strength 

and 𝐺  is the apparent fracture energy, corresponding to 

the amount of energy per unit area required for the complete 

separation of the two fracture faces. Rosa et al. (2012) 

found 𝐺 = 98  J  
2  and 𝑓  = 5.2  M  . With these 

values, the cohesive curve is calculated and depicted in Fig. 

4. Other parameters are the Young’s module 𝐸 =
  900 M   and Poisson coefficient 𝜈 = 0.2.  

This numerical problem adopts a mesh aligned with the 

path of the cracking and aim to reproduce the experimental 

results of Rosa et al. (2012).  

239

http://github.com/labmec/neopz


 

Tiago L.D. Forti, Nadia C.S. Forti, Fábio L.G. Santos and Marco A. Carnio 

 

 

Fig. 6 Problem 1   𝛿 results: DGM (blue line), CDGM 

(red dashed line) and experimental results range 

 

 

Fig. 7 Problem 1 P-CMOD results: DGM (blue line) and 

CDGM (red dashed line) 

 

 

The problem adopts the mesh shown in Fig. 5. The 

crack is expected to initiate in the notch and propagate 

vertically. Since the mesh is perfectly aligned, only 

elements neighbor to the crack should be of discontinuous 

Galerkin type. Other elements can be continuous elements. 

The problem was solved using the CDGM mesh shown 

in Fig. 5 and with a full DGM mesh. Approximation order 

𝑝 =   is adopted for all elements. A vertical displacement 

of 0.45 mm was applied within  0,000 steps of 0.000045 

mm each. The jump penalization parameter 𝛾 =
𝐸 𝑝 

  2ℎ
 is set 

with 𝛼 =  0−3. 

Results are presented in Figs. 6, 7 and 8. Fig. 6 shows 

the curve of vertical force   versus the imposed vertical 

displacement 𝛿. It compares the results obtained with both 

DGM and CDGM methods and the experimental data from 

Rosa et al. (2012). The numerical solutions present a peak  

 
Fig. 8 Problem 1: deformed shape of CDGM solution at the 

vicinity of the crack for instant when 𝛿 = 0. 4 𝑚𝑚 . 

Deformation is scaled 30 times for better visualization 

 

 

load similar to that of the experiments and a good 

agreement of late stages of loading. Results of the CDGM 

mesh and DGM are almost identical. Differences of  (𝛿) 
are less than 2% for all steps. However, their computational 

cost differ considerably: the CDGM mesh has 5,064 

degrees of freedom while the DGM mesh has 15,012. Fig. 7 

brings the curve of   versus  𝑀   (crack mouth opening 

displacement) and Fig. 8 shows the deformed shape of the 

CDGM solution for the instant 𝛿 = 0. 4 𝑚𝑚 

 

4.2 Problem 2: Steel-fiber reinforced concrete ground 
slab 
 

In this section, a steel-fiber reinforced concrete (SFRC) 

ground slab is simulated using the CDGM method. The 

problem is presented by Elsaigh et al. (2011), which 

presents both numerical and experimental results.  

The full-scale SFRC ground slab was tested by Elsaigh 

(2001). The layout of the slab test is shown in Fig. 9. The 

SFRC contained 15 kg/m
3 of hooked end wires. The 

concrete has an average Young’s modulus of 28 GPa and 

compressive strength of 45 MPa. A foamed concrete slab 

weighing 780 kg /m
3
 supports the slab. Elsaigh et al. (2011) 

simulates the foamed concrete slab as part of their three 

dimensional domain. In this work, it was simulated as a 

non-tension spring boundary condition. The spring stress-

displacement response is presented in Fig. 10. The spring  

 

 
 
 

 

Fig. 9 Problem 2: Test layout 
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Fig. 10 Problem 2: No tension spring: stress-displacement 

response 

 

 

 

Fig. 11 Problem 2: cohesive bilinear curve (initial and full 

data). Data = {{0,4.2}, {0.195,1.1},{12,0}} 

 

 

 

Fig. 12 Problem 2 mesh (top and bottom view): 

discontinuous elements are blue; continuous elements are 

red 
 

 

Fig. 13 Problem 2:   𝛿  results. Finite element 

simulation (blue) and experimental data (gray) by Elsaigh et 

al. (2011); CDGM results in red 

 

  

 

Fig. 14 Problem 2: deformed shape (top and bottom view). 

Deformation is scaled 20 times for better visualization 

 

 

only provides vertical forces. In the horizontal directions, a 

friction factor of 0.1 is adopted, following the same 

assumption of Elsaigh et al. (2011). The load was applied 

using a hydraulic twin jack bearing on a stiffened loading 

plate (100×100 mm). The cohesive curve is presented in 

Fig. 11 where a bilinear curve is adopted. Tension strength 

is 4.2 MPa and fracture energy is about 𝐺 = 7000 J  
2. 

Additionally, the Mohr-Coulomb yielding criterion is 

adopted to allow elements in compression to yield. 

The mesh is shown in Fig. 12. There are hexahedra and 

triangular prism elements. Discontinuous elements are blue 

and continuous elements are depicted in red. Approximation 

order 𝑝 = 2 is adopted for all continuous elements and 

𝑝 =   for discontinuous elements. Discontinuous elements 

are placed in regions where cracks evolve and continuous 
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elements elsewhere. The choice of continuous/ 

discontinuous elements was made by solving coarser 

meshes in an adaptive process. A vertical displacement is 

applied to the steel plate and reaction forces are read. The 

  𝛿 curve is presented in Fig. 13. The CDGM results are 

compared to the results presented by Elsaigh et al. (2011), 

which includes the experimental data and a finite element 

simulation. The numerical solutions present a peak load 

similar to that of the experiment, but the CDGM shows a 

better agreement with experiments at late stages of loading. 

Fig. 14 depicts the deformed shape of the ground slab as 

obtained with the CDGM simulation for a vertical load of 

𝛿 =  0   . The figure shows the crack propagation 

towards the edges of the slab and in the diagonal directions 

towards the corners. 

 
 
5. Conclusions 
 

This paper addresses the application of the continuous-

discontinuous Galerkin method (CDGM) to simulate crack 

propagation in concrete structures. The discontinuous 

Galerkin method possesses a natural ability to dealing with 

discontinuities. However, it requires an increased number of 

degrees of freedom when compared with the classical 

continuous 𝐻1 finite element method. Therefore, a natural 

approach is combining both continuous and discontinuous 

elements in the same simulation obtaining the advantages of 

both methods.  

Two examples of crack propagation are presented. In the 

first example, a plain concrete beam is tested. The mesh is 

aligned to the crack path and results are compared to 

experimental data with good agreement. Results 

demonstrate the capacities of CDGM to simulate cracking 

processes using the cohesive fracture model. The cohesive 

law has strong influence in the results and its definition 

demands experimental data. In this example, the Hordijk’s 

equation is constructed from the concrete tension strength 

and its apparent fracture energy. The continuous-

discontinuous Galerkin method (CDGM) led to results 

almost identical to that of the Discontinuous Galerkin 

method, but with a reduced computational cost. The second 

example simulates a full-scale steel-fiber reinforced 

concrete ground slab. A CDGM mesh is proposed and 

results are compared to numerical and experimental data 

from the literature. The mesh construction for the CDGM 

requires the knowledge of crack locations to choose which 

elements are continuous 𝐻1  and which elements are 

discontinuous. The elements can be defined by using a prior 

knowledge of the problem, as in problem 1, or through 

mesh adaptation, as in problem 2.   
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