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1. Introduction 
 

A widely recognized observation is that the chloride 

ingress phenomenon is one of the major durability problems 

in reinforced concrete structures. To date, some accurate 

service life models such as Life 365 or DuraCrete (Ehlen et 

al. 2009, EuRam III 2000) are available to optimize 

sustainable performance of a concrete structure in its 

intended environment. Chlorides entering concrete can be 

separated into two parts: bound chlorides which are trapped 

by the solid skeleton, and free chlorides which diffuse 

freely through the concrete. The governing equation of 

diffusion processes for saturated cement-based materials 

involves two material parameters: the chloride binding 

capacity and the chloride diffusivity (Xi and Bazant 1999). 

In the steady state condition applied in this study, we are 

interested only in the chloride diffusivity. Further, for the 

time/depth dependent diffusion model, the chloride binding 

capacity plays an important part and has been studied in 

some theoretical and experimental researches (Hirao et al. 

2005, Martın-Pérez et al. 2000, Carrara et al. 2016, 

Torquato and Pham 2004, Pham and Torquato 2005). 

Over several decades, determining the chloride diffusion 

coefficient has become a stimulating subject for numerous 

theoretical (Pivonka et al. 2004, Caré and Hervé 2004, 

Zheng and Zhou 2008, Yoon 2009, Zheng et al. 2010, Dridi 

2013, Zheng and Zhou 2013, Ma et al. 2015, Hu et al. 

2017) and experimental (Page et al. 1981, Yu and Page 

1991, Tang and Nilsson 1993, MacDonald and Northwood 

1995, Ngala et al. 1995, Ngala and Page 1997, Yang and Su 
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2002, Park et al. 2012) studies because it is an important 

parameter to estimate the initiation period of corrosion. This 

period is the time that chloride from free surface diffuses 

through cover concrete and reaches a critical threshold 

value at steel bars. Because of the multi-scale characteristic 

of cement-based materials (Constantinides and Ulm 2004), 

some theoretical analyses in the framework of 

homogenization approach have been developed to predict 

the chloride diffusion coefficient depending on material 

properties. The cement-paste structure is described as the 

porous composite material (Pivonka et al. 2004, Zheng and 

Zhou 2008, Zheng et al. 2010, Yang and Su 2002). While 

the n-phase model (Christensen and Lo 1979, Hervé and 

Zaoui 1990, Hervé and Zaoui 1993) originated from the 

Hashin’s composite sphere assemblage method is usually 

used to model mortar or concrete structure with coated 

inclusions composed by aggregate and interfacial transition 

zone (ITZ) embedded in the matrix of bulk cement paste 

(Caré and Hervé 2004, Dridi 2013, Sun et al. 2011, Liu et 

al. 2016, Tu et al. 2018). Besides the advantages of 

describing the physical phenomena exactly, multi-scale 

approximations also have drawbacks which result from the 

lack of detailed information relating to porous material 

structure, size, and shape of aggregate and ITZ, and the 

uncertain value of chloride diffusion coefficient in water-

saturated porous spaces. 

In order to maximize use of the multi-scale approach 

and overcome the challenges cited above: we propose a 

strategy. Firstly, based on the framework of variational 

approach (Hashin and Shtrikman 1962, Le and Pham 1991, 

Pham 1996, 2011, Pham et al. 2013), a simple polarization 

approximation was constructed for the effective diffusivity 

of isotropic multicomponent materials. The approximation 

contains a reference parameter that should be determined 
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from available information about a given composite. The 

effective medium approximation constructed from Eshelby-

type micromechanical models (Mori and Tanaka 1973, 

Christensen 1979, Phan-Thien and Pham 2000, Pham 2008, 

Markov et al. 2012) is rewritten to clarify the physical 

characteristics of the reference parameter. Secondly, 

adaptive schemes applied to polarization approximations 

are proposed to account for more information about a 

composite to make more accurate estimates of the effective 

diffusivity. In the following sections, the free parameters 

will be calibrated based on available results derived from 

experimental and numerical references related to the 

chloride diffusivity of cement-based materials. Examples 

will be provided and analyzed to illustrate how to calibrate 

these parameters. 

 

 

2. Theoretical homogenization framework 
 

We start with a simple porous medium configuration Ω0 

in which the pore space is saturated by a liquid composed of 

different chemical species (e.g., chloride ion, carbon 

dioxide, sulfate ...). In order to provide a unique approach to 

the entire chloride-induced reinforcement corrosion process, 

we don’t take into account the coupling of chemical species 

and chloride diffusion. The diffusion of chloride at the 

microscopic scale is described by Fick’s law, which 

establishes a correlation between the diffusive flux j and the 

gradient of the solute concentration, in dilute case 

(Dormieux et al. 2006) 

,0 
z

gradDj   (1) 

where 𝐷0  the diffusion coefficient which refers to the 

diffusion of chloride ions through the solvent at a certain 

point 𝑧. In the dilute situation as noted above, the diffusion 

coefficient is independent of the morphology of pore space 

and we consider that it is constant. The link between the 

average diffusive flux 𝐽  and the average concentration 

gradient 𝐻 becomes 
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𝑫, 𝑻, 𝑣 are respectively recognized as the homogenized 

diffusion tensor, tortuosity tensor and porosity. In the 

isotropic case 

11D
T

vD
D 0 . (3) 

𝑇 is referred to as the tortuosity factor, an intrinsic 

parameter of the pore space and 𝟏 is the second-order 

identity tensor. 

The general linear problem for a multiphase material 

consists of 𝑛 different inclusion phases of homogenized 

diffusivity tensor 𝑫𝒊 (𝑫𝒊 = 𝐷𝒊𝟏 in the isotropic case) and 

volume fraction 𝑣𝒊 (𝑖 = 1. . 𝑛). For simplicity, we assume 

the contacts between the component materials are perfect; 

the solid phase is undeformable, and the solvent velocity is 

 
(a)                          (b) 

Fig. 1 (a) localization problem; (b) average problem 

 

 

negligible (no advection) in steady-state conditions. 

In Pham and Nguyen (2015), they studied the heat 

conduction problem when Fourier’s law satisfied. The 

polarization approximations for the effective conductivity 

(Eq. (17) in Pham and Nguyen 2015) are constructed using 

variational approach. Due to the same mathematical 

structure between Fick’s law for mass diffusion and 

Fourier’s law for heat conduction, the polarization 

approximation (PA) for the effective diffusivity 𝐷𝑒𝑓𝑓  of 

the composite described above in general d-dimensional 

space has the particular form in the isotropic case 

*

1

1 *

D
DD

v
D

n

i i

ieff 















 . (4) 

where the reference parameter 𝐷∗ should be determined 

from a reference dilute solution result, or reference effective 

diffusivities of the composite. 

Alternatively, the formula (4) is obtained from the 

homogenization approach based on the Eshelby-type model. 

Effective diffusivity is normally calculated in two 

successive problems: localization problem in which we look 

for the dilute solution result of an inclusion (𝐷𝒊) embedded 

in infinite reference matrix (𝐷∗) (Fig. 1 (a)), and an average 

problem in which some schemes are used to take average 

values form 𝑛 dilute solutions in real configuration (Fig. 1 

(b)). Some classical approaches are obtained depending on 

the theoretical values of 𝐷∗ in d-dimensional space (d = 2; 

3) as follow (see more in (Dormieux et al. 2006)) 
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where 𝐷𝑀𝑇  is diffusion coefficient of matrix in the case of 

spherical or circular inclusion composite.  

So, the classical homogenization schemes can be 

obtained by adequately choosing the properties of the 

reference 𝐷∗ . Due to the dependence of 𝐷∗ on 

homogenization schemes, the results obtained by the 

classical homogenization schemes are very different. 

 

 

3. Adaptive schemes for the determination of 
reference parameter 
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Like the other classical homogenization schemes, if 𝐷∗ 

in (4) is calculated from the dilute solution problem; the 

polarization approximation may diverge significantly from 

the observed effective diffusivity at high volume 

proportions of the inhomogeneities. So, we propose that the 

variable reference parameter 𝐷∗  that depends on the 

volume proportions of the components. The adaptive 

schemes using variable reference parameters include more 

information about a particular mixture, if possible, get 

better estimations for the effective diffusion coefficient over 

the range of components’ volume proportions of interest. 

In order to simplify the process of determining the 

reference parameter, and support the application of this 

approach in engineering which will be described in the next 

sections, we shall restrict ourselves to two-component 

composite materials with the volume proportions and 

diffusivities of the matrix and inclusion components being 

𝑣1, 𝐷1 and 𝑣2, 𝐷2, respectively. In the more general cases 

of multiphase composite, formulae become more complex, 

while the procedure is similar. For two-component 

materials, the variable reference parameter 𝐷∗ is defined as 

follows 

 γβvαDD 21*   (6) 

where 3 dimensionless parameters α, β, γ shall be found 

from available reference information of composite materials 

that shall be done subsequently. The estimate is called a 

multipoint adaptive polarization approximation (MPA) for 

chloride diffusivity. It’s necessary to note that the variable 

reference parameter 𝐷∗ depended on α, β, γ in (6) should 

be a simple, monotonous function of the components’ 

volume proportions, and should lie within the limits 

min*𝐷𝑖+ ≤ 𝐷∗ ≤ max*𝐷𝑖+ for the approximation to obey 

Hashin-Shtrikman bounds. 

As a distinction from other homogenization 

approximations, including the Mori-Tanaka, self-consistent, 

differential and some others adaptive homogenization 

schemes proposed recently (Nguyen et al. 2016, Nguyen et 

al. 2016, Tran et al. 2018), which have been derived from 

the field equations using the inhomogeneities’ dilute 

solution reference, the present adaptive polarization 

approximation has been constructed from the minimum 

energy principles. The approximation contains reference 

parameters that should be determined from the 

inhomogeneities’ dilute solution result for a matrix 

composite, and/or from available experimental or/and 

numerical value of the macroscopic diffusivity of the 

composite at certain finite-volume-proportion point of the 

component materials. Once the appropriate reference 

parameter had been chosen, the approximation should obey 

Hashin-Shtrikman bounds over all the ranges of volume 

proportions of the component materials while the other 

effective medium approximation schemes may not. 

Furthermore the polarization approximations for the 

effective diffusivity of the composite constructed from the 

minimum energy principles in general d-dimensional space 

are valid for any ellipsoidal shape of inclusions while it is 

not able to capture size distribution effect. 

Firstly, if we have three numerical or/and experimental 

data points from the relationship effective diffusivity - 

volume proportion (𝐷𝑎 , 𝑣2𝑎 ), (𝐷𝑏 , 𝑣2𝑏 ), (𝐷𝑐 , 𝑣2𝑐 ), using 

formula (4), we obtain the respective values of the reference 

parameter 𝐷∗ = 𝐷∗
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Replacing 𝐷∗
𝑎 , 𝐷∗

𝑏 , 𝐷∗
𝑐  from (7) in (6) one obtains an 

unique equation for γ 
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and two explicit expressions for β and α 
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The three-point adaptive polarization approximation 

(MPA3) has the particular expression 
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with γ, β, α from (8), (9). 

If we have only two numerical or/and experimental data 

points (𝐷𝑎 , 𝑣2𝑎), (𝐷𝑏 , 𝑣2𝑏), we need fix any of the three free 

parameters α, β, γ. For the reason that α can be determined 

from the analytical dilute solution result (see below). When 

α is fixed, one obtains two explicit expressions for γ and β 
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The two-point adaptive polarization approximation from 

(4), (6), (11) and (12) is referred as MPA2. 

If only one reference point is available, we first fix α. 

For simplicity and to respect the condition γ > 0, γ should 

be selected, then we obtain the remaining parameter β from 

(12). The present approximation is called MPA1. 

Additionally, with only one measured data (𝐷𝑎 , 𝑣2𝑎), the 

reference parameter 𝐷∗ can be calculated directly from (4) 

as follows 
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The polarization approximation using one reference at 

the finite volume proportions of the component materials 

(PA1) is 
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Furthermore, if the dilute solution result for the 

inhomogeneities suspended in an infinite matrix is available 

(Torquato 2002) 

),()( 211221 DDFDDvDDeff   (15) 

where 𝐹(𝐷1, 𝐷2) are inclusion-function, which depend on 

the inhomogeneity’s geometry. Equalizing (4) and (15) at 

𝑣2 ≪ 1, one can find explicitly 
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In the case of isotropically-distributed ellipsoidal 

inclusions, explicit expression of inclusion-function 

𝐹(𝐷1, 𝐷2) are depends only on the three aspect ratios, and 

are solved explicitly from Eshelby’s problem that can be 

find in some well-known micro-mechanical handbooks 

(Mura 1982, Torquato 2002). The approximation 
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with 𝐷∗
0 from (16) is called the polarization approximation 

using dilute solution reference (denoted as PA0). Equalizing 

(16) and (6) at 𝑣2 ≪ 1, one can find the explicit expression 

of α 
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Putting α from (18) in (11) and (12), we have the two-

point (or one-point if we fix γ and use only (12)) adaptive 

polarization approximation with dilute solution. The 

approximations are referred respectively as MPA02 and 

MPA01. 

In the specific case of spherical inclusions, we have the 

simple expression of α = 2. 𝐷∗
0 = 2𝐷1 from (14) and 𝐷𝑀𝑇  

from (5) are identical then PA0 coincides with the Maxwell 

and Mori-Tanaka approximations and one of the HS 

bounds. 

 

 

4. The effective diffusivity in cement paste 
 
The cement paste structure is a composite material with 

porous matrix and solid inclusions. While the diffusivity of 

solid inclusion (𝐷2) is considered as zero, the value of 

chloride diffusivity in a porous matrix (𝐷1) is a question to 

debate. Pivonka (Pivonka et al. 2004) indicated that, if 

𝐷1 = 1610 × 10−12𝑚2/𝑠 corresponds to the salt diffusivity 

of NaCl in a pure solution system, experimental data are 

largely overestimated by the differential effective medium 

approach (Lemarchand 2001, Dormieux and Lemarchand 

2001). Pivonka et al. propose a correlation value of 

𝐷1 = 107 × 10−12𝑚2/𝑠 , that takes into account the 

constriction effects of the narrow pore space, and is 

accepted by some successive authors (Zheng and Zhou 

2008, Zheng et al. 2010, Liu et al. 2012). Similarly, Stora 

(Stora et al. 2008) and Ma (Ma et al. 2015) adopted 

𝐷1 = 200 × 10−12𝑚2/𝑠 while 2030 × 10−12𝑚2/𝑠  is the 

selected value in the model of (Sun et al. 2011). 

 
Fig. 2 Experimental data for chloride diffusivity of cement 

paste in Pivonka et al. (2004), compared with analytical 

solutions: Maxwell approximation (MA) coincide with 

upper Hashin-Shtrikman bound (HSU), Mori-Tanaka 

approximation MTA) and PA0; PA1; MPA1; differential 

approximation 

 

 
Fig. 3 Experimental data for chloride diffusivity of cement 

paste in Sun et al. (2011), compared with analytical 

solutions: Maxwell approximation (MA) coincide with 

upper Hashin-Shtrikman bound (HSU), Mori-Tanaka 

approximation (MTA) and PA0; MPA2; MPA3; the results 

of Sun et al. (2011); differential approximation 

 

 

Firstly, the proposed methods are compared with the 

experimental data combined in (Pivonka et al. 2004). 

Graphics of Maxwell approximation (MA) that coincide 

with upper Hashin-Shtrikman bound (HSU), Mori-Tanaka 

approximation for spherical inclusions (MTA) and PA0, 

PA1, MPA1 are plotted in Fig. 2. The parameters of models, 

as 𝐷1, 𝐷2, reference points, α, β, γ, used in Fig. 2 and other 

examples (Figs. 3-7 and 10) will be presented in Table 1. 

Pivonka used the classical differential effective medium 

approach to propose 𝐷1 = 107 × 10−12𝑚2/𝑠 which is 

presented in Fig. 2, and takes the form 

.2/3
11vDDDA   (19) 

Fig. 3 illustrates the flexibility of our approach, and  
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compares the results obtained by some approximations and 

the experimental data of Sun et al. (Sun et al. 2011). The 

value of 𝐷1 = 2030 × 10−12𝑚2/𝑠, which differs from that 

of the above example by a factor of 19. Experimental values 

are largely overestimated by PA0 and the differential 

approximation. However, with just two reference points, 

MPA2 is better than the complex analytical model proposed 

by Sun. MPA3 shows even better agreement with the same 

experimental data for a slightly higher volume factor value. 

In Fig. 4, we are interested in comparing our models 

with the calibrated model proposed by Zheng and Zhou 

(2008) and the experimental results of (Page et al. 1981, Yu 

and Page 1991, MacDonald and Northwood 1995). Fig. 4 

shows that MPA3 agrees with the experimental results. 

However, γ=-4.1 violates the condition γ > 0 that caused the 

situation that 𝐷𝑒𝑓𝑓  may not be determined when 𝑣2 

approaches unity. To overcome this difficulty, a small 

modified version of MPA3 called MPA3M is proposed as 

follow 
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The coincidences between the two multi-point 

polarization approximations MPA3 and MPA3M in the 

domain of experimental data are observed in Fig. 4. 

For the last example concerning the diffusivity of 

cement paste, some numerical reference points from 

literature were selected. In (Ma et al. 2015), the transport 

properties of cement paste are modeled through a two-scale 

random walk simulation. The numerical results at low 

porosity permit us to use the approximations with dilute 

 

 
Fig. 4 Experimental data for chloride diffusivity of cement 

paste in Page et al. (1981),Yu et al. (1991), MacDonald et 

al. (1995), compared with analytical solutions: Maxwell 

approximation (MA) coincide with upper Hashin-Shtrikman 

bound (HSU), Mori-Tanaka approximation (MTA) and 

PA0; MPA3; MPA3M; calibration model in Zheng et al. 

(2008) 

 

 

solution reference (MPA01, MPA02). By combining Eqs. 

(3) and (4), the tortuosity factor of cement paste structure is 

estimated by ours adaptive polarization approximations 

using some numerical information (see Table 5 in Ma et al. 

2015). The results are presented in Fig. 5 with 𝐷1 = 107 ×
10−12𝑚2/𝑠 . Using (3), the effective diffusivities are 

calculated and plotted in Fig. 6. In Figs. 5, 6, some 

experimental data violate the bound. Note that the adaptive 

polarization approximations are constructed depend on 

reference points, if reference points do not respect Hashin-

Shtrikman bound, the curves are not guaranteed to be so 

valid. The numerical and analytical results are concordant 

with the seven independent sets of experimental data 

presented above (three in Zheng and Zhou 2008) and four in 

Sun et al. 2011). This agreement is an interesting one. 

Table 1 The values of the model parameters (chloride diffusivity coefficient is in unit of 10−12𝑚2/𝑠; the values 

in Fig. 10 are dimensionless) 

Figure Model 𝐷1 𝐷2 
Reference point Parameter 

𝑣2𝑎 𝐷𝑎 𝑣2𝑏 𝐷𝑏 𝑣2𝑐  𝐷𝑐 𝛼 𝛽 𝛾 

Fig. 2 
PA1 

107 0 
0.323 21.46 - - - - - - - 

MPA1 0.249 12.35 - - - - 1 -0.62 2 

Fig. 3 
MPA2 

2030 0 
0.37 3.92 0.51 9.64 4 -4 0.0013 0.37 3.92 

MPA3 0.38 4.37 0.41 5.46 0.48 8.41 0.005 -0.016 4.49 

Fig. 4 
MPA3 

107 0 
0.23 1.11 0.37 2.66 0.56 20.75 -0.008 0.008 -4.1 

MPA3M 0.295 1.11 0.37 2.66 0.56 20.75 0.005 11.1 -8.93 

Fig. 5,6 

MPA01 

107 0 

0.313 1.96 - - - - 2 -2 0.06 

MPA02 0.29 2.06 0.49 8.87 - - 2 -2 0.087 

MPA3 0.18 0.597 0.36 2.61 0.489 8.87 0.02 0.0024 -5.3 

MPA3M 0.18 0.597 0.36 2.61 0.489 8.87 0.02 13.48 -10 

Fig. 7 
MPA01 

2.03 0 
0.3 1.487 - - - - 2 -11.1 0.2 

MPA02 0.1 0.83 0.4 1.367 - - 2 -2.57 -0.86 

Fig. 10 MPA01 1 0.43 0.5 0.688 - - - - 2 2.94 4 
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Fig. 5 Computed diffusion turtorsity of cement paste in Ma 

et al. (2015), compared with analytical solutions: Maxwell 

approximation (MA) coincide with upper Hashin-Shtrikman 

bound (HSU), MoriTanaka approximation (MTA) and PA0; 

MPA01; MPA02; MPA3; MPA3M 

 

 
Fig. 6 Computed chloride diffusivity of cement paste in Ma 

et al. (2015), experimental data for chloride diffusivity of 

cement paste in Sun et al. (2011) and in Zheng et al. (2008), 

compared with analytical solutions: Maxwell approximation 

(MA) coincide with upper Hashin-Shtrikman bound (HSU), 

Mori-Tanaka approximation (MTA) and PA0; MPA01; 

MPA02; MPA3; MPA3M 

 

 

5. The effective diffusivity in cement paste 
 

Mortar and concrete are complex, heterogeneous, 

composite materials which are usually considered three-

phase materials: the bulk cement paste (matrix), the 

aggregate (inclusion) and the layer around the aggregate 

called the ITZ (coated shell).  

Firstly, we consider a simple situation in which the ITZ 

is not taken into account. The material is compounded of a 

bulk cement paste ( 𝐷1 = 2.03 × 10−12𝑚2/𝑠 ) and rigid 

inclusions (𝐷2 = 0). Based on this configuration, PA0 and 

the differential approximation are compared with 

experimental result of (Yang and Su 2002) in Fig. 7. 

In order to verify the above result, and propose some 

 
Fig. 7 Experimental data for chloride diffusivity of mortar 

in Yang et al. (2002), compared with analytical and 

numerical solutions (the case of non ITZ effect): Maxwell 

approximation (MA) coincide with upper Hashin-Shtrikman 

bound (HSU), Mori-Tanaka approximation(MTA) and PA0; 

MPA01; MPA02; differential approximation; finite element 

result 

 

 

Fig. 8 A periodic elementary cell (face-centered cubic) 

 

 

numerical reference points, we make finite element 

calculations for a number of periodic suspensions of spheres 

in three dimensions. The mortar and concrete structure in 

these particular situations are periodic and defined by an 

elementary cell which is similar to the case of face-centered 

cubic symmetry shown in Fig. 8. The numerical results are 

obtained within the framework of the periodic 

homogenization technique established in the literature that 

permits us to determine the effective diffusivity from the 

solution over the domain of an elementary cell. The open 

source finite element code (CASTEM) was utilized for 

numerical calculations (CEA 2011). Fig. 7 demonstrates 

that the finite element results and PA0 are quite close, up to 

the high packing of the spheres (aggregate), even though the 

component properties differ largely. 

The results show that the analytical and numerical 

curves are not in agreement with the experimental data (Fig. 

7). Moreover, the experimental points violate the HS upper 

bound. It is significant that we cannot use the simple 

configuration (non-ITZ) to model this effect. 

In Fig. 7, the adaptive polarization approximations with  
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Fig. 9 Equivalent-inclusion approach 

 

 

dilute solution MPA01, MPA02 are also constructed based 

on the experimental reference points of Yang et al. As the 

experimental reference points violate HSB, the MPA01, 

MPA02 curves are not guaranteed to be obey HSB. 

Secondly, the configuration with ITZ is examined. The 

model called “equivalent-inclusion approach” proposed 

recently by Pham and Tran (Pham and Tran 2014, Tran et 

al. 2015) enable us to use the adaptive method proposed 

above for the three phase materials as a concrete structure. 

The model permits us to replace coated spherical inclusions 

(ITZ and aggregate) in d dimensions (d=2, 3) by 

equivalent-inclusions having properties as follow (Fig. 9) 
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where 𝐷𝑖
𝑒𝑖 , 𝑣𝑖

𝑒𝑖 , 𝐷𝑖
𝐼 , 𝑣𝑖

𝐼 , 𝐷𝑖
𝐴 , 𝑣𝑖

𝐴  are respectively diffusivity 

and volume factor of the equivalent-inclusion, ITZ, and 

aggregate of the “ith” phase. Equations (23) and (4) are 

combined to propose a simple approach to model the 

effective diffusivity of the concrete structure. 

Based on some experimental observations, Yang et al. 

(Yang and Su 2002) described some properties of the ITZ 

dependent on the thickness (h). Using equation (23), the 

properties of the equivalent-inclusion are calculated (see 

Table 2). The finite element results (the face-centered cubic 

case) are obtained for three different values of thickness of 

ITZ and compared with experimental data in Fig. 10. Using 

a numerical reference point in the case of h = 20µm, 

MPA01 is calculated and presented together with PA0, and 

the result of the model of Yang in Fig. 10, which show good 

agreement between the results of the present study and 

those proposed in the literature. 

It is necessary to note that, for illustration, we used the 

numerical computations for concrete considering a periodic 

arrangement of spherical aggregates that is far from reality. 

Complex numerical simulations are expected to be 

considered “good reference” results. 

 

 
Fig. 10 Dimensionless experimental data for chloride 

diffusivity of mortar in Yang et al. (2002), compared with 

analytical and numerical solutions (the case of ITZ effect): 

Maxwell approximation (MA) coincide with upper Hashin-

Shtrikman bound (HSU), Mori-Tanaka approximation 

(MTA) and PA0; MPA01; model of Yang et al. (2002); 

finite element result 

 

 

6. Conclusions 
 

Based on the available analytical results in the 

framework of micromechanics, some “optimal” polarization 

approximations have been constructed for the effective 

chloride diffusivity of isotropic cement-based materials. 

The reference parameters are determined from the 

inhomogeneities’ dilute solution result for a matrix 

composite, and/or from available numerical or experimental 

values of the macroscopic diffusivity of the composite at 

certain finite volume proportions of the component 

materials. In regard to engineering applications, this paper 

focuses on two-component materials and proposes the 

variable reference parameter D∗ as a monotonous function 

of the volume proportion of a component, which depends 

on 3 dimensionless free parameters α; β; γ. Some 

applications are made to present the transport properties of 

cement paste or concrete. The following conclusions can be 

drawn from this study:   

• A simple model for engineering applications is 
proposed through combination of the equivalent 
inclusion approach, and “adaptive” polarization 
approximations to evaluate the transport properties of 
three-phase material such as mortar or concrete. 
• The agreement between the numerical solution and 

seven independent sets of experimental data with the 

analytical model (Fig. 6) show that the MPA3M in Fig. 

6 is a good reference for further applications. 

• Finite element results show that (Fig. 10), if we accept 

the relationship between the thickness and diffusivity of 

Table 2 ITZ properties for different thickness (dimensionless values) 

ITZ thickness 𝑣𝐼/𝑣𝐴  𝐷𝐼/𝐷1 𝑣′1 𝑣′2 𝐷1 𝐷𝐼 𝐷𝐴 𝐷𝑒𝑖 

20 µm 0.27 2.83 0.212598425 0.787401575 1 2.83 0 0.431694915 

40 µm 0.65 1.76 0.393939394 0.606060606 1 1.76 0 0.532093023 

50 µm 0.9 1.55 0.473684211 0.526315789 1 1.55 0 0.58125 
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ITZ proposed by Yang et al. (Yang and Su 2002), the 

effective diffusivity of mortar structure is almost 

independent from the ITZ size. 

• Developments of the approximations to the cases of 

anisotropic particle distribution, more complex porous 

material structure and those involving the effect of 

aggregate size distribution on the chloride diffusivity are 

interesting subjects for the further studies. 
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