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1. Introduction 
 

It is well known that the microstructure of the cement 

paste near aggregate surface is highly different from that of 

the bulk cement paste. This special microstructure in the 

vicinity of an aggregate, termed as “interfacial transition 

zone” (ITZ), has been comprehensively studied since 1990s 

(Delagrave et al. 1997, Liao et al. 2004, Lutz et al. 1997, 

Ollivier et al. 1995, Prokopski and Halbiniak 2000, 

Scrivener and Nemati 1996, Shane et al. 2000). The 

formation of ITZ is mainly due to the “wall effect” caused 

by aggregates on the packing of cement particles. Usually, 

the size of the aggregate, even the fine aggregate (0.15~4.75 

mm), is much larger than that of the cement particle (<0.1 

mm). Thus, during the packing procedure, the aggregate 

surface is a “wall”, which can result in a smaller content of 

cement particles near the aggregate surface. Thus, after the 

cement particles are hydrated, different microstructures are 

formed in the cement paste and eventually result in the 

formation of ITZ. According to some published 

experimental researches, the ITZ has a much higher 

porosity than the bulk cement paste, which implies the 

significance of ITZ in the transport properties (Yang and Su 

2002, Yang et al. 2015) and mechanical behavior (Lee and 

Park 2008) of cementitious materials. 
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Since the ITZ is mainly formed due to the “wall effect” 

of aggregates on cement particles, the ITZ thickness is 

determined by the size of cement particles and is irrelevant 

to the size of aggregates. Experimental observations 

(Ollivier et al. 1995, Scrivener and Nemati 1996) showed 

that the typical ITZ thickness is usually 10~50 μm, 

dependent on the fineness of cement particles and mineral 

admixtures such as fly ash, silica ash, etc. Thus, in 

numerical modelling, the ITZ is usually considered as a soft 

shell with an identical thickness surrounding the aggregate. 

Different from aggregates as solid particles which are not 

permitted to be overlapped with one another, the individual 

ITZs can be interconnected to form a cluster, which can 

eventually develop through the entire specimen, which is 

usually called the “percolation effect”. The percolation of 

the specimen will greatly facilitate the ingress of external 

harmful agents such as chloride ions and carbon dioxide, 

since a connected path with a high porosity is formed 

through the entire specimen. It is apparent that whether the 

specimen can be percolated is strongly dependent on the 

ITZ volume fraction. With a small aggregate volume 

fraction, the individual ITZs are almost isolated. As more 

and more aggregates are used, the individual ITZs will be 

gradually interconnected together and eventually percolate 

the entire specimen. Thus, there exists a threshold of 

aggregate volume fraction (termed as “ITZ percolation 

threshold”) above which the specimen can be percolated, 

while below which the individual ITZs may be partially 

interconnected but no path across the entire specimen is 

formed. 

Up to now, numerous theoretical and experimental 

researches have been conducted to find the above ITZ 
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percolation threshold. Especially, most of theoretical 

researches used the computer simulation method with the 

“hard-core/soft-shell” model, where the aggregate is 

modelled as a “hard” sphere (Winslow et al. 1994, Zheng 

and Zhou 2007) or ellipsoid (Bentz et al. 1994) which is not 

allowed to be overlapped, while the ITZ is taken as a “soft” 

shell which is permitted to be interconnected. In studying 

the porosity of a mortar specimen with different volume 

fractions of sand by the Mercury Intrusion Porosimetry 

(MIP), Winslow et al. (1994) found that the ITZ percolation 

threshold is in the range of 0.448~0.486. By modelling the 

aggregate as an ellipsoidal particle, Bentz et al. (1994) 

found that as the aspect ratio increases (aggregate becomes 

more elongated), significantly lower aggregate contents are 

needed to form a percolated path through the 

microstructure. In studying the high-performance concrete 

(HPC) with fibers, Bentz (2000) found that HPC has a 

thinner ITZ and lower probability of percolation, but the 

presence of fibers in the concrete can provide alternative 

path to percolate the specimen. Zheng and Zhou (2007) 

studied the effect of aggregate gradation on ITZ percolation 

threshold. It was found that the Fuller’s gradation can result 

in a larger ITZ percolation threshold than the gradation of 

Equal Volume Fraction (EVF). Compared with the spherical 

and ellipsoidal aggregate models, more advanced aggregate 

models (Qian 2012) were adopted in recent researches 

(Rypl and Bým 2012), but no related results have been 

reported yet. The reason is that to obtain the accurate ITZ 

percolation threshold by the computer simulation method, 

hundreds or even thousands of simulations are needed to 

eliminate the effect of randomness from the meso-scale 

model on a single simulated result. Thus, if the aggregate 

model is over-complex, the amount of the computational 

work will be unacceptable in a statistical analysis. 

Compared with theoretical researches, the experimental 

work was greatly insufficient. Most of the theoretical 

researches used the results of the MIP test by Winslow et al. 

(1994) to validate the models. But Diamond (2003) 

expressed a different opinion. Based on the backscatter 

SEM investigations of “duplicate” and original mortar 

specimens, Diamond (2003) concluded that the MIP test 

data obtained by Winslow et al. (1994) cannot be used to 

validate the common “hard-core/soft-shell” model, as the 

sharp increase of the porosity observed in MIP test may be 

attributed to the interconnected highly porous hardened 

cement paste (HCP) patches, instead of the geometric 

overlap of the ITZs. The findings of Diamond (2003) were 

based on the concept of two distinct HCP patches, i.e., 

porous patch and dense patch, which can be observed in the 

backscatter SEM. However, as pointed out by Wong and 

Buenfel (2006), the HCP patches are artefact of sample 

preparation and does not reflect the true nature of the 

hydrated cement paste. But the research by Wong and 

Buenfel (2006) did not bring additional supports to the 

classic “hard-core/soft-shell” model. Some other researches 

on the topic of percolation can be also found in (Wu et al. 

2015, Ye 2005). But these researches mainly focused on the 

effect of percolated ITZs on properties of cementitious 

materials or the percolation of capillary pores at micro-scale 

and thus did not explicitly give any percolation threshold in 

terms of the aggregate volume fraction. 

To compare with the result of MIP test, early researches 

(Bentz 2000, Bentz et al. 1994, Winslow et al. 1994) used 

the connected ITZ volume fraction to represent the 

percolation condition of a meso-scale model. This approach 

can only give an estimated range, instead of an exact value 

of ITZ percolation threshold. According to the method 

commonly used in theoretical physics (Rintoul and 

Torquato 1997), percolation probability as a function of 

particle volume fraction is needed to determine the 

percolation threshold. Thus, in a more recent publication 

(Zheng and Zhou 2007), percolation probability was chosen 

as the main concern to evaluate the exact percolation 

threshold. But the aggregate in (Zheng and Zhou 2007) was 

just simplified as a sphere and only two special gradations, 

i.e., the Fuller’s and EVF gradations, were investigated. The 

effects of aggregate characteristics such as gradation and 

shape on ITZ percolation threshold were attributed to the 

specific surface area (SSA) and surface-to-surface distance 

(SSD) in (Bentz et al. 1994) and (Zheng and Zhou 2007), 

respectively. 

By following the philosophy of previous researches, this 

paper provides a further investigation on ITZ percolation 

threshold of a meso-scale model with ellipsoidal aggregate 

particles for cementitious materials. The main contribution 

of this paper lies in two aspects. Firstly, the exact ITZ 

percolation threshold, instead of approximate ranges, for 

different possible gradations and aspect ratios of aggregates 

are given. Secondly, we will show that SSA is not the single 

reason responsible for ITZ percolation threshold. The 

“bridging effect” caused by elongated ellipsoidal aggregates 

is also one of the reasons. To decrease the computational 

work and speed up the simulation, the numerical analysis in 

this paper is only conducted at the scale of mortar, which 

means that the aggregate size in the meso-scale model is in 

the range of 0.015~4.75 mm. But the qualitative 

conclusions can be extended up to the scale of concrete, as 

the meso-scale models of mortar and concrete are 

essentially the same in mathematics. 

 

 
2. Models and methods 

 
2.1 Meso-scale model 
 
2.1.1 Gradation 
According to the specifications in Chinese code (GB/T 

14684-2011) for sand used in civil engineering, the 

permitted upper and lower bounds of gradations for coarse, 

medium and fine natural sand are plotted in Fig. 1. Based 

on these specifications, six gradations shown in Table 1 are 

chosen in this paper to study the effect of aggregate 

gradation on ITZ percolation threshold. The fineness 

module (FM) for each gradation can be calculated by 

FM =
(𝐴2 + 𝐴3 + 𝐴4 + 𝐴5 + 𝐴6) − 5𝐴1

100 − 𝐴1

 (1) 

wh ere  𝐴1 ,  𝐴2 ,  𝐴3 ,  𝐴4 ,  𝐴5 ,  𝐴6  a r e  cu mu la t i v e 

percentages of aggregate retained on sieves of 4.75 mm, 

2.36 mm, 1.18 mm, 0.6 mm, 0.3 mm and 0.15 mm,  

552



 

A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles 

 

 

Fig. 1 Gradations of coarse, medium and fine natural sands 

in Chinese code (GB/T 14684-2011) 

 

Table 1 Aggregate gradations used in numerical analysis in 

this paper 

Sieve size (mm) I II III IV V VI Exp. 

0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.30 0.45 0.30 0.15 0.20 0.08 0.05 0.21 

0.60 0.84 0.59 0.60 0.29 0.30 0.15 0.41 

1.18 1.00 0.90 0.75 0.65 0.50 0.35 0.65 

2.36  1.00 0.85 0.95 0.75 0.65 0.94 

4.75   1.00 1.00 1.00 1.00 1.00 

 

 

respectively. According to Eq. (1), FMs for the selected six 

gradations in Table 1 are in the range of 1.71~3.80. 

 
2.1.2 Ellipsoidal particles 
In numerical simulation researches on cementitious 

materials at meso-scale, aggregates have been modelled as 

two-dimensional circle (Bazant et al. 1990), ellipse (Pan et 

al. 2014) and polygon (Pan et al. 2015) or three-

dimensional sphere (Šavija et al. 2013), ellipsoid (Leite et 

al. 2004) and other more complex geometries (Hafner et al. 

2006, Qian 2012). In this paper, the aggregate shape is 

simplified as an ellipsoidal particle with arbitrary 

orientations. This simplification is especially reasonable for 

sand and pebbles. 

In 3D Euclidean space, an ellipsoid can be uniquely 

defined by nine parameters, i.e., 𝑎, 𝑏, 𝑐, 𝑥c, 𝑦c, 𝑧c, 𝛼, 𝛽, 𝛾 , 

where 𝑎, 𝑏, 𝑐 (𝑎 ≥ 𝑏 ≥ 𝑐) are the lengths of three semi 

axes, (𝑥c, 𝑦c, 𝑧c) are the Cartesian coordinates of the center 

and 𝛼, 𝛽, 𝛾 are the orientations of the ellipsoid. To describe 

the aggregate shape, major and minor aspect ratios are 

defined as 𝜉1 = 𝑎/𝑏  and 𝜉2 = 𝑏/𝑐 , respectively. The 

procedure to use ellipsoidal particles to construct the meso-

scale model of mortar can be divided into two separated 

parts, i.e., particle shape and packing. With a given arbitrary 

gradation 𝑃𝑖(𝐷𝑖), 𝑖 = 1,2 … 𝑛, where 𝑃𝑖(𝐷𝑖) is the passing 

percentage of aggregates through the sieve with the size of 

𝐷𝑖 , the sizes of all ellipsoidal particles in a Representative 

Volume Element (RVE) with the size 𝐿 can be determined 

as follows. 

1. Set 𝑖 = 𝑛 − 1. 

2. Set 𝑉𝑖 = 0. 

3. Generate a pseudo-random number 𝑤 on the interval 

[0,1]. 

4. A reference sphere with radius 𝑟 = 𝑤(𝐷𝑖+1 − 𝐷𝑖) +
𝐷𝑖  is generated. 

5. The size of the ellipsoidal particle corresponding to 

the reference sphere is 𝑐 = 𝑟 √𝜉1𝜉2
23⁄ , 𝑏 = 𝜉2𝑐  and 

𝑎 = 𝜉1𝑏  by assuming that the particle volume is 

unchanged. 

6. Calculate the particle volume as 𝑉 = 4𝜋𝑎𝑏𝑐/3, and 

record the particle into computer memory. 

7. Add 𝑉 to 𝑉𝑖, i.e., 𝑉𝑖 = 𝑉𝑖 + 𝑉, and check whether 

𝑉𝑖 > 𝐿3𝑓a(𝑃𝑖+1 − 𝑃𝑖) , where 𝑓a  is the required 

aggregate volume fraction. If not, go to Step 3. 

8. Calculate 𝜀 =
𝑉𝑖−𝐿3𝑓a(𝑃𝑖+1−𝑃𝑖)

𝐿3𝑓a(𝑃𝑖+1−𝑃𝑖)
, and check whether 

𝜀 < 𝜀0 , where 𝜀0  is a pre-defined permitted error 

(𝜀0 = 0.001 is used in this paper). If not, go to Step 2. 

9. Let 𝑖 = 𝑖 − 1, and go to Step 2 

The whole procedure stops when 𝑖 = 0. In the above 

procedure, Step 8 is important and cannot be neglected. 

Otherwise, the gradation of simulated aggregates may be 

different from what is required, especially in a small RVE 

with a small aggregate volume fraction due to incorrect size 

of the last particle in each division ( ,𝐷𝑖 , 𝐷𝑖+1-) of the 

gradation. When the sizes of all aggregates are determined, 

the orientations are simply randomly generated on the 

interval ,0,2𝜋-. 
The procedure to distribute particles follows a classic 

“take-and-place” algorithm (Wang et al. 1999). During the 

procedure, a separation check is needed to ensure that the 

“to-be-placed” particle is not overlapped with any particle 

which is already in the model. In this paper, the algorithm 

proposed by Wang et al. (2001) is used to conduct the 

separation check for ellipsoidal particles. The advantage of 

the closed-form algorithm is the accuracy and efficiency: 

only the signs rather than the exact values of the roots of a 

quartic polynomial equation are needed to be evaluated. A 

detailed implementation of the separation check based on 

the above algorithm can be found in (King 2008). To 

eliminate the “wall effect” from the boundary of REV on 

the particle packing, the periodic boundary condition is 

applied on every face of RVE. During the packing 

procedure, more and more separation checks must be 

conducted to determine the proper position of one particle, 

which will greatly decrease the simulation efficiency. To 

speed up the packing procedure, RVE is divided into several 

sub-RVEs. When the position of a particle is determined, it 

is assigned to the sub-REVs which completely contains or 

partially intersected by the particle. When a new particle is 

to be placed, the sub-REVs which the new particle belongs 

to are firstly identified based on its potential position. Then, 

only the separation checks between the new particle and 

particles which belong to the same sub-REVs are 

conducted. In this approach, the number of separation 

checks can be greatly decreased, and the packing procedure 

can be accelerated as a result. Fig. 2 shows a typical 

example of simulated meso-scale model with ellipsoidal 

particles. 

 

2.1.3 Aspect ratio of aggregates 
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Fig. 2 An example of meso-scale model using ellipsoidal 

particles with periodic boundary condition 

 

 

Fig. 3 Distributions of major and minor aspect ratios of fine 

aggregates based on test data in (Erdogan 2005) 

 

 

The aspect ratio is the most important parameter to 

represent the global characteristic of aggregate shape. It 

describes the degrees of elongation and flatness of an 

aggregate. The aspect ratio of an aggregate is usually 

determined based on its corresponding bounding box which 

can be obtained by an image processing method. For 

example, by using X-ray tomographic method, Erdogan 

(2005) calibrated several geometrical parameters including 

three principal dimensions of an aggregate, i.e., longest 

dimension (𝐿), intermediate dimension (𝑊) and shortest 

dimension (𝑇), which can be considered as the length, width 

and height of the bounding box of an aggregate. Based on 

the definition of aspect ratio in this paper, the major and 

minor aspect ratios of one aggregate can be calculated as 

𝜉1 = 𝐿/𝑊 and 𝜉2 = 𝑊/𝑇, respectively. Fig. 3 shows the 

distribution of (𝜉1, 𝜉2) based on the measured data of fine 

aggregates in (Erdogan 2005). It is found that 𝜉1(𝜉2) =
1.0~2.0  and 𝜉1(𝜉2) = 1.0~3.0  can cover 70.67% and 

95.50% of the data, respectively. Thus, only the aspect 

ratios in the range of 1.0~3.0 will be investigated in this 

paper. 

 

2.1.4 Aspect ratio of aggregates 
In this paper, the SSA for a meso-scale model with 

ellipsoidal particles is defined as 

SSA =
∑ 𝑆𝑖

𝑁
𝑖=0

∑ 𝑉𝑖
𝑁
𝑖=0

 (2) 

where 𝑆𝑖 and 𝑉𝑖 are the surface area and volume of the ith 

ellipsoidal particle, respectively. The surface area of an 

ellipsoid is calculated by the Thomsen's formula 

𝑆 ≈ 4𝜋 √
𝑎𝑝𝑏𝑝 + 𝑎𝑝𝑐𝑝 + 𝑏𝑝𝑐𝑝

3

𝑝

 (3) 

where 𝑝 = 1.6075. Based on Eq. (3), SSA in (2) can be 

finally calculated by 

SSA = 𝑓(𝜉1, 𝜉2)
∑ 𝑟𝑖

2𝑁
𝑖=0

∑ 𝑟𝑖
3𝑁

𝑖=0

 (4) 

where 𝑟𝑖 is the radius of reference sphere corresponding to 

the ith ellipsoidal particle while 𝑓(𝜉1, 𝜉2) is 

𝑓(𝜉1, 𝜉2) =
√3𝑝−1(𝜉1

𝑝
𝜉2

2𝑝
+ 𝜉1

𝑝
𝜉2

𝑝
+ 𝜉2

𝑝
)

𝑝

√𝜉1
2𝜉2
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(5) 

Thus, SSA is only dependent on gradation and aspect ratios 

of aggregates, and irrelevant to RVE size and aggregate 

volume fraction. 

 

2.1.5 Aspect ratio of aggregates 
As soft shells, the ITZs in meso-scale model can be 

overlapped. Thus, the ITZ volume fraction should be 

determined in a numerical approach as follows. After 

aggregate packing procedure is finished, totally 𝑁p points 

are randomly placed into REV. The number of points 

(denoted as 𝑛p) which are located inside ITZs are counted. 

Then, the probability that a random point is located inside 

ITZs is 𝑛p 𝑁p⁄ . Based on the Monte-Carlo method, this 

probability equals to the ITZ volume fraction 

𝑓ITZ =
𝑛p

𝑁p

 (6) 

To ensure the accuracy of calculated ITZ volume 

fraction, 𝑁p = 1000000 is used throughout this paper. 

 

 

 

Fig. 4 A schematic of different states of ITZs inside meso-

scale model 
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2.2 Meso-scale model 
 
2.2.1 Accessible ITZ and cluster 
The ITZs in the meso-scale model can be categorized 

into several kinds, as shown in Fig. 4. Based on “burning 

algorithm” in x, y and z directions, the accessible ITZs can 

be identified by the following pseudo-codes, where sets D 

and C contains all the accessible and inaccessible ITZs, 

respectively. The RVE sample used here is placed so that its 

corner coincides with the origin. 

 

for each particle i in REV 

if (ITZ of particle i is intersected by surface x=0) then 

Put particle i into set B 

else 

Put particle i into set C 

end if 

end for 

do while ((set C is not empty) and (set C is changed)) 

for each particle i in B 

for each particle j in C 

if (ITZs of particles i and j are overlapped) then 

Put particle j into set B 

Remove particle j from set C 

end if 

end for 

Put particle i into set D 

Remove particle i from set B 

end for 

end while 

 

If any accessible ITZ is intersected by the surface 𝑥 = 𝐿 

of REV, the REV is considered as percolated. Based on the 

identified accessible ITZs, the shortest percolated pathway 

(shortest distance between central positions of ellipsoids in 

percolated network) can be found by the Dijkstra’s 

algorithm (Dijkstra 1959). A typical example is shown in 

Fig. 5. Different clusters can be also identified by the 

Connected-Component Labeling (CCL) method (Samet and 

Tamminen 1988), as illustratively shown in Fig. 6. Based on 

the largest ITZ cluster by volume in REV, the following 

parameter called “ITZ connectivity” can be defined 

𝜙 =
𝑓cITZ

𝑓ITZ

 (7) 

where 𝑓cITZ is the volume fraction of ITZs belonging to the 

largest cluster. Obviously, this parameter represents to what 

degree ITZs are interconnected. Thus, a larger 𝜙 usually 

stands for a higher percolation probability and vice versa. 

 

2.2.2 ITZ Percolation probability 

Each simulated meso-scale model can be either 

percolated or not. Thus, by doing N simulations, the ITZ 

percolation probability can be simply calculated by 

𝑝 =
𝑛

𝑁
 (8) 

where 𝑛 is the number of simulations where REVs are 

percolated. Obviously, Eq. (8) is only valid when 𝑁 is 

large enough, and the accuracy of calculated percolation 

probability increases with 𝑁. But a large 𝑁 will  

 
(a) Perspective view 

 
(b) Top view 

Fig. 5 An example of identified shortest percolated pathway 

through REV by Dijkstra’s algorithm 

 

 

Fig. 6 An example of four largest identified clusters in REV 

by CCL 

 

 

dramatically increase the computational work at the same 

time. 

The minimum required 𝑁 for a satisfying accuracy of 

ITZ percolation probability is related to the parameters such 

as REV size and characteristics of aggregates. To avoid an 

over-complex analysis, the same 𝑁  is used in different 

cases throughout this paper as an approximation. 𝑁  is 

determined by a typical case study where 𝐿 = 10mm , 

𝜉1 = 𝜉2 = 2.0 , 𝑓a = 0.3 , 𝑡ITZ = 30 𝜇m  and Type IV 

gradation (see Fig. 1). The results of ITZ percolation 

probability with different 𝑁 in this case study are shown in 

Fig. 7. The error in the figure is defined as 
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(a) Percolation probability 

 
(b) Error 

Fig. 7 Effect of N on accuracy of simulated percolation 

probability 

 

 

𝜀(𝑁) = max {
|𝑝(𝑖) − 𝑝(𝑁)|

𝑝(𝑁)
}     𝑖 = 𝑁 + 1, 𝑁 + 2, … (9) 

Based on the results in Fig. 7, it is found that when 

𝑁 = 1000, the error 𝜀 is as small as 0.023, which means 

that the percolation probability will not obviously change 

even if more simulations are conducted. Thus, 𝑁 = 1000 

is used throughout this paper. With different aggregate 

volume fractions used in simulation, the percolation 

probability can be finally expressed as a function of 

aggregate volume fraction, i.e., 𝑝 = 𝑝(𝑓a), which is needed 

to determine ITZ percolation threshold. 

 

2.2.3 ITZ Percolation threshold 
When the ITZ percolation probability as a function of 

aggregate volume fraction is obtained, the ITZ percolation 

threshold is determined by fitting the data of percolation 

probability with the following equation (Rintoul and 

Torquato 1997) 

𝑝 = 0.5*1 + tanh,(𝑓a − 𝑓c)/𝜆-+ (10) 

where 𝑓c is the ITZ percolation threshold and 𝜆 is the 

width of percolation transition. A smaller 𝜆 stands for a 

sharper increase of percolation probability at the threshold. 

Several fitting results are shown in Fig. 8 as an illustration. 

 

Fig. 8 Examples of data fitting with percolation probability 

to obtain ITZ percolation threshold 

 
 
3. Model validation 

 
3.1 Meso-scale model 
 

The computer program to construct the meso-scale 

model is validated by two approaches. In the first approach, 

the aggregate volume fraction in the meso-scale model is 

determined by the similar numerical method to calculate the 

ITZ volume fraction in Section 2.1.5. If the calculated 

aggregate volume fraction is much smaller than the 

requested one, it means that some aggregates are 

overlapped with one another, which indicates the 

incorrectness of separation check in developed computer 

program. In the other approach, the spacing between any 

two ellipsoidal particles is calculated based on their closest 

distance which can be numerically solved by the method in 

(Zheng et al. 2009, Zheng and Palffy-Muhoray 2007). In a 

normal meso-scale model with no overlaps between 

particles, all ellipsoidal particle spacings should be positive. 

 

3.2 Percolation detection 
 
3.2.1 Theoretical physics 
In theoretical physics, a lot of researches have been 

conducted to obtain the percolation threshold of a system 

containing particles with a typical shape, i.e., circle 

(Quintanilla and Ziff 2007), ellipse (Li et al. 2016, Xia and 

Thorpe 1988), rectangle (Li 2013), sphere (Rintoul and 

Torquato 1997), ellipsoid (Garboczi et al. 1995). But 

different from the model in this paper, the particles in these 

researches can be overlapped with one another, and no ITZ 

is concerned. Thus, these models can be described as “soft-

core/no-shell” models. To use the results in these theoretical 

researches, the codes for separation check during particle 

packing procedure are excluded from the computer 

program, and the ITZ thickness is set as zero. 

Fig. 9 plots several comparisons between theoretical 

results from (Garboczi et al. 1995) and simulation results 

obtained in this paper. As can be seen, the simulation result 

has a satisfying agreement with theoretical results, which 

can validate the correctness of percolation detection in the 

computer program developed in this research. 
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Fig. 9 Comparisons between theoretical and simulation 

results of percolation thresholds in soft-core/no-shell system 

with ellipsoidal particles 

 

 

3.2.2 MIP test 
Besides the above comparisons with theoretical 

researches in physics, the experiment data from (Winslow et 

al. 1994) is also adopted to verify the developed computer 

program for percolation detection. In the experimental 

research, Winslow et al. (1994) conducted MIP tests on a 

series of mortar specimens with different volume fractions 

of sand. It was found that when the volume fraction changes 

from 0.448 to 0.486, a sharp increase in the porosity was 

observed in MIP test. The reason for this phenomenon was 

attributed to the percolation effect by Winslow et al. (1994). 

However, different opinions have been proposed afterwards, 

as reviewed in Introduction of this paper. According to the 

latest publication by Wong and Buenfel (2006) on this 

topic, although no additional evidences have been provided, 

the assumption that the sharp increase in porosity observed 

in (Winslow et al. 1994) is related to the percolation effect 

cannot be falsified at least. Thus, it is still reasonable to use 

the experimental result in (Winslow et al. 1994) to validate 

the correctness of the developed computer program. 

To compare with the result of MIP test, the aggregate 

gradation labelled as “Exp.” in Table 1 provided in 

(Winslow et al. 1994) is used. Since the information about 

aggregate shape was not mentioned in the paper, different 

normal aspect ratios of aggregates are adopted based on Fig. 

3. The ITZ percolation thresholds obtained from numerical 

simulation are shown in Fig. 10. It is found that with proper 

aspect ratios of aggregate and ITZ thickness which are both 

within the normal range, the ITZ percolation thresholds 

coincide well with that obtained from MIP test in (Winslow 

et al. 1994). Therefore, the computer program developed in 

this paper is validated. 

 

 

4. Results and discussion 
 
4.1 Effect of model size 

 

Fig. 10 A comparison between ITZ percolation thresholds 

from numerical simulation and MIP test by Winslow et al. 

(1994) 

 

 

Fig. 11 Effects of REV size on percolation transition width 

and threshold 

 

 

The number of particles in REV will dramatically 

increase with the size of REV, especially in a three-

dimensional simulation. Thus, to speed up the simulation, a 

smaller REV is preferred. But it should be studied whether 

the size of REV has a significant effect on the ITZ 

percolation threshold. Thus, the parametric study on the size 

of REV is firstly conducted here. Three sizes of REV, i.e., 

𝐿 = 8 mm, 10 mm and 15 mm, are selected. The results 

are shown in Fig. 11. As can be seen, a larger REV will 

result in a smaller width of percolation transition, i.e., 𝜆 in 

Eq. (10), which indicates that when the size of REV reaches 

infinite (𝐿 → ∞), a sudden jump (𝜆 → 0) of ITZ percolation 

probability will occur at the threshold. This result agrees 

with the qualitative analysis in (Zheng and Zhou 2007). 

With three curves of ITZ percolation probability in Fig. 

11, the corresponding percolation threshold can be 

determined by Eq. (10). The results are 

𝑓c = 0.343, 0.343, 0.342  for 𝐿 = 8 mm, 10 mm  and 

15 mm, respectively, which are very close to one another. 

Therefore, based on this parametric study, it can be 

concluded that the size of REV can only affect the width of 

percolation transition, but the threshold is almost 

independent of the size of REV. This result enables a free 

choice of the REV size used in the simulation. 
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Fig. 12 Effects of aggregate fineness on ITZ percolation 

threshold 

 

 

4.2 Effect of aggregate gradation 
 

The results of ITZ percolation threshold for six selected 

aggregate gradations (Type I ~ Type VI in Table 1) are 

plotted in Fig. 12. As can be seen, the ITZ percolation 

threshold can be greatly affected by the aggregate gradation 

and increases with FM of gradation. The reason can be 

attributed to SSA of aggregates, which is also shown in Fig. 

12. As expect, the gradation with a higher FM can result in 

a smaller SSA due to the lower percentage of small 

particles. Thus, the ITZ volume fraction will also increase 

with FM, which is calculated by the method in Section 2.1.5 

and plotted in Fig. 12. With more ITZs inside the REV, a 

higher percolation probability and a smaller threshold can 

be expected. 

The above result is in agreement with the findings in 

(Bentz et al. 1994) and (Zheng and Zhou 2007), which is 

briefly explained as follows. In (Bentz et al. 1994), the 

effect of aggregate gradation was studied by excluding the 

smallest particles ( < 150 𝜇m  in diameter) from the 

gradation. Based on Eq. (1), neglect of small particles in the 

gradation will result in a larger FM. It was found that a 

greater particle volume fraction is needed to percolate the 

model if small particles are removed. In (Zheng and Zhou 

2007), two special gradations, i.e., Fuller’s and EVF 

gradations, were compared with each other. Based on the 

expressions of these two gradations, it can be easily found 

that EVF has a smaller FM than the Fuller’s gradation with 

the same maximum size of aggregate (𝐷m). For example, 

when 𝐷m = 4.75 mm, the FMs of the Fuller’s and EVF 

gradations calculated by Eq. (1) are 3.426 and 3.285, 

respectively. It was found that EVF gradation can lead to a 

smaller percolation threshold compared with the Fuller’s 

gradation. All the above findings coincide with the result in 

Fig. 12. 

 

4.3 Effect of aspect ratio 
 

Based on the distribution of aspect ratios of real 

aggregates in Fig. 3, 𝜉1 (𝜉2) = 1.0, 1.5, 2.0, 2.5, 3.0 in 25 

different combinations of (𝜉1, 𝜉2) are adopted to study the 

effect of aspect ratios of aggregates on ITZ percolation 

threshold. The results are shown in Table 2. As can be seen,  

Table 2 ITZ percolation thresholds for different aspect 

ratios of aggregates 

       ξ1 

ξ2 
1.0 1.5 2.0 2.5 3.0 

1.0 0.332 0.324 0.309 0.293 0.277 

1.5 0.324 0.309 0.290 0.271 0.253 

2.0 0.308 0.289 0.268 0.248 0.229 

2.5 0.293 0.272 0.249 0.228 0.210 

3.0 0.277 0.255 0.232 0.212 0.194 

Note: (1) ITZ thickness is 30 𝜇m; (2) Aggregate gradation 

is Type IV in Fig. 1. 

 

Table 3 SSAs for different aspect ratios of aggregates (mm
-1

) 

ξ1 

ξ2 
1.0 1.5 2.0 2.5 3.0 

1.0 9.4346 9.6941 10.152 10.646 11.124 

1.5 9.7311 10.273 10.908 11.526 12.102 

2.0 10.354 11.135 11.933 12.672 13.348 

2.5 11.093 12.098 13.039 13.893 14.672 

3.0 11.898 13.098 14.176 15.139 16.010 

Note: (1) ITZ thickness is 30 𝜇m; (2) Aggregate gradation 

is Type IV in Fig. 1. 

 

 

Fig. 13 Plot of ITZ percolation threshold as a function of 

SSA 

 

 

the ITZ percolation threshold decreases with an increasing 

𝜉1 (𝜉2) . This result is in agreement with the study in 

theoretical physics on “soft-core/no-shell” models 

(Garboczi et al. 1995), where spherical particles result in 

the largest percolation threshold. 

Similar to aggregate gradation, the reason for the 

decreasing tendency of ITZ percolation threshold with 

increasing aspect ratios of aggregates can be also attributed 

to SSA, as SSA increases with the aspect ratios (see Table 

3). However, if the ITZ percolation threshold is plotted as a 

function of SSA shown in Fig. 14, it is found that the 

threshold does not monotonously decrease with an 

increasing SSA. For example, SSA for (𝜉1, 𝜉2) = (1.0,3.0) 

is larger than that for (𝜉1, 𝜉2) = (3.0,1.0). But the 

thresholds in these two cases are 0.2770 and 0.2771, which 

are almost the same. Similar exceptions can be also found 

between (𝜉1, 𝜉2) = (2.5,1.5) and (𝜉1, 𝜉2) = (1.5,2.5),  
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Fig. 14 Effect of major aspect ratio of aggregates on ITZ 

percolation threshold with same SSA 

 

 

(𝜉1, 𝜉2) = (3.0,2.5)  and (𝜉1, 𝜉2) = (2.5,3.0) , (𝜉1, 𝜉2) =
(3.0,2.0) and (𝜉1, 𝜉2) = (2.5,2.5). Furthermore, even with 

the same SSA, the ITZ percolation thresholds may be still 

different, e.g., between (𝜉1, 𝜉2) = (3.0,1.5)  and 

(𝜉1, 𝜉2) = (1.5,2.5). All the above exceptions indicate that 

SSA is not the single reason for the effect of aspect ratios of 

aggregates on ITZ percolation threshold. 

In the research on ITZ percolation in fiber-reinforced 

high-performance concrete (Bentz 2000), it was found that 

fibers can provide alternative paths to connect isolated 

ITZs, which can increase the percolation probability. When 

an ellipsoidal particle is elongated, it may have the same 

function as fibers due to their similar geometries. To verify 

this conclusion, several extra case studies are conducted 

here. In these cases, the major aspect ratio 𝜉1 is set as 

1.0~3.0, while the minor aspect ratio 𝜉2 is fixed as 1.0. As 

𝜉1  increases, the ellipsoidal particle is more severely 

elongated. Since SSA changes with aspect ratios of particles 

(see Table 3), the gradations are slightly modified to ensure 

an identical SSA for different major aspect ratios to exclude 

the influence of SSA on ITZ percolation threshold. Four 

different SSAs, i.e., 10 mm
-1

, 12 mm
-1

, 14 mm
-1

, 16 mm
-1

, 

are investigated. Thus, totally 12 different cases are 

analyzed. The ITZ percolation thresholds in these cases are 

shown in Fig. 14. The results clearly indicate that despite 

the identical SAA, the ITZ percolation threshold decreases 

with an increasing major aspect ratio. To reveal the reasons 

for these results, ITZ volume fraction ( 𝑓ITZ ) and ITZ 

connectivity (𝜙) are calculated and plotted in Fig. 15 and 

Fig. 16, respectively. As can be seen, as 𝜉1 increases, 𝑓ITZ 

slightly decreases but 𝜙  increases. This result indicates 

that when ellipsoidal particles are more severely elongated, 

although the ITZ volume fraction will slightly decrease, 

isolated ITZ clusters are more likely to be connected by 

ellipsoidal particles together to form a larger cluster. Thus, 

the increasing tendency of 𝜙 with 𝜉1 proves the “bridging 

effect” from elongated ellipsoidal particles to connect 

isolated ITZ clusters. As a visual validation, the largest ITZ 

clusters in the case of SSA = 10 mm−1 are plotted in Fig. 

17, which clearly illustrates the “bridging effect” from 

elongated particles. 

 
(a) fa=0.3 

 
(b) fa=0.4 

Fig. 15 Effect of major aspect ratio of particles on ITZ 

volume fraction with same SSA 

 

 
(a) fa=0.3 

 
(a) fa=0.4 

Fig. 16 Effect of major aspect ratio of particles on ITZ 

connectivity with same SSA 
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Fig. 18 Plot of ITZ percolation threshold as a function of 

ITZ connectivity 

 

 

However, it should be mentioned that the above 

“bridging effect” is only of importance when 𝑓ITZ is small. 

As shown in Fig. 16, when SSA and 𝑓a increase (which 

can both increase 𝑓ITZ), the “bridging effect” becomes less 

significant. The reason is obvious: as more and more ITZs 

are formed inside the meso-scale model, ITZ clusters will 

be so close to one another that no alternative paths provided 

by elongated particles are needed to connect them. 

Based on the above analysis, it can be concluded that (1) 

SSA plays a major role in ITZ percolation threshold which 

shows a global decreasing tendency with an increasing 

SSA; (2) elongated ellipsoidal particles can effectively 

bridge isolated ITZs, thus leading to lower ITZ percolation 

threshold; (3) as ITZ volume fraction increases, the 

“bridging effect” of elongated particles will be less 

significant, and only has a minor effect on ITZ percolation 

threshold. Besides, it can be also concluded that the aspect 

ratios of aggregates can affect the ITZ percolation threshold 

in at least three aspects: (1) the SSA increases with the 

aspect ratio (Table 3); (2) the ITZ volume fraction slightly 

decreases with an increasing aspect ratio (Fig. 15); (3) the 

“bridging effect” caused by elongated particles increases 

with the aspect ratio (Fig. 16). 

Based on the above conclusions, the ITZ percolation 

threshold is finally replotted as a function of 𝜙, as shown 

in Fig. 18. As can be seen, the exceptions found in Fig. 13 

are almost excluded. This result indicates that it is the ITZ 

connectivity rather than SSA or ITZ volume fraction that is 

essentially responsible for ITZ percolation threshold. 

 

 

5. Conclusions 
 

This paper mainly studied the ITZ percolation threshold 

in the mortar by a numerical simulation approach. The fine 

aggregate in the mortar was simplified as an ellipsoidal 

particle with arbitrary orientations. The effects of the 

gradation and aspect ratios of aggregates on ITZ percolation 

threshold were studied. Based on the results and 

discussions, the following conclusions can be made: 

• The ITZ percolation threshold is mainly affected by 

SSA of aggregates and shows a global decreasing 

tendency with an increasing SSA, but SSA is not the 

single reason responsible for ITZ percolation threshold. 

• The aspect ratios of aggregates can affect ITZ 

percolation threshold in at least three aspects: (1) the 

SSA increases with the aspect ratio; (2) the ITZ volume 

fraction slightly decreases with an increasing aspect 

ratio; (3) isolated ITZs can be more effectively bridged 

by ellipsoidal particles with larger aspect ratios, which 

can lower the ITZ percolation threshold. 

• As ITZ volume fraction increases, the “bridging 

effect” of elongated ellipsoidal particles will be less 

significant, and only has a minor effect on ITZ 

percolation threshold. 

• It is the ITZ connectivity that is essentially responsible 

for ITZ percolation threshold, while other factors such 

as SSA and ITZ volume fraction are only the superficial 

reasons. 
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