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1. Introduction 
 

Second order effects in reinforcing steel bars of RC 

members are usually observed as failure mechanisms in 

existing structures after strong ground motions. Their 

probability is related to the loading conditions experienced 

by the columns in framed structures during seismic actions. 

In particular, if the member sustains great shortenings, or 

alternate tensile-compressive axial force values, the cover 

can be spalled off and the longitudinal steel reinforcements 

are free to buckle outside the section (Bechtoula et al. 

2005). Moreover, the inner core tends to expand laterally 

and it exerts a pressure on the bars, which is subjected to a 

combined effect of axial force and biaxial bending moment. 

These conditions induce buckling in the reinforcement, 

which generally occurs when the bar is in the post-elastic 

range.  

In fact, elastic buckling is reached only when the 

stirrups’ pitch is very large. In particular, this condition 

occurs when the bar’s geometrical slenderness λ0, calculated 

by assuming that the bar is clamped inside the pitch, 

exceeds the limit Eulerian slenderness λe. This last is 

calculated as 
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where Es is the Young modulus of steel and fy is the yield 

stress.  

Differently, for lower values of λ0, plastic buckling 

occurs and critical load is achieved after yielding. 

Generally, distinction is made between local or global 

buckling (Massone and Moroder 2009) depending if the 

critical length is equal to the stirrup’s pitch or it involves 

more stirrups. Several studies in the literature investigated 

the evaluation of the critical length of reinforcing bars and 

provided indications for its estimation and a recent review 

on the state of the art can be found in Minafò and Papia 

(2017). Literature studies demonstrated also that when 

global buckling occurs a sudden loss of the load-carrying 

capacity can be observed due to sudden stirrups’ failure and 

to the loss of confinement effects (Campione and Minafò 

2010, Yön and Calay 2014).  

However, also if the critical length is equal to the 

stirrups’ pitch, it was observed experimentally that inelastic 

buckling induces a substantial modification of the 

engineered stress-strain law in the compression of the steel 

bar (Mander 1983, Monti and Nuti 1992, Mander et al. 

1994, Bayrak and Sheik 2001), by inducing a softening 

branch, with slope depending on the slenderness of the bar.  

One of the first introductory study on the subject was 

that of Gomes and Appleton (1997), who assessed steel 

buckling conditions by adopting the equilibrium of a rigid-

plastic mechanism of the buckled bar. On that basis, the 

researchers proposed a modification of the Menegotto-Pinto 

cyclic stress-strain steel relationship, which is nowadays 

included in different simulation codes, such as OpenSees. 

Monti and Nuti (1992) developed a rule-based plasticity 
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hardening model, modified for buckling. The model 

considers kinematic, isotropic, memory, and saturation 

hardening rules and it requires calculation of some 

characteristic points for determining an explicit stress-strain 

relation. More recently, Zong et al. (2013) developed a 

cyclic model for reinforcing steel that included the effects 

of buckling and low-cycle fatigue. In particular, they 

developed a simplified “beam-on-springs” models in order 

to generate average stress-strain relations for reinforcing 

bars in RC columns with circular crosss-sections. Can 

Girgin et al. (2018) carried out a numerical implementation 

for dynamic non-linear simulations via a fiber based 

computational model of RC columns. The model uses 

force-based elements with a fiber sectional model and it 

considers a phenomenological stress-strain law of steel 

rebars capable of simulating inelastic buckling and rupture 

due to low-cycle fatigue. Fiber elements proved to be 

effective for modeling different non-linear problems, but 

when analyzing local buckling of steel bars, the mesh 

dependence of the model can induce strain localization 

problems (Shirmohammadi and Esmaeily 2016). For this 

reason, Kolwankar et al. (2017) recently presented a 

uniaxial nonlocal formulation for a steel bar subjected to 

buckling-induced localization in compression. The 

localization phenomenon is taken into account by an 

explicit length scale, and obtained strain distributions within 

the localized zone that were compared with those obtained 

from continuum FE simulations.  

All of these models tend to be either computationally 
expensive or too difficult for direct implementation in 
design applications. For this reason, some simplified 

models were developed in the literature, aiming to define of 
a simplified law, useful for monotonic static non-linear 
analyses or for a straightforward evaluation of buckling 
effects on the compressive behaviour of reinforcing steel, 
such as the law proposed by Dhakal and Maekawa (2002) 
or that presented in Urmson and Mander (2002). This paper 

presents a numerical-analytical investigation aiming to 
evaluate the engineered stress-strain law of reinforcing steel 
in compression, taking into account buckling effects. Under 
the assumption of monotonic load, existing literature 
models for calculating the stress-strain law for steel in 
compression are examined, and achievable results are 

compared. On the basis of results obtained by these model, 
a numerical investigation is performed. The bar is modelled 
with brick elements, under assumption of critical length 
equal to the stirrup’s pitch (local buckling). Non-linear FE 
analyses are performed, making difference between steel 
with strain hardening branch and perfectly plastic 

behaviour. Comparisons with experimental data available in 
the literature confirmed the reliability of achieved results 
and made it possible to state some conclusions, which can 
be useful for design purposes. Finally, comparisons are 
made with analytical formulations available in the literature 
and based on obtained results, a modification of the stress-

strain law model of Dhakal and Maekawa (2002) is 
proposed, for fitting numerical models. The proposed 
modification allows the definition of an analytical law 
consistent with FE analyses and experimental data available 
in the literature and it could be useful for modelling steel 
rebars for static non-linear analyses of RC structures. 

 

Fig. 1 Model of Dhakal and Maekawa (2002) 

 
 
2. Existing models for predicting the monotonic 
compressive response of reinforcing steel 
 

2.1 Model of Dhakal and Maekawa (2002) 
 

Dhakal and Maekawa (2002) performed several 

numerical analyses and compared results with those derived 

from experiments. They found that the response was a 

function of the coefficient FLD, defined as 

y

b

L
FLD f /100

d
  (2) 

where fy is the yield stress, L is the length of the bar, db is 

the diameter of the bar. 

Eq. (2) expressed that second order effects in the 

compressive response of a steel bar depend not only on the 

geometrical slenderness but also on the mechanical features 

of the bar, such as the yield stress. 

In fact, Dhakal and Maekawa (2002) demonstrated that 

the trend of the stress-strain law in compression depended 

only on the coefficient FLD. Moreover, they realized that in 

the case of buckled bar, the softening branch is 

characterized by a constant ratio between the average stress 

and strain, equal to 2% of the Young modulus. Finally, 

average stress approaches a constant value equal to 0.2 fy, 

after that a certain value of strain is reached. 

On the basis of these considerations, researchers 

proposed an analytical form of the stress-strain law of 

reinforcing steel in compression (Fig. 1). 

First branch after yielding is defined with a maximum 

strain equal to ε*. The corresponding stress σ* is calculated 

on the basis of the value σl* recorded in the local stress-

strain law of steel, on the basis of the following expressions 

*
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where α is a coefficient which depends on the post-elastic 

branch of steel. Dhakal and Maekawa (2002) suggests α to 

be equal to 0.75 for perfect plastic and 1 for hardening 

behaviour. 

After the definition of σ* and σl*, the trend of the stress-

strain law in the post-elastic range is defined by the 
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following law 

*
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1 1 0.2
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  for Ɛy<Ɛ<Ɛ* (5a) 

 * *0.002 0.2  s yE f  
 

for Ɛ>Ɛ* (5b) 

The main shortcoming of this model is that it requires 

the definition of the stress-strain law in three branches, and 

the preliminary calculation of ε* and *. By contrast, its 

main advantage is that stress-strain law is represented by 

linear branches, easy to be integrated and consequently it 

could be useful for direct integration in sectional analysis. 

 

2.2 Model of Urmson and Mander (2012) 
 
Urmson and Mander (2012) developed a computational 

fiber element analysis to compute the coupled effect of 

axial compression and lateral buckling for the case of local 

buckling.  

The results of the analysis were adopted to formulate a 

simple model for the compressive behavior of reinforcing 

steel in compression, expressed by the following equation 
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(6) 

where 

εsh is the strain at onset of hardening, and it is defined as 

εsh=8*εy 

Esh is the hardening modulus 

fsu is the ultimate stress and εsu the ultimate strain 

defined as εsu=40*εy 

fcr is the ultimate compressive (crippling) stress, and εcr 

the corresponding strain. 

These last two parameters were proposed depending on 

the ratio between the stirrup’s pitch s and the diameter of 

the bar db, as follows 
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Finally, the exponent p is calculated as 
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Fig. 2 shows the comparison between results achieved 

by the two models in terms of engineered stress-strain law 

in compression, for a steel with strain hardening behaviour. 

Values in the two axis are normalized with respect to the 

corresponding yield quantities. Moreover, six different 

values of FLD are considered, ranging from 10 to 20. This 

comparison allows to clarify the reliability of these 

analytical formulations, and it shows the variability of 

possible results achievable with these models available in 

the literature. It is observed as the difference in the two 

models’ response increases with the increase of the FLD 

coefficient. Low differences of estimated stress to assigned 

axial strain are recorded for FLD lower than 14, while the 

spread increases for very slender bars. It is evident as the 

two models are not in accordance, since they show similar 

results only when buckling effects are not evident.  

The dependence of each model’s accuracy on the FLD 

coefficient is more evident by Fig. 3, which shows the 

average ratio between stress estimated by the model of 

Dhakal and Maekawa DM, and that predicted by the model 

of Urmson and Mander UM, as a function of FLD. For the 

calculation of this ratio, stress was evaluated in 40 points 

along the post-elastic branch.  

In general, the model of Dhakal and Maekawa (2002) 

provides lower stresses with respect to the model of 

Urmson and Mander (2012). It is clear to observe that the 

average difference is negligible (<10%) for FLD14, while 

it increases for slender bars up to a maximum spread of 

about 38% for FLD=20. 

 

 

3. Finite element investigation 
 

Reliability analysis of above mentioned analytical 

models is here performed by means of non-linear finite 

element analyses carried out with ATENA3D (Cervenka 

2016), which is a commonly used code in research for 

modelling concrete and steel members (Le Hoang and 

Fehling 2017) due to its capabilities in considering 

geometrical and mechanical non-linearities. In the 

following the principles of analysis and the details of the 

model under study are discussed.  

 

3.1 Model under study 
 

The steel bar was modeled with 3D isoparametric solid 
elements (CCIsoBrick) with 20 nodes and 20 integration 
points with hourglass control (Fig. 4). To eliminate shear-
locking deficiency, enough elements were provided per 
thickness in bending direction. The effect of concrete core 
is accounted by restraining the bar laterally in one way, so 
the bar can buckle only over a side. Rotations are restrained 
at both bar’s extremities by means of two rigid rectangular 
blocks, in order to reproduce the condition of clamped end 
member, consistent with modelling assumed in Dhakal and 
Maekawa (2002), Urmson and Mander (2012). 
Additionally, an initial imperfection was imposed to the bar 
in order to capture the buckling phenomenon. The 
imperfection was represented by an initial deformed shape 
with maximum deflection 0 equal to 0.1db, according to 
indications given in Massone and Moroder (2009). 
Displacement controlled analyses were carried out by  
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applying a constant shortening value of 0.03 mm for each 

step and analysis was interrupted when engineering axial 

strain was equal to 40εy. This last assumption means that 

performed analysis involves large inelastic strains, and 

consequently the engineering uniaxial constitutive law of 

steel needs to be converted to a true-stress-true-strain curve. 

This conversion from engineering to true values can be 

 

 

made by the following relations (Dodd and Restrepo 1995) 

(1 )true eng eng     (10a) 

ln(1 )true eng    (10b) 

The definition of an uniaxial stress-strain law is 

generally suitable to define the isotropic flow stress (yield  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2 Comparison between the analytical models’ predictions. (a) FLD=10; (b) FLD=12; (c) FLD=14; (d) FLD=16; (e) 

FLD=18; (f) FLD=20 
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Fig. 3 Average stress error between the model of Dhakal 

and Maekawa (2002) and Urmson and Mander (2012) 

 

 

Fig. 4 Schematic representation of the model under study 

 

 

surface) for structural steel in 3D FE models (Abed et al. 

2013), and as well known in the literature (Rice 1975) 

isotropic hardening can be assumed for problems in which 

the plastic strains overcomes substantially the incipient 

yield state, neglecting the Bauschinger effect. 

Consequently, isotropic hardening is here assumed due to 

the hypothesis of monotonic loading - i.e., the plastic strain 

rate does not continuously reverse direction sharply and 

Bauschinger effect is negligible. The adopted material 

model includes plasticity by means of a yielding function 

depending only on the second stress invariant J2, and on the 

function k which control the hardening of the law. 

In this model, the yield function is defined as 

   2 0  P p

ij eqF J k   (11) 

where J2 is the second stress invariant. Parameter k is the 

maximum shear stress, calculated as 

   
1

3
p p

eq y eqk     (12) 

Table 1 Mechanical properties of steel in performed 

analyses 

 
fy 

(MPa) 

fsu 

(MPa) 

Es 

(MPa) 

Esh 

(MPa) 
ν εsh εsu 

Elastoplastic 550 550 200000 0 0.3 0 40εy 

Hardening 550 715 200000 4000 0.3 2εy 40εy 

 

 
Coarse   Medium     Fine 

(a) 

 
(b) 

Fig. 5 Mesh sensitivity test of the model FLD=13 (a) 

Colorplot of plastic strains; (b)Trend of plastic strains along 

the bar (x/D=0.5) 

 

 

and fy is the uniaxial yield stress. This parameter rules the 

isotropic hardening criteria of the yield function 

 p p

y eq y sh eqf E       
1

2
:

3

  
imcN

p p p

eq

i

    (13) 

being Esh the hardening modulus and ep the equivalent 

plastic strain. 

Table 1 shows the main properties adopted for the 

analyses, for steel with elastoplastic or hardening behaviour. 

The adopted values are chosen as common material 

properties for reinforcing bars adopted in Europe. 
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(a) (b) (c) 

Fig. 6 Deformed shapes and principal tensile stresses [Units 

in MPa] (a) FLD=10, (b) FLD=15, (c) FLD=20 

 

 

Geometrical non-linearity is included by considering the 

equilibrium of the deformed geometry even during each 

iteration. Solution was allowed by Newton-Raphson 

method. This algorithm was chosen since it allowed a stable 

solution instead of Arc-Length method, which proved to be 

slower to convergence and less stable. 

 

3.2 Calibration of the mesh 
 

A preliminary test on mesh sensitivity was performed in 

order to check the reliability of performed analysis. In 

particular, several models were generated by scaling the 

mesh size until similar results were obtained in terms of 

plastic strains. As an example, Fig. 5 shows the results of 

the mesh sensitivity test on the model of bar with FLD=13, 

in terms of color plot of plastic strains εpy on the model (Fig. 

5(a)) for the same load step and along nodes with the same 

abscissa x/db=0.5, being x/db=0 the abscissa corresponding 

to the bar’s edge (Fig. 5(b)). It is worth noting that in this 

case plastic zone of models with finer mesh tends to be 

wider than that recorded in models with a coarse mesh. 

Additionally, when the mesh size is wider the distribution of 

plastic strains is less uniform with respect to refined 

models. As a consequence, non refined models are more 

subjected to strain localization and causes a different trend 

of the engineering stress-strain curve - not here shown for 

the sake of conciseness. Therefore, mesh was refined until 

the engineering stress-strain response was unaltered and the 

plastic length remains almost unchanged. 

 

3.3 Results 
 

Analyses were performed on different bar’s models, by 

varying the FLD parameter from 10 to 20 and recording the 

reactions at the bar’s ends. These values were adopted since 

these are in the range of interest for practical cases. Three-

hinge mechanism was observed in all models, 

independently by the bar’s slenderness. Fig. 6 shows the 

deformed shape of the buckled bar with the colorplot of 

principal tensile strains for three different models, 

highlighting the mechanism with three plastic hinges. 

Fig. 7 shows results in terms of normalized stress-strain 

response in compression for steel with strain hardening 

(Fig. 7(a)) or with elastoplastic behaviour (Fig. 7(b)). It is  

 
(a) 

 
(b) 

Fig. 7 Normalised stress-strain response in compression 

(ATENA FEM) for 10<FLD<20 (a) Hardening behaviour; 

(b) Elastoplastic behaviour 

 

 

evident that hardening steel bars are more sensitive to the 

FLD parameter. This is probably due to the fact that 

hardening steel has some strength resources after yielding 

and consequently the decreasing branch is more evident 

after plastic buckling is activated. Crippling strain -i.e., the 

axial strain corresponding to the start of the descending 

branch- is a function of FLD and all models tend to a 

constant value of residual stress, equal to 0.3fy for hardening 

steel and 0.2 fy for elastoplastic steel. 

Fig. 8 shows the trend of the crippling strain ε*, 

normalized with respect to the yield strain εy, as a function 

of the FLD ratio, for steel with strain hardening. Moreover, 

Eq. (3) proposed by Dhakal and Maekawa (2002) is plotted 

for comparison purposes. It is worth to note that 

substantially lower values of crippling strain are predicted 

by the current simulations, and the trend is substantially far 

to be linear, as in Eq. (3). On the basis of performed 

simulations, ε* decreases as a non-linear function with 

respect to FLD, and the trend can be approximated by the 

following expression 
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Fig. 8 Normalised crippling strain as a function of FLD 

(Hardening steel) 

 

Table 2 Mechanical properties of steel in experimental 

works 

 Material 
fy 

(MPa) 

fsu 

(MPa) 

Es 

(MPa) 

Esh 

(MPa) 
εsh εsu 

Mander et al. 

(1994) 

H.S. 869 1130 221 11030 0.0039 0.063 

Mild 331 565 215 8274 0.0091 0.144 

Bayrak and 

Sheikh(2001) 
- 515 690 200 9000 0.0089 0.12 

 

The accuracy of performed analysis was verified against 

experimental data reported in Mander et al. (1994), Bayrak 

and Sheikh (2001). Mechanical properties of specimens for 

comparison are summarized in Table 2. 

Fig. 9(a)-(e) shows the comparisons between the 

experimental data and theoretical predictions in terms of 

normalized compressive stress-strain curve. In particular, 

Fig. 9(a), (b) and (c) are referred to experimental data of 

Bayrak and Sheikh (2001), while Fig. 9(d) and (e) makes 

reference to specimens tested by Mander et al. (1994). 

Curves recorded experimentally are compared with 

previously described models of Dhakal and Maekawa 

(2002), Urmson and Mander (2012), and the results of 

performed FE simulation are also reported in red. It is worth 

to note that analytical models were able to predict the 

experimental response only for the data of Bayrak and 

Sheikh (2001), corresponding to pitch-to-diameter ratios 

equal to 5, 6 and 7. For larger bar’s slenderness (8, 9), good 

accordance is observed only between experimental results 

and FE simulations. These last in some cases slightly 

overestimate the stress after the elastic stage, due to the 

uncertainties in setting a correct value for the strain at the 

onset of hardening.  

Generally, good accuracy is achieved by the performed  
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Fig. 9 Comparisons between theoretical predictions and experimental results (a) L/db=5; (b) L/db=6; (c) L/db=7; (Bayrak and 

Sheik 2001) (d) L/db=8 (Mild steel); (e) L/db=9 (High strength steel) (Mander et al. 1994) 
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(a) 

 
(b) 

Fig. 10 Average stress error ratio between DM model and 

FE analysis. (a) Steel with strain hardening; (b) Steel with 

elastoplastic behaviour 

 

 

simulations, able to predict the compressive response of the 

bar in compression under the assumption of local buckling. 

Moreover, it is stressed as a wider calibration of analytical 

models on the basis of FE results is necessary. 

In particular, it should be noted that the expressions 

proposed by Dhakal and Maekawa (2002) (Eq. (3)-(5)) 

depend on coefficient α, equal to 0.75 for elastoplastic steel 

and 1 for hardening behaviour. However, since the 

definition of this parameter substantially affect the trend of 

the function, it can be calibrated for minimizing the error 

between the analytical response and FE simulations. 

This consideration is more clear by observing the 

average stress error ratio reported in Fig. 10. In particular, it 

plots the average difference between engineered stress in 

the post elastic range predicted by the model of Dhakal and 

Maekawa (2002) DM and that recorded by the FE 

simulation FE. 

Fig. 10(a) shows the error bars for steel with strain 

hardening behaviour and it shows as the average stress error 

ratio among the examined range of FLD is equal to 1.25 

with a Coefficient of Variation (COV) equal to 13%. 

Similarly, Fig. 10(b) highlights the same error ratio for 

elastoplastic steel, which value averaged for all examined 

cases of FLD is equal to 1.32 and COV equal to 10%. In 

both cases, maximum errors are achieved for a value of 

FLD equal to 15, which is a value of practical interest as it 

corresponds to a L/db ratio equal to 7.5 for a bar with fy=400 

MPa. It should be also noted that s/db ratio equal to 8 

corresponds to the code recommendation of Eurocode 8 for 

maximum value of stirrup’s pitch. In this case, the 

analytical model of Dhakal and Maekawa (2002) tends to 

overestimate the response obtained by FE analysis of about 

45%. Moreover, the application of the analytical model 

leads to greater errors for elastoplastic steel. In addition, 

this case is of interest with respect to strain hardening 

behaviour, due to the fact that perfectly plastic behaviour is 

a common assumption in compressive constitutive 

relationships adopted for steel rebars. Results for the model 

of Urmson and Mander (2012) gave greater errors, with a 

similar trend to that observed for the model of Dhakal and 

Maekawa (2002). Results are not reported for the sake of 

brevity. 

 

 
4. Proposed modification to the model of Dhakal and 
Maekawa (2002) 

 

 On the basis of the comparison between FE analysis 

results and the application of the model of Dhakal and 

Maekawa (2002), a modification of this last model was 

studied in order to fit numerical results.  

Error regression analysis was performed by comparing 

the results of analytical model of Dhakal and Maekawa 

(2002) and FE simulations. It was observed that when the 

local stress-strain law of steel included a strain hardening 

behaviour, the difference between the two approaches 

increased significantly when FLD ratio was in the range 

between 13 and 20, as observed in Fig. 10(a). Differently, 

outside of this range the error was lower than 10%. As a 

consequence, focus was made in this examined range and 

the value of the coefficient α was search to minimize the 

average error. Summarizing the results for hardening steel, 

proposed coefficient α is 

for FLD<13  α=1; (15a) 

for 13 ≤ FLD ≤ 19   α=0.75; (15b) 

for FLD>19  α=1; (15c) 

Fig. 11 shows the comparisons between results achieved 

by the FE simulations and those obtained by the analytical 

model of Dhakal and Maekawa (2002) with or without the 

proposed modification to the coefficient α. Three cases are 

shown corresponding to FLD equal to 13, 15 and 19 in Fig. 

11(a), (b) and (c) respectively. It is evident that the 

accordance between the analytical expression and the 

numerical solution is noticeably improved. The original 

model tends to overestimate the response, as observed 

above, while proposed modification allows obtaining an 

engineered stress-strain relationship more consistent with 

non-linear FE simulations.  

A similar modification was also studied for steel with 

local stress-strain relationship idealized as elastic perfectly 

plastic. In this case, it was observed that greater differences 

between the analytical solution and the FE results are 

expected for all the range of FLD values (10FLD20, Fig. 

10(b)). In this case, the modification to the coefficient α 

required the solution of an optimization problem. Very  
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(a) 

 
(b) 

 
(c) 

Fig. 11 Proposed model for hardening steel (a) FLD=13; (b) 

FLD=15; (c) FLD=19 

 

 

different values of α were obtained for each case for 

minimizing the average stress error and a line search 

optimization procedure was set to find the value of α which 

minimizes error and COV. As a result, the following values 

are proposed for elastoplastic steel 

for FLD<10  α=0.75; (16a) 

for 10 ≤ FLD ≤ 20  α=0.586; (16b) 

for FLD>20  α=0.75; (16c) 

Fig. 12 shows some examples of application of 

proposed modification for elastoplastic steel. The same 

 
(a) 

 
(b) 

 
(c) 

Fig. 12 Proposed model for elastoplastic steel (a )FLD= 13; 

(b) FLD=15; (c) FLD=19 

 

 

cases of FLD parameter are considered with respect to the 

case of strain hardening steel. The proposed model slightly 

overestimates the FE response, with a maximum difference 

of 13%. In general, also in this case, proposed modification 

to the coefficient allows improving the accordance between 

results of FE simulations and a closed form expression. 

The performance of the proposed model in the overall 

examined range of FLD is shown in Fig. 13, which plots the 

error bars, giving the average ratio between stress predicted 

by the proposed model PR and that obtained by the FE 

simulations FE. It is observed that for the case of steel with 

local hardening behaviour (Fig. 13(a)) the average ratio  
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(PR/FE)AV for the overall range is equal to 1.05 and COV 

is equal to 6%. Similarly, for elastoplastic steel (PR/FE)AV 

is equal to 0.92 and COV is 3.3%. It is evident that a 

substantial improvement is obtained with respect to the 

cases of Fig. 10. 

Finally, theoretical predictions achieved with proposed 

model are compared with experimental results, as shown in 

Fig. 14. It is worth to note that FLD values are equal to 16 

and 18 for tests of Mander (1994), while they are equal to 

10, 12 and 14 for results of Bayrak and Sheik (2001). In 

other words, the model is validated among the entire range 

of FLD. The analytical prediction allows following both the 

numerical and experimental results with a good accuracy 

for each case examined. 

 

 

 
5. Example of application 

 

 In this section an example of application of the 

proposed model is shown, describing how the proposed 

constitutive law of steel in compression can be adopted for 

predicting the compressive behaviour of axially loaded RC 

columns. Reference is made to the specimen CS8 tested in 

Razvi and Saatcioglu (1999), which is an high strength 

concrete (HSC) column with square cross section having 

side 218.7 mm, reinforced with eight longitudinal bars with 

diameter equal to db=11.3 mm and stirrups -diameter 11.3 

mm- placed at pitch L=85 mm. The compressive strength of 

unconfined concrete is equal to 105.4 MPa, while the yield 

stress of longitudinal bars is fy=400 MPa.  

  
(a) (b) 

Fig. 13 Average stress error ratio between proposed model and FE analysis. (a) Steel with hardening; (b) Steel with 

elastoplastic behaviour 

   

 

  

 

Fig. 14 Comparison between proposed model, numerical simulations and experimental results 
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Local buckling of reinforcing steel bars in RC members under compression forces 

 

 
(a) 

 
(b) 

Fig. 15 Application of proposed model for predicting the 

compressive behaviour of Specimen CS8 tested in Razvi 

and Saatcioglu (1999). (a) Proposed model for steel in 

compression; (b) Axial load-strain curve 

 

 

On the basis of these features, the FLD coefficient for 

longitudinal bars is equal to 15.04 (Eq. (2)), and the 

compressive behaviour of longitudinal steel bars is defined 

by Eqs. (3)-(5), being the proposed coefficient α equal to 

0.586 according to Eq. (15b). The stress-strain law of 

longitudinal bars is plotted in Fig. 15(a), and it shows that 

second order effects are not negligible. Finally, the axial 

load-strain of the column is calculated by adding the 

contribution of the concrete, this last is calculated by 

adopting the model proposed in Campione and Minafò 

(2010) for HSC columns. Fig. 15(b) plots the comparison 

between the analytical response and with experimental data 

in terms of axial load-strain curve. Good accordance is 

noted between the analytical solution and the experimental 

response, showing that the proposed model can be 

successfully adopted for predicting the compressive 

behaviour of RC members. 

On the basis of the comparison between FE analysis 

results and the application of the model of Dhakal and 

Maekawa (2002), a modification of this last model was 

studied in order to fit numerical results.  

6. Conclusions 
 

This paper presented a numerical investigation on the 

compressive response of steel rebars. The target of the work 

was to assess the reliability of existing closed-form 

analytical expression for predicting the engineered stress-

strain law under monotonic compression, including 

buckling effects. It was shown that existing literature 

models of Dhakal and Maekawa (2002), Urmson and 

Mander (2012) give different results depending on the value 

of the coefficient FLD. 3D non-linear FE simulations were 

performed to calibrate a constitutive law in an analytic 

form. From performed analyses and for the range of 

considered variables, the following conclusions can be 

drawn: 

- the difference of results between FE simulations and 

existing literature models depends mainly on the value 

of FLD and on the hypothesis of local hardening or 

elastoplastic behaviour. Good predictions by the model 

of Dhakal and Maekawa (2002) are obtained for 

hardening steel and for FLD<13 or FLD>19. Contrarily, 

greater errors in all other cases, with maximum spreads 

for FLD15-16 and elastoplastic steel; 

- Numerical analyses stressed the need for a wide 

calibration of an analytical model. In fact, performed 

simulations with 3D finite elements allow good 

agreement with experimental results available in the 

literature, differently from the application of analytical 

models; 

- A modification of the law of Dhakal and Maekawa 

(2002) was proposed, by changing the parameter α, 

depending on the hypothesis on the local behaviour of 

steel (elastoplastic or hardening) and on the value of 

FLD. This modification allows a good reliability in 

predicting results achieved by non-linear FE analyses 

and its accuracy was also tested against experimental 

data available in works of Mander (1994), Bayrak and 

Sheik (2001). 
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