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1. Introduction 

 

Self-compacting concrete (SCC) is relatively an 

emerging technology which has brought a new insight into 

the construction industry. It was first developed in the late 

1980s in Japan to be used in the construction of skyscrapers 

and was adopted in Europe, North America and the rest of 

the world (Ozawa et al. 1990, Sonebi 2004). This type of 

high performance concrete is a highly workable concrete 

which can easily flow under its own weight, pass through 

congested reinforcing bars, fill small interstices of 

formwork with minimal compaction and without apparent 

segregation and blocking (Golafshani et al. 2014, Liu 2010, 

Melo and Carneiro 2010, Persson 2001, Phan et al. 2006, 

Siddique 2011, Sonebi 2004, Zhu et al. 2001). Its 

introduction represents a major technological advance 

which led to a better quality of concrete, enhancement 

towards the productivity and automation of precast products 

and substantial improvement of working environment on 

site (Ghezal and Khayat 2002, Sonebi and Cevik 2009a, 

Zhu and Bartos 2003). 

The mix designs of SCC and normal concrete are 

different. Chemical additives such as high-range water 

reducing and/or viscosity modified admixtures and also 

powder materials are used in SCC production (Bingöl and 

Tohumcu 2013, Golafshani and Ashour 2016b, Mohamed 

2011, Sonebi 2004). Three essential properties of SCC are 

                                           

Corresponding author, Assistant Professor 

E-mail: Golafshani@srbiau.ac.ir 
a
MSc Student 

 

 

filling ability, passing ability and segregation resistance 

(Bingöl and Tohumcu 2013, El-Dieb and Reda Taha 2012, 

Liu 2010). In order to avoid segregation in SCC, the amount 

of coarse aggregate should be limited which leads to higher 

cement consumption in its mix design. Moreover, the cost 

of SCC production increases, if adding more cement is the 

only solution (Liu 2010). One solution to decrease the cost 

of SCC production is to use the mineral admixtures such as 

silica fume, fly ash (FA), blast furnace slag, rice husk ash, 

etc. which are finely grained materials added to SCC during 

mixture procedure (Şahmaran et al. 2006, Uysal and Sumer 

2011). The cost of SCC production reduces when the 

mineral admixtures replace part of the cement in SCC mix 

design, especially in the case of waste or industrial by-

product admixtures. FA is a fine grained residue of coal 

combustion in coal-fired power plant which is commonly 

used to produce concrete for many decades. The usage of 

this mineral material in SCC, as a by-product of industrial 

process, can assist the challenges of sustainable 

construction in the 21st century (Shaikh and Supit 2014, 

2015). The utilization of FA in construction industry has 

become a commercial product with an achievement of 

approximately 55% during 2010-2012 (Utilisation 2008). 

Application of FA in SCC can improve the workability and 

cohesiveness, increase the long-term compressive strength, 

reduce the segregation, lower the cost by replacing 

relatively costlier cement, lower the heat of hydration, 

lower the permeability, lower the shrinkage and creep of 

SCC (Patel et al. 2004). 

The concrete compressive strength is one of the major 

parameters in design of reinforced concrete structures 

which mainly affected by the constituents of concrete. 

Predicting the concrete compressive strength is more  
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Table 1 Different AI methods applied for predicting the 

compressive strength of various types of concrete 

Applied artificial intelligence 

methods in literature 
Concrete type 

ANN (Atici 2011, Bilim et al. 2009, Boǧa et 

al. 2013, Khan 2012, Ö zcan et al. 2009, Pala 

et al. 2007, Saridemir 2009a, Sarıdemir et al. 

2009, Topçu and Sarıdemir 2008, Valipour et 

al. 2013), FL (Ö zcan et al. 2009, Saridemir 

2009b, Sarıdemir et al. 2009, Topçu and 

Sarıdemir 2008), GP (Boǧa et al. 2013, Gilan 

et al. 2012, Sarıdemir 2014), Evolutionary 

ANN (Behnood and Golafshani 2018, 

Rebouh et al. 2017) 

Concrete containing 

mineral admixtures 

ANN (Khan 2012, Ö ztaş et al. 2006, Słoński 

2010, Tayfur et al. 2014), FL (Tayfur et al. 

2014), Genetic extension programming 

(Baykasoǧlu et al. 2009, Castelli et al. 2013, 

Mousavi et al. 2012), least squares support 

vector regression (Pham et al. 2016), Time-

weighted evolutionary fuzzy support vector 

machines inference model (Cheng et al. 

2012), Enhanced artificial intelligence 

ensemble approach (Chou and Pham 2013), 

Genetic weighted pyramid operation tree 

(Cheng et al. 2014), Evolutionary ANN (Bui 

et al. 2018). 

High-performance 

concrete 

ANN (Ashteyat and Ismeik 2018, Saha et al. 

2017, Siddique et al. 2011, Uysal and 

Tanyildizi 2012, 2011), GP (Ozbay et al. 

2008, Sonebi and Cevik 2009a), ANFIS 

(Sonebi and Cevik 2009b), Particle swarm 

optimization algorithm and ANN 

(Mashhadban et al. 2016), least squares 

support vector regression (Aiyer et al. 2014). 

Self-compacting 

concretes 

 

 

complicated when the constituents of concrete change and 

one or more chemical or mineral admixtures are added to it. 

Several researchers have attempted to predict the 

compressive strength of different types of concrete using 

various artificial intelligence (AI) methods and have proved 

the high performance of these methods. Table 1 shows a 

comprehensive list of recent researches about application of 

AI methods in estimating the compressive strength of 

various types of concrete. As demonstrated in this Table, 

most researchers have applied well-known AI methods such 

as artificial neural network (ANN), fuzzy model (FL) and 

genetic programming (GP) for predicting the compressive 

strength of various types of concrete. Moreover, there are 

limited researches in predicting the compressive strength of 

various types of SCC using hybrid AI methods. Some 

applications of AI methods in calculating the compressive 

strength of SCC are mentioned in the following.   

Ozbay et al. (2008) introduced GP as a quite reliable 

method for formulating the fresh and hardened properties of 

SCC. Sonebi and Cevik (2009a, b) showed the strong 

potential of GP and neuro-fuzzy methods to model and 

formulate the fresh and hardened properties of self-

compacting concrete (SCC) containing pulverised fuel ash 

(PFA) based on their experimental work. Uysal and 

Tanyildizi (2011) offered that ANN can be an alternative 

approach to predict the core compressive strength of SCC 

mixtures with mineral additives. In addition, they (Uysal 

and Tanyildizi 2012) proposed an ANN model with 

reasonable error for predicting the compressive strength of 

SCC containing mineral additives and polypropylene (PP) 

fiber exposed to elevated temperature. Siddique et al. 

(2011) showed the proper predictions of ANN in modeling 

the compressive strength of SCC containing bottom ash. 

Mashhadban et al. (2016) introduced ANN as a flexible and 

accurate method in prediction of mechanical properties of 

fiber reinforced SCC properties. Aiyer et al. (2014) 

examined the capability of support vector machine (SVM) 

and least square SVM for determination of compressive 

strength of SCC and confirmed that the developed models 

can be effective tools for solving different problems in 

concrete. Ashteyat and Ismeik (2018) served the ANN 

model to predict the compressive strength of SCC under 

different temperatures and relative humidity conditions and 

achieved reliable results. Saha et al. (2017) employed ANN 

as a powerful tool in estimating the compressive strength of 

SCC.   

The aim of this study is to predict the compressive 

strength of SCC containing FA as a function of important 

input parameters, namely, cement, fly ash, water, fine 

aggregate, coarse aggregate, superplasticizer and age. This 

is accomplished by using hybrid fuzzy radial basis function 

neural network with biogeography-based optimization 

(FRBFNN-BBO) as a novel hybrid AI method which is a 

mixture of fuzzy set theory, a strong type of neural network, 

called radial basis function neural network, and a powerful 

meta-heuristic optimization algorithm. The rest of this paper 

is structured as follows: In section 2 a comprehensive 

explanation about FRBFNN-BBO are given. Section 3 

describes the model development of FRBFNN-BBO for 

predicting the compressive strength of SCC containing fly 

ash. The results of the compressive strength prediction 

methodology are presented and discussed in Section 4 and 

finally study conclusions are given in Section 5. 

 
 
2. Architecture and learning of FRBFNN 

 

In this section, different parts of FRBFNN-BBO are 

presented and finally the learning algorithm of FRBFNN-

BBO is explained. 

 

2.1 Fuzzy C-Means Clustering (FCM) method for 
information granulation 

 
Generally speaking, information granules are intuitively 

appealing constructs, which play a fundamental role in 

human cognitive and decision-making activities (Pedrycz et 

al. 2015). They are formed as associated or linked 

collections of objects (in particular, data points) being 

absorbed together based on their similarities (Ivakhnenko 

1971). Information granulation is supported by a series of 

procedures that are used to extract meaningful concepts 

from numeric data or other sources of experimental data. 

Clustering and fuzzy clustering are common methods when 

dealing with information granulation using numeric data 

(Roh et al. 2011, Sánchez et al. 2009). Fuzzy C-Means  
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(FCM) clustering algorithm (Peizhuang 1983) is one of the 

attractive methods of information granulation which 

explained briefly in the following. 

Fuzzy clustering is a technical method in which each 

data point can belong to different clusters using fuzzy logic 

and provides effective tools for separating overlapping 

clusters. This algorithm is more suitable for the applications 

with continuous or overlapping profiles (Sandhir et al. 

2012). Fuzzy c-means (FCM) algorithm are the most 

reputable and widely used fuzzy separation clustering 

techniques. It is a set-partitioning method based on Picard 

iteration through necessary conditions for optimizing a 

weighted sum of squared errors objective function (Jm). Let 

c≥2 be the number of clusters, 𝑋 = (𝑋1, … , 𝑋𝑃) ⊂ 𝑅𝑛 be a 

finite data set containing at least c<P distinct points and R
cP

 

denote the set of all real c×P matrices. A non-degenerate 

fuzzy c-partition of X is conveniently represented by a 

partition matrix U=[uki] ⊂R
cP

, the entries of which satisfy 

(Mitra and Basak 2001) 

uki ∈ ,0,1-,         1 ≤ k ≤ c,     1 ≤ i ≤ P (1) 

∑ uki

c

k=1

= 1,      1 ≤ i ≤ P (2) 

∑ uki

P

i=1

> 0,     1 ≤ k ≤ c (3) 

The set of all matrices in R
cP

 satisfying Eqs. (1)-(3) is 

denoted by MfcP. A matrix U∈MfcP can be used to describe 

the cluster structure of X by interpreting uki as the grade of 

membership of Xi in the kth cluster. Other useful 

information about cluster substructure can be achieved by 

identifying cluster centers v=(v1,..., vc)
T∈R

cn
, where vk is the 

prototype for class k, 1≤k≤c, vk∈Rn. „Good‟ partitions U of 

X and representatives (vk for class k) may be defined by 

considering minimization of the c-means objective function 

Jm: (MfcP×R
cn

)→R, defined by (Mitra and Basak 2001) 

Jm(U, v) = ∑ ∑ (uki)
m‖Xi − vk‖2c

k=1
P
i=1   (4) 

where 1≤m<∞ is the fuzzification coefficient and ‖. ‖ is 

any inner product induced norm on R
n
. For m>1, Bezdek 

(Peizhuang 1983) gave the following necessary conditions 

for a minimizer (U*,v*) of Jm(U,v) over MfcP×R
cn

 

vk
∗ =

∑ (uki
∗ )mXi

P
i=1

∑ (uki
∗ )mP

i=1

 (5) 

where 

uki
∗ = (∑ (

‖Xi − vk
∗‖

‖Xi − vr
∗‖

)

2/(m−1)c

r=1

)

−1

 (6) 

 
2.2 Radial Basis Function Neural Network (RBFNN) 
 

Generally, a RBFNN consists of three layers, namely the 

input, hidden and output layers. The structure of an n inputs 

and m outputs RBFNN is depicted in Fig. 1. The input layer 

receives data from the environment and transmits them to 

the hidden layer. A radial basis function is assigned to each  

 

Fig. 1 The architecture of a RBFNN model 

 

 

neuron in the hidden layer. The inputs of hidden layer are 

the linear combinations of scalar weights and input vector. 

Therefore, the whole input vector transits to each neuron in 

the hidden layer. The incoming vectors are being mapped 

by the radial basis functions in each hidden node. In the 

output layer, the linear weighted sum of the activated values 

of the all hidden neurons is calculated as network output, 

which can be expressed as (Yang et al. 2013) 

yij = ∑ wj
k∅ik

N (Xi)
G
k=1 ,       for j=1,...,m (7) 

where 𝑋𝑖 = (𝑥𝑖1 , … , 𝑥𝑖𝑛)  and 𝑌𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑗 … , 𝑦𝑖𝑚) 

are the input and the corresponding output related to the ith 

pattern, respectively. ∅𝑖𝑘
𝑁  is the normal RBF value of the 

kth hidden node related to the ith pattern and 𝑤𝑗
𝑘 denotes 

the weight between the kth hidden node and jth output node. 

In addition, G is the total number of hidden nodes. The 

most frequently used RBF is the Gaussian function which 

can be formulated as follow 

∅ik(Xi) = exp (−
‖Xi − vk‖2

2σk
2 ) ,    for k = 1, … , G (8) 

where 𝑣𝑘 = (𝑣𝑘1, … , 𝑣𝑘𝑛) and 𝜎𝑘 = (𝜎𝑘1, … , 𝜎𝑘𝑛) are the 

center and spread width of the kth RBF in the hidden layer, 

respectively. The normalized RBF value in Eq. (7) can be 

derived as follow 

∅ik
N (Xi) =

∅ik(Xi)

∑ ∅ik(Xi)
G
k=1

 (9) 

In general, the RBFNN training can be divided into two 

phases: 

(1) Determine the number of RBFs and their parameters, 

i.e., Gaussian center and spread width.  

(2) Determine the output weight 𝑤𝑗
𝑘  by supervised 

learning method. Usually Least-Mean-Square (LMS) or 

Recursive Least-Square (RLS) are applied (Yang et al. 

2013).  

More information about RBFNN and training process 

can be found in (Yang et al. 2013).  

 
2.3 Fuzzy radial basis function neural network 
 

Specifying the number of hidden nodes, the values of  
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Fig. 2 The architecture of a FRBFNN model 

 

 

centers and spreads of RBFs are very important part of 

RBFNN. In FRBFNN, RBFNN and fuzzy inference system 

(FIS) share some commonalities (Mantas and Puche 2008). 

As shown in Fig. 2, the number of RBFs is equal to the 

number of fuzzy “if-then” rules of FIS in the architecture of 

FRBFNN. Each RBF in FRBFNN is described by a 

membership function with a predetermined center in the 

antecedent part of the corresponding rule. In FRBFNN, 

FCM is used to calculate the centers of the antecedent parts 

of fuzzy rules and also determination of belonging values of 

the patterns to the clusters. The weight of link between the 

antecedent and consequence part of each fuzzy rule is the 

belonging value of a pattern to the corresponding cluster. 

For clarification purpose, consider a system with n input 

variables and one output and assume that 

𝑋 = *𝑥1, … , 𝑥𝑖 , … , 𝑥𝑝+ is the all input patterns and 

𝑥𝑖 = *𝑥𝑖1, … , 𝑥𝑖𝑗 , … , 𝑥𝑖𝑛+ is the ith input pattern.  

The form of “if-then” rules can be expressed as follow 

Rk: if Xi is included in cluster Ak with center vk    

       Then      yik = fk(Xi, vk),     1 ≤ k ≤ G 

 

(10) 

where R
k
 is the kth fuzzy rule, G is the number of fuzzy 

rules (is equal to the number of clusters or RBFs), Ak is the 

kth membership function, 𝑣𝑘 = *𝑥𝑘1, … , 𝑥𝑘𝑗 , … , 𝑥𝑘𝑛+ is the 

center of Ak, yik is the consequence value of the kth rule for 

Xi and fk is a consequent polynomial in the kth fuzzy rule. 

Different forms of consequent polynomial are given in 

Table 2 (Oh et al. 2014). 

The numeric output of the model can be determined as 

follow 

outi = ∑ ukifk(Xi, vk)

G

k=1

  (11) 

where uki is the activation level of the kth fuzzy rule 

corresponding to ith input pattern.   

 

2.4 Estimating the coefficients of polynomials 
 

As mentioned earlier, the antecedent parts of fuzzy rules 

are determined by FCM whose results lead to the 

determination of the membership functions. In consequence 

part of each fuzzy rule, there are consequent polynomials 

which their coefficients should be determined. In the design 

of consequence part, weighted Least Square (WLS) learning 

algorithm is utilized to estimate the values of the parameters 

of the polynomials forming the local models. The cost 

Table 2 Type and extended forms of polynomials used in 

the consequent part of fuzzy rule (Oh et al. 2014) 

Order Type Polynomial 

1 Constant fk(Xi, vk) = bk0 

2 Linear 
fk(Xi, vk) = bk0 + bk1(xi1 − vk1) 

+bk2(xi2 − vk2) + ⋯ + bkn(xin − vkn) 

3 Quadratic 

fk(Xi, vk) = bk0 + bk1(xi1 − vk1) 

+bk2(xi2 − vk2) + ⋯ + bkn(xin − vkn) 

+ bk(n+1)(xi1 − vk1)2 + bk(n+2)(xi2 − vk2)2 

+ ⋯ + bk(2n)(xin − vkn)2 

+ bk(2n+1)(xi1 − vk1)(xi2 − vk2) + ⋯ 

+bk((n+1)(n+2)/2)(xi(n−1) − vk(n−1)) 

(xin − vkn) 

4 
Modified 

quadratic 

fk(Xi, vk) = bk0 + bk1(xi1 − vk1) 

+bk2(xi2 − vk2) + ⋯ + bkn(xin − vkn) 

+ bk(n+1)(xi1 − vk1)(xi2 − vk2) + ⋯ 

+bk(n(n+1)/2)(xi(n−1) − vk(n−1))(xin − vkn) 

 

 

function can be expressed as follows (Oh et al. 2014) 

JL = ∑ ∑ uki(yk − fk(Xi, vk))2

G

k=1

P

i=1

 (12) 

The cost function JL can be expressed in a concise 

matrix form as follows 

JG = Y − XaTY − Xa (13) 

where a is the vector of coefficients of the polynomials, Y is 

the output vector of data, X is matrix which rearranges input 

data, centers of each clusters and activation levels. The 

optimal values of the coefficients of consequent 

polynomials are determined as follows (Oh et al. 2014, Yu 

and Duan 2013) 

a = (XTX)−1XTY (14) 

 
2.5 Biogeography-based optimization (BBO) 
 

Biogeography is the science of the geographical 

distribution of biological organisms in habitats over time 

(Zheng et al. 2014). It describes how species emigrate and 

immigrate among habitats, how new species arise, and how 

species become extinct (1). Simon (2008) developed 

biogeography-based optimization (BBO) based on the 

mathematical model of biogeography in which each 

possible solution of an optimization problem is considered 

to be analogous to a habitat. In mathematical model of 

BBO, each solution parameter is denoted as a suitability 

index variable (SIV) which characterizes the habitability of 

a habitat. Indeed, each possible solution consists of several 

SIVs which are the decision variables of the optimization 

problem. The richness of a habitat is evaluated by the 

habitat suitability index (HSI) which is similar to the fitness 

value in other meta-heuristic optimization algorithms 

(Simon 2008). In BBO, a good solution presents a habitat 

with a high HSI and the poor solution is similar to a habitat 

with a low HSI. Due to existence of high organisms in 

habitats with high HSI values, they have a low immigration 

and a high emigration rates and it is more probable for them  
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Fig. 3 Relationship between the Number of Species and 

migration rate (2) 

 

 

to share their features with poor habitats. Moreover, habitats 

with low HSI (poor solution) are sparsely populated and 

have a high immigration and a low emigration rates and 

they accept features from good solutions. Thus, poor 

solutions share their features with good solutions with low 

probabilities. This migration mechanism is very analogous 

to representatives of a species migrating between fertile 

habitats and barren habitats (Guo et al. 2016). Fig. 3 

illustrates a linear model of species distribution in a single 

habitat, where the immigration rate λ and the emigration 

rate μ are functions of the HSI value of the habitat. The 

immigration rate and the emigration rate are functions of 

the number of species in the habitat. For a single habitat, the 

immigration rate increases and the emigration rate 

decreases as the number of species increases. Each habitat 

has its immigration rate λs and emigration rate µ s. For the 

straight-line graph of migration, the equations for 

emigration and immigration rates of a habitat with the 

number of species s can be calculated as follows (Simon 

2008) 

λs = I (1 −
s

smax

) (15) 

μs =
Es

smax

 (16) 

where, smax is the largest possible number of species that a 

habitat can support, I and E are the maximum immigration 

and emigration rates, respectively. 

In BBO, The main procedure is composed of migration 

and mutation operators. In migration operator, a SIV 

migrates from an emigrating habitat to an immigrating 

habitat based on the rates μ and λ of the habitats. The 

mutation operator randomly modifies a SIV of a habitat 

according to its a priori probability of existence and tends to 

raise the diversity of the population (Zheng et al. 2014). For 

low HSI solutions, mutation gives them a chance of 

improving the quality of solutions, and for high HSI 

solutions, mutation is able to enhance them even more than 

they already have (Guo et al. 2014, Ma et al. 2013). Table 2 

presents the basic procedure of BBO, where rand() 

generates a random real number in the range of [0,1]. 

 
2.6 Optimization of FRBFNN using BBO 
 

The performance of the FRBFNN is directly affected by 

different parameters such as the number of fuzzy rules, the 

Table 2 Pseudo code for basic BBO 

0: Begin 

1:      Create a random population of habitats (candidate 

solutions) H1, H2,...,Hn 

2:      While stop criterion is not satisfied  

3:          Calculate the HSI values of all habitats 

4:          Compute λ and µ of each habitat based on HSI 

5:          For each Hi  

6:              For each SIV of the habitat Hi  

7:                   If rand() < λi  

8:                         Select an emigrating habitat H j 

with probability α µj  

9:                         Replace the selected SIV of Hi 

with the corresponding SIV of Hj /*Migration*/     

10:                  End if  

11:                  If rand() < mutation probability  

12:                        Replace the selected SIV of Hi 

with a random value /*Mutation*/     

13:                  End if 

14:             End for 

15:        End for 

16:    End while 

17: End 

 

 

Fig. 4 The structure of habitat and its interpretation in 

FRBFNN 

 

 

fuzzification coefficient used in the FCM and the 

polynomial type of consequent part of FRBFNN. The 

number of fuzzy rules determines the number of sub spaces 

being used to divide the given entire input space when 

running the FCM. The fuzzification coefficient influences a 

degree of overlap between sub spaces. The order of 

polynomial relates to the type of local model being used to 

represent sub spaces which are partitioned by means of the 

FCM (Oh et al. 2014). BBO is exploited here to optimize 

the structure and parameters of the FRBFNN. 

As the viewpoint of BBO, the structure of each habitat 

in FRBFNN consists of three parts. First two parts are 

related to the antecedent parameters of fuzzy rules while the 

third part is related to the consequent part of fuzzy rules. 

The first part involves the number of fuzzy clusters which 

determines the number of fuzzy rules. It can be between 

two and the maximum number of rules (Nrulemax). The 

second part deals with the fuzzification coefficient which 

determines the shape of membership functions which 

ranged between 1 and 3. The third part determines the order 

of consequent polynomial which can be 1, 2, 3 and 4 for 

constant, linear, quadratic and modified quadratic 

polynomials, respectively. Fig. 4 illustrates the arrangement 

of a habitat in FRBFNN. 
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The detailed learning process of the proposed FRBFNN-

BBO model is illustrated in Fig. 5 and the main steps 

comprises the following steps. 

 

Step 1: Data preprocessing 

The data preprocessing can prevent the saturation 

problem and consequently the low rate of the training. 

Before the training of the model, both input and output 

variables are linearly normalized in the range [-1, 1] using 

minimax algorithm from the following equation 

xn =
2 × (x − xmin)

(xmax − xmin)
− 1 (17) 

where x, xn, xmax and xmin are the actual, normalized, 

maximum and minimum values of input or output data, 

respectively.  

Step 2: Division of data into training and testing data 

All input-output data set is randomly split into the 

training and testing sets. Training data is used to construct 

the FRBFNN-BBO model and testing data is applied to 

validate the quality of the proposed model. 

Step 3: Construction of the random habitats  

As stated earlier, the structure of the FRBFNN-BBO 

model including the number of fuzzy rules, the fuzzification 

coefficient and the order of consequent polynomial is 

determined using BBO algorithm. In this regard, according 

to Fig. 4, the structure of each habitat consists of three 

SIVs. At the beginning, all habitats are randomly generated 

 

 

considering the lower and upper bounds of each SIV.   

Step 4: Training phase  

For each habitat, the FCM is used to partition the input 

space based on the values of first and second SIVs and the 

value of third SIV determines the polynomial order of the 

consequent part. Therefore, the architecture of FRBFNN 

related to each habitat is specified, the coefficients of 

polynomial calculated according to Eqs. (12)-(14) and the 

performance of each habitat is evaluated using the root 

mean squared error (RMSE) value as follow 

RMSEHk
= √

1

P
∑(Ti − Oi)

2

P

i=1

 (18) 

HSIH𝑘
=

1

1 + RMSEH𝑘

 (19) 

where 𝑅𝑀𝑆𝐸𝐻𝑘
 and HSIHk

 are, respectively, the RMSE 

and HSI of the kth habitat, P is the number of data and Ti, 

Oi and are the target value and the model output of ith data, 

respectively.   

Step 5: Application of BBO  

According to the obtained HSIs for all habitats, the 

values of λ and µ  of all habitats are calculated and the new 

habitats are acquired according to the migration and 

mutation processes of BBO algorithm mentioned in Sec. 3.   

Step 6: Check the termination criterion. 

 

Fig. 5 The learning steps of FRBFNN-BBO algorithm 
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Table 3 Descriptive statistics of the input and output 

parameters 

Data 

type 

Statistical 

Parameters 

C 

(Kg/m3) 

W 

(Kg/m3) 

CAgg 

(Kg/m3) 

FAgg 

(Kg/m3) 

FA 

(Kg/m3) 

SP 

(%) 

A 

(Days) 

fc 

(MPa) 

All data 

Min 61 135.45 590 434 20 0 1 3.996 

Max 583 295.2 1190 1109 427.5 4.6 365 107.46 

Ave 302.61 192.18 815.12 814.58 172.69 1.07 41.07 35.08 

S.D. 101.70 31.24 124.69 121.80 72.92 1.09 62.90 19.31 

Training 
data 

Min 61 135.45 590 434 20 0 1 3.996 

Max 583 295.2 1190 1109 427.5 4.6 365 104.85 

Average 304.30 192.36 813.43 813.77 171.75 1.10 42.36 35.15 

S.D. 101.39 30.32 127.42 124.10 74.79 1.11 64.62 19.18 

Testing 

data 

Min 61 135.45 590 478 50 0 1 5 

Max 583 295.2 1058.2 1109 373 4.6 365 107.46 

Average 295.90 191.46 821.81 817.81 176.41 0.95 35.91 34.78 

S.D. 103.39 34.89 113.86 113.00 65.33 1.00 55.68 19.96 

 

 

If the termination criterion of BBO algorithm is not 

satisfied, step 4 with new generated habitats and step 5 

should be repeated. Otherwise, the process of FRBFNN-

BBO algorithm has been completed and the habitat with the 

best fitness is selected and the corresponding parameters 

reported as the optimal FRBFNN. 

 
 

3. Model development 
 
3.1 Data preparation 
 

The amount of data used for developing the proposed 

algorithm has a crucial impact on its reliability. In this 

study, a comprehensive dataset contains the total number of 

338 experimental results were gathered from different 

literature to train and validate the reliability of the proposed 

algorithm for predicting the compressive strength of SCC 

containing fly ash (Bingöl and Tohumcu 2013, Bouzoubaâ 

and Lechami 2001, Bui et al. 2002, Chabib and Syed 2012, 

Concrete et al. 2004, Gesoğlu and Ö zbay 2007, Güneyisi et 

al. 2010, 2015, Khatib 2008, Le and Ludwig 2016, Leung et 

al. 2016, Liu 2010, Mohamed 2011, Pathak and Siddique 

2012, Pofale and Deo 2010, Şahmaran et al. 2011, Siad et 

al. 2014, Siddique et al. 2012, da Silva et al. 2015, Sonebi 

2004, Sonebi and Cevik 2009b, Sukumar et al. 2008, 

Ulucan et al. 2008, Zhao et al. 2015). The constituents of 

concrete including cement (C), water (W), coarse aggregate 

(CAgg), fine aggregate (FAgg), fly ash (FA) and 

superplasticizer (SP) in addition to the concrete age (A) 

were considered as input parameters of model and the 

concrete compressive strength (fc) was assumed as output 

parameter. 80% of all data, i.e., 270 samples, was randomly 

selected as training data to construct the fuzzy rules and 

tuning of the polynomial coefficients of consequent parts, 

while 20% of remaining data, i.e., 68 samples, was chosen 

to investigate the performance of the developed model for 

unknown patterns. All training and testing data are given in 

the Appendix section at the end of the paper. In addition, the 

descriptive statistics of the input and output parameters 

including minimum (Min), maximum (Max), average (Ave)  

Table 4 Adjustable parameters of the proposed model 

Number of habitats 50 

Kept percentage of habitats from previous 

population in new generation 
20% 

Mutation probability 0.1 

Maximum number of cycles of BBO algorithm 100 

Number of rules Between 2 and10 

Range of fuzzification coefficient Between 1 and 3 

 

Table 5 The optimal fuzzy cluster centers of antecedent 

parts of fuzzy rules 

Rule 

No. 
Fuzzy cluster centers 

Rule 1 (-0.4150, -0.6810, -0.1630, -0.0680, 0.2940, -0.7660, -0.8980) 

Rule 2 (-0.3880, -0.4200, 0.2400, -0.2740, 0.0820, -0.7500, -0.8080) 

Rule 3 (-0.2210, -0.1190, -0.2680, -0.1850, 0.0280, -0.6910, -0.6610) 

Rule 4 (-0.2060, 0.5560, -0.1680, -0.1770, -0.4860, -0.7790, -0.7380) 

Rule 5 (-0.0030, -0.4140, -0.3930, -0.1190, 0.0930, -0.6860, -0.8150) 

Rule 6 (0.0560, -0.3170, -0.5260, -0.9190, 0.9750, 0.9680, -0.9040) 

Rule 7 (0.0600, -0.3090, -0.2870, -0.5180, 0.3580, -0.4400, -0.8520) 

Rule 8 (0.0730, -0.5390, -0.4460, 0.5440, -0.3290, -0.7690, -0.8120) 

Rule 9 (0.3480, 0.1790, -0.4350, -0.9140, 0.4050, 0.5630, -0.8640) 

Rule 

10 
(0.6390, -0.2620, -0.6060, -0.4280, 0.1130, -0.6760, -0.8630) 

 

 

and standard deviation (S.D.) for training, testing and all 

datasets are given in Table 3.  

  

3.2 Development of FRBFNN-BBO for predicting the 
compressive strength of SCC with fly ash  

 

The FRBFNN-BBO model developed herein is mainly 

aimed to generate an artificial intelligence method for 

predicting the compressive strength of SCC containing fly 

ash. Behavior modeling of the compressive strength of SCC 

containing fly ash is essentially more difficult than 

conventional concrete. In this study, the FRBFNN-BBO 

approach is utilized to obtain the hidden relationships 

between the compressive strength of SCC mixes and the 

influencing variables as follows 

fc = g(C, W, CAgg, FAgg, FA, SP, A) (20) 

The proposed FRBFNN-BBO algorithm was created, 

trained and implemented in MATLAB environment. There 

are some adjustable parameters which should be fixed 

before implementation of the proposed model which are 

given in Table 4.  

After running the developed model in MATLAB, the 

results showed that the optimum number of fuzzy rules, 

fuzzification coefficient and the polynomials used in the 

consequent part of fuzzy rules are, respectively, 10, 1.7658 

and quadratic. The optimal values of fuzzy cluster centers in 

the antecedent parts and the optimal coefficients of 

polynomials in the consequent parts of fuzzy rules are given 

in Tables 5 and 6, respectively.   
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4. Results and discussion 
 

In order to investigate the performance of the FRBFNN-

BBO model, the accuracy of the proposed model was 

 

 

 

compared with that of other four artificial intelligence 

models. In this regard, an ANN model and three RBFNN 

models were developed, trained and tested under the 

MATLAB program. In the case of ANN, a feed-forward 

Table 6 The optimal coefficients of final polynomials in the consequent parts of fuzzy rules 
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Table 7 Statistical parameters of the different developed models 

 FRBFNN-BBO ANN 1st RBFNN model 2st  RBFNN model 3st RBFNN model 

Statistical 

parameters 

Training 

data 

Testing 

data 

Training 

data 

Testing 

data 

Training 

data 

Testing 

data 

Training 

data 

Testing 

data 

Training 

data 

Testing 

data 

RMSE 

(MPa) 
3.4053 5.8496 4.6361 9.8555 9.9332 16.5661 10.7275 13.5696 9.3128 13.6373 

MAE (MPa) 2.3577 4.6347 3.4984 7.8352 7.8719 11.1898 8.4781 10.3031 7.1228 9.9774 

MAPE (%) 10.5945 17.8321 14.0294 22.2462 36.9886 37.3674 37.99 36.0096 32.0296 37.8084 

R-value 0.9840 0.9614 0.9644 0.9088 0.8238 0.6764 0.7907 0.7998 0.8471 0.7744 

OBJ 3.8868 6.2038 12.4962 11.7465 10.6726 

426



 

Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method 

 

back-propagation neural network with one hidden layer was 

considered and the levenberg-marquardt algorithm (Hagan 

and Menhaj 1994) was used for its training. The number of 

neurons in the hidden layer was calculated equal to six 

which was determined by try and error method. In the first 

RBFNN model, the centers of RBFs were chosen among the 

input vectors of the training data. At the beginning, there 

was no RBF in the hidden layer and in each step a training 

vector with the smallest measure of correlation with the 

target was added to the hidden layer. These steps were 

repeated until one of the termination conditions of the 

algorithm was satisfied. In the second and third RBFNN 

models, crisp clustering method, called k-means clustering 

(Hartigan and Wong 1979), and fuzzy c-mean clustering 

were used for calculating the centers of RBFs, respectively. 

In all RBFNN models, the weights of second layer were 

determined using the least mean square (LMS) method. In 

addition, Gaussian RBFs were considered for all three 

models and the number of RBFs in the hidden layer was 

limited to ten. Moreover, the spread of RBFs was 

considered equal to the maximum distance between any two 

centers of RBFs divided to the square root of centers‟ 

number.   

For comparing the efficiency of different developed 

models, it is crucial to define the criteria, which show their 

performances and accuracies. Several statistical parameters 

such as root mean squared error (RMSE), mean absolute 

error (MAE), mean absolute percentage error (MAPE) and 

correlation coefficient (R) were used. Moreover, in order to 

consider the simultaneous effect of different statistical 

parameters, another parameter, namely OBJ, was also 

calculated (Gandomi et al. 2013). The above-mentioned 

parameters are defined below (Golafshani and Ashour 

2016a). 

RMSE =  √
∑ (Ti − Oi)

2N
i=1

N
 (21) 

MAE =
1

N
∑|Ti − Oi|

N

i=1

 (22) 

MAPE =
100

N
∑

|Ti − Oi|

Oi

N

i=1

 (23) 

R =
∑ (Ti − T̅i)(Oi − O̅i)

N
i=1

√∑ (Ti − T̅i)
2 ∑ (Oi − O̅i)

2𝑁
𝑖=1

N
i=1

 
(24) 

OBJ = (
No.Train− No.Test

No.Train+ No.Test
)

RMSETrain + MAETrain

RTrain + 1
 

+ (
2No.Test

No.Train+ No.Test
)

RMSETest + MAETest

RTest + 1
 

(25) 

where Ti, Oi are, respectively, the actual and predicted 

output of ith pattern and N, No.Train and No.Test are the total 

numbers of patterns in dataset, training data and testing 

data, respectively. In addition,  �̅�𝑖  and �̅�𝑖  present the 

average of actual and predicted outputs, respectively. If the 

RMSE value is small, the results obtained from the models 

are closer to the experimental results. On the other hand, if 

the RMSE value is high, the results obtained by the models 

are far from the experimental results. If R values are above 

0.8, and also closer to 1, the results obtained from the 

models are more linearly correlated with the experimental 

results. The total errors between the experimental results 

and model results are also evaluated by using the MAPE 

statistical value. In addition, the mean absolute errors 

between each experimental result and model results are 

determined by using the MAE statistical value.  

The statistical parameters of the training and testing sets 

of different models are given in the Table 7. As seen in this 

Table, the RMSE, MAE, MAPE and R values of the 

proposed model for training data are 3.4053 MPa, 2.3577 

MPa, 10.5945% and 0.9840, respectively, while these 

values are, respectively, 5.8496 MPa, 4.6347 MPa, 

17.8321% and 0.9614 for testing data. As can be seen, there 

is a close harmony between the developed model‟s 

predictions and experimental results. In addition, the OBJ 

value of the FRBFNN-BBO model is much lower than 

other models. It is nearly 63%, 31%, 33% and 36% of the 

OBJ values of ANN, first, second and third RBFNN 

models, respectively. It proves that the proposed FRBFNN-

BBO model considerably outperforms than other models. In 

Comparison with all three RBFNN models, the accuracy of 

the developed ANN model is much better. Moreover, the 

efficiency of third RBFNN model is better than the first and 

second RBFNN models. Although the performance 

differences of three RBFNN models are negligible, the 

results demonstrate that the fuzzy c-mean clustering can 

determine the centers of RBFs more effectively.  

 

 

 
(a) 

 
(b) 

Fig. 6 Predicted versus experimental compressive strength 

for (a) training (b) testing datasets 
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Fig. 6 illustrates the relations between the predictions 

made by the developed model and the experimental 

compressive strength of SCC containing fly ash for both 

training and testing data, respectively.  

Comparing the proposed model‟s predictions with the 

experimental results for the training dataset shows a high 

learning capability of the proposed model with reasonable 

error and high correlation. Moreover, the testing dataset 

results demonstrate that the proposed model has 

comparatively low error values with considerably high 

generalization capacity. 

The predicted compressive strengths of SCC containing 

fly ash achieved through the proposed FRBFNN-BBO 

model are compared with the experimental results in Fig. 7. 

 

 

 

 

It is observed that the proposed FRBFNN-BBO model is 

able to closely follow trend seen in the experimental data 

for both training and testing sets. 

The error histogram of both training and testing datasets 

is shown in Fig. 8. As illustrated in this figure, the mean 

error values for training, testing and all data are, 

respectively, 0, 1.6557 and 0.3331 MPa and the error 

distribution around zero value is high for both data sets. It 

indicates that the performance of the developed model is 

desirable with reasonable error.    

The ratio of the predicted to experimental compressive 

strength values made by the proposed FRBFNN-BBO 

model for both training and testing data are visualized in 

Fig. 9. A model has good prediction precision if the ratio of 

 

Fig. 7 The comparison of the predicted and experimental compressive strength for training and testing datasets 

 

Fig. 8 Error histogram for both training and testing datasets 

 

Fig. 9 A comparison of the ratio of the predicted to experimental compressive strength values using histogram 
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Errors = Experimental compressive strength  - Predicted compressive strength (MPa) 

Testing data Training data Mean error for Training data: 0 

Mean error for Testing data: 1.6557 

Mean error for All data: 0.3331 
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Testing data Training data Mean ratio for Training data: 1.03 

Mean ratio for Testing data: 0.95 

Mean ratio for All data: 1.01 
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the predicted to experimental compressive strength is equal 

or near to one. As can be observed from this figure, the 

distribution frequency of the ratio of the predicted to 

experimental compressive strength for the developed model 

has a mode close to one. The mean values of this ratio are 

1.03 and 0.95 for training and testing data, respectively. 

Thus, the proposed model significantly outperforms in 

predicting the compressive strength of SCC containing fly 

ash. 

 

 
5. Conclusions 

 

Because of the non-homogenous constituents of SCC 

containing fly, prediction of its compressive strength is a 

difficult and complicated task. Artificial intelligent-based 

methods are known as robust tools for modeling of complex 

systems. In this paper, the hybridization of one nature 

inspired computational techniques i.e. biogeography-based 

optimization (BBO) and fuzzy radial basis function neural 

network (FRBFNN) has been proposed as a new artificial 

intelligence method (FRBFNN-BBO) and this attractive 

method was applied for estimating the compressive strength 

of SCC containing fly ash. For comparison purpose, an 

ANN model and three different RBFNN models were 

developed and their performances were compared with the 

proposed model. The following conclusions are obtained 

from this study: 

- The proposed FRBFNN-BBO model is a practicable 

method with reasonable error for predicting the 

compressive strength of SCC containing fly ash. The 

mean error, the average predicted compressive strength 

to experimental compressive strength ratio and R- value 

equal to 1.6557 MPa, 0.95 and 0.9614 for testing data 

exhibit a successful performance of the FRBFNN-BBO 

model. 

- Comparison between the FRBFNN-BBO model and 

all other developed models in terms of statistical 

parameters showed that the proposed model provides 

much better results than all other models‟ results. 

- The correlation coefficients of the developed ANN 

model were more than 0.9 for both training and testing 

data and the ANN model well agreed with the 

experimental data. Moreover, it outperforms 

considerably the developed RBFNN models.  

- Although the efficiencies of different developed 

RBFNN models are lower than the proposed FRBFNN-

BBO and the developed ANN models in this study, but it 

can be concluded that fuzzy c-mean clustering algorithm 

is a suitable method for calculating the centers of radial 

basis functions in RBFNN models.  
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Data used for training phase. 

Row Reference C (Kg/m3) W (Kg/m3) FA (Kg/m3) 
CAgg 

(Kg/m3) 

FAgg 

(Kg/m3) 
SP (%) A (Days) fc (MPa) 

Proposed 

model (MPa) 

1 (Sonebi 2004) 290.00 175.50 100.00 837.00 913.00 0.80 7 32.30 32.21 

2  250.00 281.05 261.00 837.00 478.00 0.50 7 9.60 7.30 

3  210.00 193.50 220.00 837.00 768.00 0.80 7 15.50 15.37 

4  290.00 253.50 100.00 837.00 709.00 0.20 7 12.80 10.14 

5  290.00 229.50 220.00 837.00 625.00 0.20 7 11.50 16.69 

6  250.00 225.50 160.00 837.00 742.00 0.50 7 16.90 18.01 

7  250.00 225.50 160.00 837.00 739.00 0.00 7 15.50 13.36 

8  317.00 262.35 160.00 837.00 594.00 0.50 7 17.00 17.12 

9  210.00 279.50 220.00 837.00 562.00 0.20 7 6.20 6.36 

10  250.00 225.50 160.00 837.00 742.00 0.50 7 14.70 18.01 

11  250.00 155.80 160.00 837.00 919.00 0.50 7 23.90 20.48 

12  183.00 188.65 160.00 837.00 981.00 0.50 7 12.00 10.22 

13  210.00 201.50 100.00 837.00 910.00 0.80 28 19.10 22.11 

14  250.00 225.50 160.00 837.00 742.00 0.50 28 24.10 25.04 

15  210.00 193.50 220.00 837.00 768.00 0.80 28 26.70 28.40 

16  290.00 229.50 220.00 837.00 625.00 0.20 28 32.90 28.58 

17  210.00 279.50 220.00 837.00 562.00 0.20 28 10.20 12.30 

18  250.00 225.50 160.00 837.00 742.00 0.50 28 25.30 25.04 

19  250.00 155.80 160.00 837.00 919.00 0.50 28 36.30 40.14 

20  250.00 225.50 160.00 837.00 746.00 1.00 28 26.70 25.26 

21  250.00 295.20 160.00 837.00 566.00 0.50 28 11.00 11.71 

22  183.00 188.65 160.00 837.00 981.00 0.50 28 22.10 23.89 

23  290.00 175.50 100.00 837.00 913.00 0.80 90 55.90 55.34 

24  250.00 281.05 261.00 837.00 478.00 0.50 90 29.50 31.76 

25  210.00 201.50 100.00 837.00 910.00 0.80 90 28.00 24.69 

26  250.00 225.50 160.00 837.00 742.00 0.50 90 41.50 40.05 

27  210.00 193.50 220.00 837.00 768.00 0.80 90 45.60 43.10 

28  290.00 253.50 100.00 837.00 709.00 0.20 90 35.70 38.60 

29  250.00 225.50 160.00 837.00 742.00 0.50 90 42.80 40.05 

30  250.00 225.50 160.00 837.00 739.00 0.00 90 42.00 42.61 

31  317.00 262.35 160.00 837.00 594.00 0.50 90 29.10 28.99 

32  210.00 279.50 220.00 837.00 562.00 0.20 90 19.70 17.53 

33  250.00 225.50 160.00 837.00 742.00 0.50 90 39.20 40.05 

34  250.00 225.50 160.00 837.00 746.00 1.00 90 40.30 41.18 

35  250.00 295.20 160.00 837.00 566.00 0.50 90 17.20 16.47 

36 (Patel et al. 2004) 220.00 156.00 180.00 900.00 916.00 0.35 1 12.50 12.68 

37  248.00 176.00 203.00 900.00 808.00 0.35 1 12.00 17.13 

38  237.00 157.00 133.00 900.00 960.00 0.50 1 16.00 17.24 

39  280.00 156.00 120.00 900.00 946.00 0.35 1 16.00 15.03 

40  220.00 156.00 180.00 900.00 916.00 0.35 1 12.00 12.68 

41  198.00 153.00 232.00 900.00 872.00 0.50 1 13.00 13.93 

42  170.00 157.00 200.00 900.00 928.00 0.50 1 5.00 2.85 

43  220.00 156.00 180.00 900.00 916.00 0.35 28 49.00 47.17 

44  160.00 156.00 240.00 900.00 886.00 0.35 28 44.00 44.10 

45  198.00 153.00 232.00 900.00 874.00 0.20 28 46.00 45.98 

46  248.00 176.00 203.00 900.00 808.00 0.35 28 50.00 45.13 

47  220.00 156.00 180.00 900.00 916.00 0.35 28 49.00 47.17 

48  237.00 157.00 133.00 900.00 960.00 0.50 28 46.00 45.92 

49  280.00 156.00 120.00 900.00 946.00 0.35 28 45.00 44.82 

50  170.00 157.00 200.00 900.00 930.00 0.20 28 31.00 31.48 

51  220.00 156.00 180.00 900.00 916.00 0.35 28 45.00 47.17 

52  170.00 157.00 200.00 900.00 928.00 0.50 28 33.00 34.47 
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Data used for training phase. 

Row Reference C (Kg/m3) W (Kg/m3) FA (Kg/m3) 
CAgg 

(Kg/m3) 

FAgg 

(Kg/m3) 
SP (%) A (Days) fc (MPa) 

Proposed 

model (MPa) 

53 (Bouzoubaâ and 

Lechami 2001) 

247.00 185.40 165.00 846.00 845.00 0.31 1 8.70 11.99 

54 238.00 158.80 159.00 844.00 844.00 0.77 1 10.70 14.01 

55  207.00 186.30 207.00 843.00 845.00 0.10 1 6.10 6.46 

56  200.00 160.00 200.00 843.00 842.00 0.45 1 7.00 9.24 

57  197.00 137.90 197.00 856.00 856.00 0.75 1 7.80 11.39 

58  169.00 190.35 254.00 853.00 853.00 0.00 1 5.20 5.54 

59  163.00 163.20 245.00 851.00 851.00 0.51 1 4.90 5.20 

60  61.00 140.70 241.00 864.00 866.00 1.04 1 7.30 13.68 

61  238.00 158.80 159.00 844.00 844.00 0.77 7 25.80 20.60 

62  232.00 135.45 155.00 847.00 846.00 1.03 7 31.30 30.24 

63  207.00 186.30 207.00 843.00 845.00 0.10 7 17.40 14.56 

64  200.00 160.00 200.00 843.00 842.00 0.45 7 19.30 17.19 

65  197.00 137.90 197.00 856.00 856.00 0.75 7 22.90 18.63 

66  163.00 163.20 245.00 851.00 851.00 0.51 7 14.70 12.95 

67  247.00 185.40 165.00 846.00 845.00 0.31 28 34.60 32.85 

68  238.00 158.80 159.00 844.00 844.00 0.77 28 37.80 40.26 

69  232.00 135.45 155.00 847.00 846.00 1.03 28 48.30 49.58 

70  200.00 160.00 200.00 843.00 842.00 0.45 28 34.90 35.14 

71  169.00 190.35 254.00 853.00 853.00 0.00 28 30.20 30.94 

72  163.00 163.20 245.00 851.00 851.00 0.51 28 26.20 28.10 

73  61.00 140.70 241.00 864.00 866.00 1.04 28 35.80 29.47 

74 (Bui et al. 2002) 350.00 174.00 186.00 851.00 786.00 0.45 1 18.30 32.23 

75  380.00 200.00 192.00 621.00 931.00 0.40 1 23.20 23.09 

76  380.00 184.00 145.00 854.00 788.00 0.42 7 53.20 53.86 

77  350.00 174.00 186.00 851.00 786.00 0.45 7 51.10 43.17 

78  380.00 184.00 145.00 854.00 788.00 0.42 28 73.50 72.42 

79  350.00 174.00 186.00 851.00 786.00 0.45 28 70.40 65.98 

80  380.00 200.00 192.00 621.00 931.00 0.40 28 67.80 68.12 

81 (Şahmaran et al. 
2011) 

315.00 180.00 135.00 831.00 831.00 0.40 7 32.07 25.27 

82 135.00 180.00 315.00 805.00 805.00 0.26 7 17.47 20.44 

83  315.00 180.00 135.00 831.00 831.00 0.40 28 38.28 44.33 

84  225.00 180.00 225.00 818.00 818.00 0.35 28 42.67 41.34 

85  135.00 180.00 315.00 805.00 805.00 0.26 28 36.09 33.62 

86  225.00 180.00 225.00 818.00 818.00 0.35 90 45.93 48.83 

87  135.00 180.00 315.00 805.00 805.00 0.26 90 39.88 39.48 

88 (Sonebi and Cevik 
2009b) 

270.00 247.50 180.00 837.00 647.00 0.60 7 14.60 13.05 

89 280.00 258.50 190.00 837.00 599.00 0.70 7 14.70 16.06 

90  240.00 202.80 150.00 837.00 831.00 0.60 7 19.00 20.98 

91  270.00 247.50 180.00 837.00 647.00 0.60 28 24.50 24.40 

92  230.00 192.40 140.00 837.00 864.00 0.80 28 32.10 30.29 

93  240.00 202.80 150.00 837.00 831.00 0.60 28 30.90 28.39 

94  270.00 247.50 180.00 837.00 647.00 0.60 90 37.20 38.67 

95  280.00 258.50 190.00 837.00 599.00 0.70 90 36.50 35.58 

96  260.00 227.90 170.00 837.00 717.00 0.70 90 38.20 38.25 

97  230.00 192.40 140.00 837.00 864.00 0.80 90 43.50 45.18 

98  240.00 202.80 150.00 837.00 831.00 0.60 90 44.20 45.70 

99 
(Chabib and Syed 

2012) 
180.00 166.50 270.00 850.00 850.00 0.20 90 32.32 31.12 

100 (Mohamed 2011) 405.00 189.00 45.00 612.00 1109.00 4.60 7 12.77 13.45 

101  382.50 189.00 67.50 612.00 1109.00 4.60 7 13.10 12.48 

102  360.00 189.00 90.00 612.00 1109.00 4.60 7 15.00 16.99 

103  315.00 189.00 135.00 612.00 1109.00 4.60 7 25.33 20.70 

104  292.50 189.00 157.50 612.00 1109.00 4.60 7 18.44 19.08 

105  270.00 189.00 180.00 612.00 1109.00 4.60 7 17.56 19.18 

106  225.00 189.00 225.00 612.00 1109.00 4.60 7 12.09 13.68 
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Data used for training phase. 

Row Reference C (Kg/m3) W (Kg/m3) FA (Kg/m3) 
CAgg 

(Kg/m3) 

FAgg 

(Kg/m3) 
SP (%) A (Days) fc (MPa) 

Proposed 

model (MPa) 

107  467.50 231.00 82.50 612.00 909.00 3.81 7 16.71 14.73 

108  440.00 231.00 110.00 612.00 909.00 3.81 7 17.57 17.41 

109  412.50 231.00 137.50 612.00 909.00 3.81 7 18.68 21.74 

110  385.00 231.00 165.00 612.00 909.00 3.81 7 26.71 24.38 

111  330.00 231.00 220.00 612.00 909.00 3.81 7 16.96 17.44 

112  275.00 231.00 275.00 612.00 909.00 3.81 7 12.32 12.33 

113  405.00 189.00 45.00 612.00 1109.00 4.60 28 15.99 14.68 

114  382.50 189.00 67.50 612.00 1109.00 4.60 28 16.56 16.21 

115  360.00 189.00 90.00 612.00 1109.00 4.60 28 21.66 23.19 

116  315.00 189.00 135.00 612.00 1109.00 4.60 28 28.95 30.02 

117  225.00 189.00 225.00 612.00 1109.00 4.60 28 19.21 17.13 

118  495.00 231.00 55.00 612.00 909.00 3.81 28 17.20 19.36 

119  467.50 231.00 82.50 612.00 909.00 3.81 28 18.30 17.59 

120  440.00 231.00 110.00 612.00 909.00 3.81 28 23.27 21.73 

121  412.50 231.00 137.50 612.00 909.00 3.81 28 25.12 27.18 

122  385.00 231.00 165.00 612.00 909.00 3.81 28 30.01 29.36 

123  330.00 231.00 220.00 612.00 909.00 3.81 28 19.93 19.86 

124 (Siad et al. 2014) 260.00 215.00 260.00 775.00 757.00 0.77 28 30.90 30.19 

125  450.00 188.00 70.00 844.00 825.00 2.34 28 70.80 71.87 

126  260.00 215.00 260.00 775.00 757.00 0.77 90 39.30 40.19 

127  350.00 214.00 170.00 792.00 774.00 0.81 90 61.10 60.69 

128  450.00 188.00 70.00 844.00 825.00 2.34 90 78.60 76.97 

129  260.00 215.00 260.00 775.00 757.00 0.77 365 54.90 55.41 

130  350.00 214.00 170.00 792.00 774.00 0.81 365 74.10 73.37 

131  450.00 188.00 70.00 844.00 825.00 2.34 365 90.60 91.04 

132 
(da Silva et al. 2015) 

290.00 180.00 318.00 700.00 741.00 0.66 7 34.40 33.71 

133 218.00 178.00 373.00 700.00 743.00 0.51 7 21.60 22.12 

134  503.00 183.00 158.00 700.00 735.00 0.76 28 68.40 67.42 

135  218.00 178.00 373.00 700.00 743.00 0.51 28 35.30 35.98 

136  503.00 183.00 158.00 700.00 735.00 0.76 90 71.70 73.70 

137  290.00 180.00 318.00 700.00 741.00 0.66 90 62.50 63.13 

138  218.00 178.00 373.00 700.00 743.00 0.51 90 48.90 47.31 

139  503.00 183.00 158.00 700.00 735.00 0.76 182 69.50 68.10 

140  290.00 180.00 318.00 700.00 741.00 0.66 182 59.90 60.75 

141 (Khatib 2008) 400.00 180.00 20.00 876.00 845.00 0.70 1 16.99 24.17 

142  300.00 180.00 40.00 876.00 813.00 0.70 1 14.99 24.65 

143  200.00 180.00 60.00 876.00 782.00 0.70 1 4.00 9.89 

144  400.00 180.00 20.00 876.00 845.00 0.70 7 39.60 30.37 

145  300.00 180.00 40.00 876.00 813.00 0.70 7 39.15 32.55 

146  200.00 180.00 60.00 876.00 782.00 0.70 7 19.59 12.27 

147  100.00 180.00 80.00 876.00 751.00 0.70 7 5.19 3.29 

148  400.00 180.00 20.00 876.00 845.00 0.70 28 50.19 48.52 

149  300.00 180.00 40.00 876.00 813.00 0.70 28 52.99 52.02 

150  200.00 180.00 60.00 876.00 782.00 0.70 28 30.00 29.07 

151  100.00 180.00 80.00 876.00 751.00 0.70 28 9.59 8.85 

152  400.00 180.00 20.00 876.00 845.00 0.70 56 56.80 61.26 

153  300.00 180.00 40.00 876.00 813.00 0.70 56 63.79 62.25 

154  200.00 180.00 60.00 876.00 782.00 0.70 56 36.40 37.90 

155  100.00 180.00 80.00 876.00 751.00 0.70 56 10.80 13.77 

156 (Liu 2010) 437.00 176.00 80.00 924.00 743.00 0.90 7 47.79 46.70 

157  333.00 173.00 162.00 924.00 743.00 0.75 7 38.97 35.29 

158  225.00 170.00 247.00 924.00 743.00 0.68 7 22.05 19.88 

159  115.00 167.00 336.00 924.00 743.00 0.65 7 7.56 3.21 

160  437.00 176.00 80.00 924.00 743.00 0.90 28 62.73 62.18 
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Data used for training phase. 

Row Reference C (Kg/m3) W (Kg/m3) FA (Kg/m3) 
CAgg 

(Kg/m3) 

FAgg 

(Kg/m3) 
SP (%) A (Days) fc (MPa) 

Proposed 

model (MPa) 

161  333.00 173.00 162.00 924.00 743.00 0.75 28 52.65 56.27 

162  225.00 170.00 247.00 924.00 743.00 0.68 28 33.48 34.14 

163  115.00 167.00 336.00 924.00 743.00 0.65 28 14.40 15.58 

164  437.00 176.00 80.00 924.00 743.00 0.90 90 70.20 72.16 

165  333.00 173.00 162.00 924.00 743.00 0.75 90 56.70 55.68 

166  225.00 170.00 247.00 924.00 743.00 0.68 90 44.37 46.56 

167  115.00 167.00 336.00 924.00 743.00 0.65 90 23.49 27.23 

168  437.00 176.00 80.00 924.00 743.00 0.90 180 74.88 72.84 

169  333.00 173.00 162.00 924.00 743.00 0.75 180 61.20 62.61 

170  225.00 170.00 247.00 924.00 743.00 0.68 180 50.76 48.01 

171 (Zhao et al. 2015) 322.00 161.00 138.00 1058.20 693.81 0.24 3 29.49 36.17 

172  276.00 161.00 184.00 1058.20 693.81 0.24 3 23.85 30.11 

173  368.00 161.00 92.00 1058.20 693.81 0.24 7 47.24 44.92 

174  322.00 161.00 138.00 1058.20 693.81 0.24 7 41.18 37.10 

175  276.00 161.00 184.00 1058.20 693.81 0.24 7 39.38 31.72 

176  368.00 161.00 92.00 1058.20 693.81 0.24 90 67.15 69.94 

177  322.00 161.00 138.00 1058.20 693.81 0.24 90 65.35 62.16 

178  276.00 161.00 184.00 1058.20 693.81 0.24 90 64.49 66.45 

179 (Pathak and Siddique 

2012) 

300.00 200.00 200.00 860.00 845.00 1.80 28 23.49 23.05 

180 350.00 190.00 150.00 876.00 830.00 1.82 90 35.60 35.92 

181  250.00 210.00 250.00 856.00 856.00 1.72 90 27.29 27.70 

182 (Gesoğlu and Ö zbay 

2007) 

440.00 176.00 110.00 917.00 714.00 1.35 28 62.82 62.83 

183 330.00 176.00 220.00 899.00 700.00 1.35 28 54.81 54.76 

184  220.00 176.00 330.00 881.00 686.00 1.21 28 42.75 44.19 

185 (Pofale and Deo 

2010) 

386.00 193.00 161.00 1190.00 434.00 0.00 7 21.33 18.66 

186 386.00 193.00 72.00 1190.00 523.00 0.00 7 19.71 22.06 

187  386.00 193.00 161.00 1190.00 434.00 1.93 7 23.49 21.97 

188  386.00 193.00 72.00 1190.00 523.00 1.93 7 22.05 25.04 

189  386.00 193.00 161.00 1190.00 434.00 0.00 28 30.51 33.03 

190  386.00 193.00 72.00 1190.00 523.00 0.00 28 28.17 25.93 

191  386.00 193.00 161.00 1190.00 434.00 1.93 28 33.21 34.82 

192  386.00 193.00 72.00 1190.00 523.00 1.93 28 31.77 28.68 

193 (Ulucan et al. 2008) 375.00 195.00 125.00 735.00 910.00 1.35 3 24.89 24.53 

194  350.00 190.00 150.00 735.00 910.00 1.35 3 21.70 24.61 

195  325.00 190.00 175.00 735.00 910.00 1.35 3 20.12 20.47 

196  300.00 190.00 200.00 735.00 910.00 1.35 3 18.08 21.73 

197  375.00 195.00 125.00 735.00 910.00 1.35 7 27.33 27.08 

198  350.00 190.00 150.00 735.00 910.00 1.35 7 30.21 27.53 

199  325.00 190.00 175.00 735.00 910.00 1.35 7 26.81 24.22 

200  300.00 190.00 200.00 735.00 910.00 1.35 7 25.15 24.40 

201  375.00 195.00 125.00 735.00 910.00 1.35 28 44.45 43.40 

202  350.00 190.00 150.00 735.00 910.00 1.35 28 40.60 42.57 

203  300.00 190.00 200.00 735.00 910.00 1.35 28 40.73 39.83 

204  375.00 195.00 125.00 735.00 910.00 1.35 130 48.20 50.34 

205  350.00 190.00 150.00 735.00 910.00 1.35 130 49.72 50.59 

206  325.00 190.00 175.00 735.00 910.00 1.35 130 52.30 51.33 

207  300.00 190.00 200.00 735.00 910.00 1.35 130 53.14 51.40 

208 (Bingöl and Tohumcu 
2013) 

225.00 175.00 275.00 652.00 908.00 1.50 3 36.21 32.87 

209 375.00 175.00 125.00 673.00 938.00 1.50 7 53.91 53.23 

210  300.00 175.00 200.00 663.00 923.00 1.50 7 44.08 44.86 

211  225.00 175.00 275.00 652.00 908.00 1.50 7 36.77 34.45 

212  375.00 175.00 125.00 673.00 938.00 1.50 28 55.20 55.50 

213  300.00 175.00 200.00 663.00 923.00 1.50 28 49.15 48.43 

214  225.00 175.00 275.00 652.00 908.00 1.50 28 37.76 43.17 
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Emadaldin M. Golafshani and Gholamreza Pazouki 

 

  

Data used for training phase. 

Row Reference C (Kg/m3) W (Kg/m3) FA (Kg/m3) 
CAgg 

(Kg/m3) 

FAgg 

(Kg/m3) 
SP (%) A (Days) fc (MPa) 

Proposed 

model (MPa) 

215 (Siddique et al. 2012) 465.00 225.50 85.00 590.00 910.00 1.95 28 31.80 30.61 

216  440.00 225.50 110.00 590.00 910.00 2.00 28 29.98 31.56 

217  415.00 231.00 135.00 590.00 910.00 1.80 28 28.35 27.87 

218  385.00 236.50 165.00 590.00 910.00 1.80 28 27.63 26.26 

219  355.00 242.00 195.00 590.00 910.00 1.80 28 26.74 28.74 

220  415.00 231.00 135.00 590.00 910.00 1.80 90 39.48 41.64 

221  385.00 236.50 165.00 590.00 910.00 1.80 90 37.86 35.48 

222  355.00 242.00 195.00 590.00 910.00 1.80 90 36.76 36.25 

223  465.00 225.50 85.00 590.00 910.00 1.95 365 55.26 52.95 

224  415.00 231.00 135.00 590.00 910.00 1.80 365 41.91 45.23 

225  385.00 236.50 165.00 590.00 910.00 1.80 365 40.41 40.82 

226  355.00 242.00 195.00 590.00 910.00 1.80 365 39.33 37.92 

227 
(Güneyisi et al. 2015) 

427.50 188.10 142.50 812.10 812.10 0.50 28 45.00 45.03 

228 285.50 188.10 285.00 788.70 788.70 0.40 28 52.88 52.59 

229  142.50 188.10 427.50 765.30 765.40 0.30 28 58.82 58.73 

230 
(Güneyisi et al. 2010) 

440.00 176.00 110.00 917.00 714.00 1.35 28 62.82 62.83 

231 330.00 176.00 220.00 899.00 700.00 1.35 28 54.81 54.76 

232  220.00 176.00 330.00 881.00 686.00 1.21 28 42.75 44.19 

233 
 

360.00 198.00 90.00 855.00 813.00 0.71 28 46.89 46.36 

234 270.00 198.00 180.00 842.00 801.00 0.66 28 40.23 38.69 

235  180.00 198.00 270.00 829.00 778.00 0.67 28 27.27 26.54 

236 
 

440.00 176.00 110.00 917.00 714.00 1.35 90 75.96 76.76 

237 220.00 176.00 330.00 881.00 686.00 1.21 90 58.32 55.24 

238  270.00 198.00 180.00 842.00 801.00 0.66 90 54.27 55.26 

239  180.00 198.00 270.00 829.00 778.00 0.67 90 38.25 38.59 

240 
(Sukumar et al. 2008) 

250.00 178.50 275.00 772.00 842.00 0.40 1 7.33 13.85 

241 333.00 180.84 215.00 766.00 835.00 0.40 1 9.29 15.31 

242  417.00 182.40 153.00 759.00 828.00 0.50 1 11.48 19.94 

243  500.00 192.32 101.00 753.00 820.00 0.60 1 13.15 26.07 

244  583.00 196.23 50.00 745.00 813.00 0.70 1 14.59 25.18 

245  250.00 178.50 275.00 772.00 842.00 0.40 3 16.31 17.11 

246  333.00 180.84 215.00 766.00 835.00 0.40 3 20.92 18.92 

247  417.00 182.40 153.00 759.00 828.00 0.50 3 25.45 25.61 

248  500.00 192.32 101.00 753.00 820.00 0.60 3 28.96 29.52 

249  250.00 178.50 275.00 772.00 842.00 0.40 7 24.84 19.96 

250  333.00 180.84 215.00 766.00 835.00 0.40 7 31.73 23.42 

251  417.00 182.40 153.00 759.00 828.00 0.50 7 39.19 30.59 

252  500.00 192.32 101.00 753.00 820.00 0.60 7 44.83 37.08 

253  583.00 196.23 50.00 745.00 813.00 0.70 7 50.33 38.99 

254  250.00 178.50 275.00 772.00 842.00 0.40 14 31.42 26.38 

255  333.00 180.84 215.00 766.00 835.00 0.40 14 39.76 35.47 

256  500.00 192.32 101.00 753.00 820.00 0.60 14 56.21 48.15 

257  583.00 196.23 50.00 745.00 813.00 0.70 14 63.61 55.12 

258  250.00 178.50 275.00 772.00 842.00 0.40 28 35.66 39.09 

259  333.00 180.84 215.00 766.00 835.00 0.40 28 45.22 52.42 

260  500.00 192.32 101.00 753.00 820.00 0.60 28 63.84 66.43 

261  583.00 196.23 50.00 745.00 813.00 0.70 28 73.13 82.56 

262 (Leung et al. 2016) 540.00 235.60 80.00 720.00 780.00 0.51 28 54.90 54.83 

263  496.00 235.60 124.00 720.00 780.00 0.68 28 48.94 49.11 

264  434.00 235.60 186.00 720.00 780.00 0.68 28 47.34 47.16 

265  310.00 235.60 310.00 720.00 780.00 0.57 28 34.31 34.27 

266 (Le and Ludwig 

2016) 

347.00 151.00 232.00 968.00 790.00 2.50 3 52.38 58.81 

267 347.00 151.00 232.00 968.00 790.00 2.50 7 67.77 63.77 

268  481.00 156.00 120.00 968.00 790.00 2.00 28 98.91 98.74 

269  347.00 151.00 232.00 968.00 790.00 2.50 28 98.46 90.09 

270  347.00 151.00 232.00 968.00 790.00 2.50 56 104.85 111.00 
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Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method 

 

  

Data used for testing phase 

Row Reference C (Kg/m3) W (Kg/m3) FA (Kg/m3) 
CAgg 

(Kg/m3) 

FAgg 

(Kg/m3) 
SP (%) 

A 

(Days) 

fc 

(MPa) 

Proposed 

model (MPa) 

1 (Sonebi 2004) 210.00 201.50 100.00 837.00 910.00 0.80 7 11.10 12.08 

2  250.00 225.50 160.00 837.00 742.00 0.50 7 13.90 17.86 

3  250.00 225.50 160.00 837.00 746.00 1.00 7 15.80 17.38 

4  250.00 295.20 160.00 837.00 566.00 0.50 7 6.20 8.65 

5  290.00 175.50 100.00 837.00 913.00 0.80 28 42.70 47.48 

6  250.00 281.05 261.00 837.00 478.00 0.50 28 17.00 16.09 

7  290.00 253.50 100.00 837.00 709.00 0.20 28 26.60 19.00 

8  250.00 225.50 160.00 837.00 742.00 0.50 28 28.50 25.06 

9  250.00 225.50 160.00 837.00 739.00 0.00 28 27.30 23.65 

10  317.00 262.35 160.00 837.00 594.00 0.50 28 29.10 20.53 

11  290.00 229.50 220.00 837.00 625.00 0.20 90 44.90 47.66 

12  250.00 155.80 160.00 837.00 919.00 0.50 90 48.30 51.17 

13  183.00 188.65 160.00 837.00 981.00 0.50 90 34.20 27.24 

14 (Patel et al. 2004) 160.00 156.00 240.00 900.00 886.00 0.35 1 7.00 11.82 

15  198.00 153.00 232.00 900.00 874.00 0.20 1 9.00 12.54 

16  220.00 156.00 180.00 900.00 916.00 0.35 1 13.00 12.68 

17  170.00 157.00 200.00 900.00 930.00 0.20 1 6.00 2.94 

18  220.00 156.00 180.00 900.00 916.00 0.35 1 13.00 12.68 

19  220.00 156.00 180.00 900.00 916.00 0.35 28 47.00 47.17 

20  198.00 153.00 232.00 900.00 872.00 0.50 28 52.00 54.01 

21 
(Bouzoubaâ and Lechami 2001) 

232.00 135.45 155.00 847.00 846.00 1.03 1 16.60 22.93 

22 247.00 185.40 165.00 846.00 845.00 0.31 7 21.20 21.32 

23  169.00 190.35 254.00 853.00 853.00 0.00 7 15.60 12.70 

24  61.00 140.70 241.00 864.00 866.00 1.04 7 20.60 16.07 

25  207.00 186.30 207.00 843.00 845.00 0.10 28 33.20 30.08 

26  197.00 137.90 197.00 856.00 856.00 0.75 28 38.90 40.53 

27 (Bui et al. 2002) 380.00 184.00 145.00 854.00 788.00 0.42 1 26.90 40.50 

28  380.00 200.00 192.00 621.00 931.00 0.40 7 45.70 32.98 

29 (Şahmaran et al. 2011) 225.00 180.00 225.00 818.00 818.00 0.35 7 26.20 20.54 

30  315.00 180.00 135.00 831.00 831.00 0.40 90 50.13 41.98 

31 (Sonebi and Cevik 2009b) 260.00 227.90 170.00 837.00 717.00 0.70 7 16.70 14.95 

32  230.00 192.40 140.00 837.00 864.00 0.80 7 19.30 16.61 

33  280.00 258.50 190.00 837.00 599.00 0.70 28 24.00 20.56 

34  260.00 227.90 170.00 837.00 717.00 0.70 28 27.80 20.45 

35 (Chabib and Syed 2012) 180.00 166.50 270.00 850.00 850.00 0.20 1 5.00 0.54 

36  180.00 166.50 270.00 850.00 850.00 0.20 7 14.72 7.13 

37  180.00 166.50 270.00 850.00 850.00 0.20 28 23.65 19.67 

38 (Mohamed 2011) 337.50 189.00 112.50 612.00 1109.00 4.60 7 19.66 20.57 

39  495.00 231.00 55.00 612.00 909.00 3.81 7 16.51 17.70 

40  337.50 189.00 112.50 612.00 1109.00 4.60 28 22.71 28.13 

41  275.00 231.00 275.00 612.00 909.00 3.81 28 16.90 10.94 

42 (Siad et al. 2014) 350.00 214.00 170.00 792.00 774.00 0.81 28 50.30 46.51 

43 (da Silva et al. 2015) 503.00 183.00 158.00 700.00 735.00 0.76 7 58.80 47.18 

44  290.00 180.00 318.00 700.00 741.00 0.66 28 54.00 50.75 

45  218.00 178.00 373.00 700.00 743.00 0.51 182 49.60 51.65 

46 (Liu 2010) 115.00 167.00 336.00 924.00 743.00 0.65 180 33.48 29.81 

47 (Zhao et al. 2015) 368.00 161.00 92.00 1058.20 693.81 0.24 3 35.69 44.64 

48  368.00 161.00 92.00 1058.20 693.81 0.24 28 58.46 46.55 

49  322.00 161.00 138.00 1058.20 693.81 0.24 28 51.61 38.53 

50  276.00 161.00 184.00 1058.20 693.81 0.24 28 49.49 41.20 

51 (Pathak and Siddique 2012) 350.00 190.00 150.00 876.00 830.00 1.82 28 27.45 23.99 

52  250.00 210.00 250.00 856.00 856.00 1.72 28 19.35 10.14 

53  300.00 200.00 200.00 860.00 845.00 1.80 90 31.50 39.73 

54 (Ulucan et al. 2008) 325.00 190.00 175.00 735.00 910.00 1.35 28 38.30 37.12 

55 (Bingöl and Tohumcu 2013) 375.00 175.00 125.00 673.00 938.00 1.50 3 51.53 51.06 

56  300.00 175.00 200.00 663.00 923.00 1.50 3 43.66 43.61 

57 (Siddique et al. 2012) 465.00 225.50 85.00 590.00 910.00 1.95 90 53.14 52.93 

58  440.00 225.50 110.00 590.00 910.00 2.00 90 47.52 47.74 

59  440.00 225.50 110.00 590.00 910.00 2.00 365 49.14 44.04 

60 (Güneyisi et al. 2010) 330.00 176.00 220.00 899.00 700.00 1.35 90 70.11 76.96 

61  360.00 198.00 90.00 855.00 813.00 0.71 90 61.20 48.29 

62 (Sukumar et al. 2008) 583.00 196.23 50.00 745.00 813.00 0.70 3 32.11 29.96 

63  417.00 182.40 153.00 759.00 828.00 0.50 14 49.07 41.14 

64  417.00 182.40 153.00 759.00 828.00 0.50 28 55.64 56.76 

65 (Leung et al. 2016) 372.00 235.60 248.00 720.00 780.00 0.64 28 40.28 37.42 

66 (Le and Ludwig 2016) 481.00 156.00 120.00 968.00 790.00 2.00 3 68.22 75.15 

67  481.00 156.00 120.00 968.00 790.00 2.00 7 83.34 79.74 

68  481.00 156.00 120.00 968.00 790.00 2.00 56 107.46 115.29 

437




