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1. Introduction 
 

The propagation and coalescence of internal natural 

cracks under different loading conditions may considerably 

reduce the strength and durability of concrete structures. 

The mechanism of failure and fracture of concretes can be 

affected by the mechanical behavior of pre-existing internal 

cracks. Concrete beams containing internal cracks can be 

used to study the mechanism of cracks propagation and 

control of cracking in concretes. The beam specimens under 

three and four-points bending can be used to perform the 

flexure tests in concrete beams. These experimental samples 

are specially prepared to investigate the fracture mechanics 

based design of engineering structures by determining the 

Mode I and Mode II fracture toughness and the tensile 

strength of the concretes. Therefore, several researches used 

the concrete beam tests to study the failure and fracturing 

process of various concretes and rock like materials under 

various loading conditions (Dai et al. 2011, Wang et al. 

2011, Wang et al. 2012, Yoshihara 2013, Lancaster et al. 

2013, Jiang et al. 2014, Noel and Soudki 2014). The 

fracture pattern and failure process of asphalt mixtures 

predicted by Zeng et al. (2014) by using the three point 

beam specimens and a damage model mechanism. In their 

study they considered the effects of cracks location and the 

coarse aggregates distribution on the damage mechanism 

and cracks propagation paths of asphalt mixtures. It has also 
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been shown that the simulation results are in a good 
agreement with the corresponding experimental ones. The 
reinforced concrete beam {RCB) specimens used by Wang 
et al (2015) to study the shear deformation considering the 
low span-effective depth ratios. They predicted the diagonal 
crack angles by studying the multi-angle truss models. They 
also analyzed the effects of the diagonal crack angles on the 
bending moment variations along the span and showed that 
their experimental results are comparable to the 
corresponding numerical predictions of the diagonal cracks 
angles. Several experimental and numerical studies were 
accomplished on many brittle specimens to study the cracks 
initiation and cracks propagation of the pre-existing cracks 
(Belytschko et al. 1999, Silling 2000, Yang et al. 2009, 
Janeiro and Einstein 2010, Janeiro and Einstein 2010, Wu et 
al. 2010, Yang 2011, Cheng-Zhi and Ping 2012, Ameen et 
al. 2011, Leonel et al. 2012, Yoshihara 2013, Lancaster et 
al. 2013, Ramadoss 2013, Jiang et al. 2014, Pan et al. 2014; 
Mobasher et al. 2014, Zhou et al. 2012, Zeng et al. 2014, 
Noel and Soudki 2014, Oliveira and Leonel 2014, Haeri et 
al. 2014, Kim and Taha 2014, Sarfarazi et al. 2014, Zhou et 
al. 2015, Zhou et al. 2015, Tiang et al. 2015, Wan Ibrahim 
et al. 2015, Silva et al. 2015, Gerges et al. 2015, Yang 2015, 
Wasantha et al. 2015, Lee and Chang 2015, Kequan and 
Zhoudao 2015, Haeri 2015a, b, c, Haeri et al. 2015a, b, c, Li 
et al. 2015, Liu et al. 2015, Li et al. 2016, Fan et al. 2016, 
Li et al. 2016, Akbas 2016, Rajabi 2016, Haeri et al. 2016a, 
b, c, Haeri and Sarfarazi 2016, Sardemir 2016, Mohammad 
2016, Shuraim 2016, Shaowei et al. 2016, Yaylac 2016, Bi 
et al. 2016, Zhou et al. 2016, Wang et al. 2016, 2017, Wang 
et al. 2017, Silling 2017, Bi et al. 2017). In this paper, the 
hollow center cracked disc (HCCD) in Brazilian test was 
modeled numerically to study the crack propagation in the 
pre-cracked disc. 
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Abstract.  Hollow center cracked disc (HCCD) in Brazilian test was modelled numerically to study the crack propagation in 

the pre-cracked disc. The pre-existing edge cracks in the disc models were considered to investigate the crack propagation and 

coalescence paths within the modelled samples. The effect of particle size on the hollow center cracked disc (HCCD) in 

Brazilian test were considered too. The results shows that Failure pattern is constant by increasing the ball diameter. Tensile 

cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence 

with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was 

decreased with increasing the particle size. In this research, it is tried to improve the understanding of the crack propagation and 

crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete 

structures, such as the underground openings, rock slopes and tunnel construction. 
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Fig. 1 HCCD geometry 

 

 

A discrete element simulation of HCCD test 

Fig. 1 illustrate the schematic view and geometrical 

dimensions of HCCD specimens (Shiryaev and Kotkis 

1982). As shown in this figure, HCCD specimen contains a 

disc with radius RO (mm) with an internal hole of radius Ri 

(mm) drilled at the center of the disc. Two straight central 

cracks of length a (mm), are symmetrically created at the 

surface of the internal hole. This kind of vertical notch type 

cracks are more suitable for measuring the Mode I critical 

stress intensity factors of the HCCD specimen in which the 

analytical formula can be written as 

YIa
RRt

P
KI

iO


)( 

  (1) 

YI=0.62 (2) 

where P is applied compressive load (KN) and t is the 

thickness of specimen (mm); YI is two dimensionless stress 

intensity factors. 

 

 

2. Numerical simulation: 
 

2.1 Bonded particle model and Particle Flow Code 
3D (PFC3D) 
 

A three dimensional particle flow code (PFC3D) 

provided by Itasca (version 3.1) used by Potyondy and 

Cundall 2004, to represent the material model as an 

assembly of rigid particles. These particles can move 

independently and interact one another at the distinct 

contact points. A central finite difference scheme is 

provided in PFC3D to calculate the relative movements and 

internal forces of the particles within the particle assembly. 

Both linear and non-linear contact models considering the 

frictional sliding along the particles can be used for 

modeling the contact mechanism within the assembly. The 

linear contact model adopted in PFC3D and used in the 

present study, provides a linear elastic relationship in 

between the relative displacements and contact forces of the 

particles. A parallel-bond particle model is generated by the 

routines provided by Itasca, 1999, version 3.1. However, the 

following micro properties of the particles and particle 

Table 1 Micro properties used to represent the intact rock 

Parameter Value Parameter Value 

Type of particle disc 
Parallel bond radius 

multiplier 
1 

Density (kg/m3) 3000 
Young modulus of parallel 

bond (GPa) 
40 

Minimum radius (mm) 0.27 Parallel bond stiffness ratio 1.7 

Size ratio 1.56 Particle friction coefficient 0.4 

Porosity ratio 0.08 
Parallel bond normal 

strength, mean (MPa) 
70 

Damping coefficient 0.7 
Parallel bond normal 

strength, SD (MPa) 
2 

Contact young 

modulus (GPa) 
40 

Parallel bond shear 

strength, mean (MPa) 
70 

Stiffness ratio 1.7 
Parallel bond shear 

strength, SD (MPa) 
2 

 

 

assembly should be defined in the numerical simulation of 

the geo-mechanical problems:  the contact modulus of 

ball-to-ball, the stiffness ratio Kn over Ks, the frictional 

coefficient of the ball, the parallel normal and shear bond 

strengths, the minimum ball radius, the radius multiplier of 

parallel-bond, the modulus and the stiffness ratio of the 

parallel-bond. The appropriate micro properties of the 

particle assembly can be stablished by conducting a suitable 

calibration procedure as proposed by Itasca, 1999.  The 

laboratory tests experiments can provide the macro 

mechanical properties based on the continuum behavior of 

the material samples but they cannot be used directly as the 

particles contact properties and their bonding 

characteristics. Therefore, an inverse modeling technic is 

used to predict the suitable micro-mechanical properties for 

the numerical models from the macro-mechanical properties 

measured in the laboratory. The mostly adopted method is 

the trial-and-error approach used to relate these two sets of 

material properties (Itasca 1999). This approach involves 

the assumption of initial micro mechanical values and 

compares the deformation characteristic the s and strength 

of the particles assembly with those of the measured 

laboratory values. The process is repeated till obtaining the 

micro-mechanical properties matching well with those of 

the macro mechanical ones. Therefore, the suitable micro 

mechanical properties of the particle assembly are 

determined for modeling the discontinuous jointed rocks 

and geo-materials.  

 

2.2 Preparing and calibrating the numerical model 
 

The Brazilian test was used to calibrate the tensile 

strength of specimen in PFC3D model. The standard 

process of generation of a PFC3D assembly to represent a 

test model involves four steps: (a) particle generation and 

packing the particles, (b) isotropic stress installation, (c) 

floating particle elimination, and (d) bond installation. 

Adopting the micro-properties listed in Table 1 and the 

standard calibration procedures (Potyondy and Cundall 

2003), a calibrated PFC particle assembly was created. The 

diameter of the Brazilian disk considered in the numerical 

tests was 54 mm. The specimen was made of 15,615 

particles. The disk was crushed by the lateral walls moved  
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(a) 

 
(b) 

Fig. 2 failure pattern in (a) physical sample, (b) PFC2D 

model 

 

Table 2 Brazilian tensile strength of physical and numerical 

samples 

Physical tensile strength (MPa) 4.5 and 4.7 

Numerical tensile strength (MPa) 4.5 

 

 

toward each other with a low speed of 0.016 m/s. Figs. 2(a), 

(b) illustrate the failure patterns of the numerical and 

experimental tested samples, respectively. Also 

displacement vector of particle and bond force distribution 

was shown in Fig. 2(b). The failure planes experienced in 

numerical and laboratory tests are well matching. The 

numerical tensile strength and a comparison of its 

experimental measurements were presented in Table 2. This 

table shows a good accordance between numerical and 

experimental results.  

 

2.3 Model preparation using Particle Flow Code  
 

After calibration of PFC3D, HCCD test were simulated 

by creating a disc model in PFC2D (by using the calibrated 

micro-parameters) (Fig. 3). The PFC specimen have 

external diameter of 70 mm and internal diameter of 30 mm 

(Fig. 3(a)). Also notch length was 10 mm (Fig. 3(a)). The 

model thickness was 25 mm (Fig. 3(b)). minimum diameter 

of balls changes in 18 different models i.e., 0.85 mm (Fig. 

4(a)), 0.95 mm (Fig. 4(b)), 1.05 mm (Fig. 4(c)), 1.15 mm 

(Fig. 4(d)), 1.25 mm (Fig. 4(e)), 1.35 mm (Fig. 4(f)), 1.45 

mm (Fig. 4(g)), 1.55 mm (Fig. 4(h)), 1.65 mm (Fig. 4(i)), 

1.75 mm (Fig. 4(j)), 1.85 mm (Fig. 4(k)), 1.95 mm (Fig.  

 
(a) 

 
(b) 

 
(c) 

Fig. 3(a) HCCD model in PFC3D 

 

 

4(l)), 2.05 mm (Fig. 4(m)), 2.15 mm (Fig. 4n), 2.25 mm 

(Fig. 4(o)), 2.35 mm (Fig. 4(p)), 2.45 mm (Fig. 4(q)) and 

2.55 mm (Fig. 4® ). totally, 18 models consisting various 

ball number has been built, i.e., 53274 balls, 38159 balls, 

28262 balls, 21512 balls, 16751 balls, 13297 balls, 10731 

balls, 8785 balls, 7283 balls, 6104 balls, 5167 balls, 4412 

balls, 3797 balls, 3292 balls, 2872 balls, 2521 balls, 2224 

balls and 1973 balls. These models are loaded by two 

loading walls (Fig. 3(c)). The Tensile force was registered 

by taking the reaction forces on the wall id=1.  

 

 

3. Numerical results 
 

3.1 The effect of particle size on the failure pattern of 
specimens 

 

Figs. 5(a)-(r) shows the effect of particle size on the 

failure pattern of models with number of balls of 53274 

balls, 38159 balls, 28262 balls, 21512 balls, 16751 balls, 

13297 balls, 10731 balls, 8785 balls, 7283 balls, 6104 balls, 

5167 balls, 4412 balls, 3797 balls, 3292 balls, 2872 balls, 
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2521 balls, 2224 balls and 1973 balls, respectively. The 

black and red lines shown in this Figure represent the 

tensile and shear cracks, respectively. It is concluded that 

the failure process of the specimen is constant as the 

diameter of the ball increases. The tensile cracks are the 

 

 

 

dominant failure mode of these specimens because these 

cracks initiate from the notch tips during the loading 

process and then propagate parallel to the loading axis 

(direction) and finally interact with the upper boundary of 

the model. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4 The HCCD specimen with different ball radius of, (a) 0.85 mm, (b) 0.95 mm, (c) 1.05 mm, (d) 1.15 mm, (e) 1.25 mm, 

(f) 1.35 mm 

   
( g ) (h) (i) 

   

(j) (k) (l) 

Fig. 4 The HCCD specimen with different ball radius of, (g) 1.45 mm, (h) 1.55 mm, (i) 1.65 mm, (j) 1.75 mm, (k) 1.85 mm, 

(l) 1.95 mm 

376



 

The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test 

 

 

 

 

3.2 The effect of particle size on the tensile fracture 
toughness 

 

Tensile fracture toughness was measured by using 

equation 1 and 2. Fig 6 shows the effect of particle size on 

the tensile fracture toughness. The result shows that tensile 

fracture toughness was decreased with increasing the 

particle size. 

 

 
 
4. Conclusions 
 

In this work the effect of particle size on the failure 

pattern and tensile fracture toughness in HCCD specimen 

has been investigated using PFC3D. Firstly calibration of 

PFC2D was performed using Brazilian tensile strength. 

Secondly HCCD test models consisting different particle 

size was simulated numerically. The results show that: 

   
(m) (n) (o) 

   
(p) (kq) (r) 

Fig. 5 Failure pattern in the HCCD specimen with different ball radius of, (a) 0.85 mm, (b) 0.95 mm, (c) 1.05 mm, (d) 1.15  

mm, (e) 1.25 mm, (f) 1.35 mm 

   
(m) (n) (o) 

   
(p) (kq) (r) 

Fig. 5 Failure pattern in the HCCD specimen with different ball radius of, (g) 1.45 mm, (h) 1.55 mm, (i) 1.65 mm, (j) 1.75 

mm, (k) 1.85 mm, (l) 1.95 mm 
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Fig. 6 the effect of particle size on the tensile fracture 

toughness 

 

 

• The failure process and fracturing pattern is constant 

by increasing the diameter of the balls. 

• The dominant mode of failure is that of tensile one 

• The tensile cracks initiate from the notch tips 

• These cracks propagate till they interact with the upper 

boundary of the specimen. 

• As the ball diameter decreases the number of tensile 

cracks increases. 

• As the particle size increases the tensile fracture 

toughness is decreased.  
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