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1. Introduction 

 

Concrete is currently one of the most widely used 

materials in the construction industry as it offers certain 

advantages over other materials, one of the most distinct of 

which is the variety of shapes that can be formed from the 

material. The continuous and currently ever more extensive 

use of concrete in the building of new structures is leading 

designers and calculation specialists to work on making the 

designs of such structures more accurate via finite element 

simulations (Wu et al. 2015, Zhang et al. 2016, Moscoso et 

al. 2017). However, this effort to design safer, more durable 

and simultaneously far more economical concrete structures 

requires the involvement of nonlinear mechanics tools. With 

regard to the fact that the deformations occurring in 

concrete structures are usually very small, the involvement 

of nonlinear mechanics tools primarily entails the 

application of nonlinear material models of concrete within 
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numerical simulations. Comprehensive modern computer 

programs based on the finite element method (Adina 1997, 

Atena 2013, ANSYS 2014, Ls-Dyna 2017) currently enable 

the application of a whole range of nonlinear models of 

concrete whose constitutive relations are mainly based on 

plasticity theory, damage mechanics, linear or nonlinear 

fracture mechanics and combinations of those theories. The 

realization of the constitutive relations of such models in 

finite element simulations depends on their parameter 

values, however. The determination of these values is often 

very difficult as the majority of models include a large 

quantity of parameters of a mathematical and non-physical 

nature. Unfortunately, when using such models, the 

designer or calculation specialist is thus often unable to 

avoid having to perform the inverse identification of 

material parameters, which tends to be a very complex 

process (Jankowiak and Łodygowski 2005, Nguyen and 

Korsunsky 2006). Within the continuum mechanics tasks, it 

is still possible to use constitutive relations which require 

the definition of a relatively small amount of parameters. 

These parameters are mainly of a physical nature and 

describe the behavior of real concrete very satisfactorily. 

Example of such constitutive relations which have the 

potential to be utilized via implementation in computational 

systems is presented below within this paper. Nevertheless, 

before the implementation of constitutive relations in a 
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computational system it is always necessary to test and 

evaluate them in the context of basic tasks, which is the aim 

of the investigation described in this paper. 

The constitutive relations employed within this paper 

are intended for use in modeling the plane stress state of 

concrete and are based on the incremental theory of elastic 

strain-hardening plasticity (Hu and Schnobrich 1989, 

Schwer and Murray 1994, Grassl and Jirasek 2006). With 

regard to plasticity-based models, models which described 

concrete as an elastic-perfectly plastic material (Kaufmann 

1998, Szcześniak and Stolarski 2016) were used in the past. 

However, as time went on, elastic strain-hardening plastic 

material models proved to be more general and more 

suitable for the description of the real behavior of concrete 

than elastic-perfectly plastic material models. From the 

point of view of the description of the real behavior of 

concrete using constitutive relations, the selection of the 

flow rule is also important. It determines the dependence of 

plastic strain increments on stress increments. When 

modeling, there is a choice between an associated and a 

non-associated flow rule. It was demonstrated in the past 

that a non-associated flow rule is more suitable for the 

modeling of multi-axial stress state of concrete than an 

associated flow rule (Lade et al. 1987). With regard to the 

fact that also the modeling of the biaxial stress state of 

concrete is part of the paper, a non-associated flow rule is 

used for all executed calculations. Further aspects which 

need to be defined for the completeness of the constitutive 

relations used, such as yield surfaces, hardening rule, plastic 

hardening modulus and equivalent uniaxial stress-strain 

curve, are described below in the paper. These aspects are, 

in contrast with the work of Hu and Schnobrich (1989), 

modified in certain manners with regard to this paper for the 

purpose of obtaining better calculation results. The 

constitutive relations used are tested and evaluated on tasks 

concerning the uniaxial stress of concrete in compression 

and tension and the biaxial stress of concrete in 

compression while placing emphasis on the evaluation of 

both the pre-peak and post-peak behavior of concrete. For 

the purpose of the validation of constitutive relations, the 

result for the uniaxial compression of concrete is compared 

with experimental data. 

 

 

2. Theoretical background of constitutive relations 
 

2.1 Yield surfaces 
 

Within this paper, constitutive relations are based on the 
incremental theory of elastic strain-hardening plasticity. It is 
typical for strain-hardening models that after the 
achievement of an initial yield surface, subsequent yield 
surfaces change in relation to continued plastic straining up 
to the moment of the achievement of the ultimate yield 

surface (see Fig. 1). Moreover, all yield surfaces can be 
described by the same yield function within the theory of 
plasticity. For the modeling of concrete, the yield function 
can be divided further into a total of three yield functions, 
each of which can be used for the description of one of the 
three regions of the yield surface (the tension-tension 

region, the compression-tension region and the  

 

Fig. 1 Yield surfaces of concrete in the principal stress plane 

 

 

compression-compression region). In this paper, yield 

functions were used which were defined separately for each 

of the previously mentioned regions of biaxial tension 

(tension-tension region), compression-tension and biaxial 

compression (compression-compression region) (Hand et 

al. 1972, Hu and Schnobrich 1989). The corresponding 

yield surfaces are shown in Fig. 1. 

As far as the tension-tension region is concerned, it can 

be seen from Fig. 1 that only linearly elastic concrete 

behavior without the occurrence of plastic deformation is 

assumed from the beginning of load up to the failure of the 

material. This is because the initial yield surface is identical 

to the ultimate yield surface (failure surface). The yield 

function for the tension-tension region is expressed in the 

following mathematical form 
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where {σ}
T 

= {σx , σy , τxy} is the row stress vector for plane 

stress, fc is the maximum uniaxial compressive strength of 

concrete, and the variable α depends on parameters fc and ft 

according to the equation 

t

c

f

f
   (2) 

where ft is the maximum uniaxial tensile strength of 

concrete. In Eq. (1), σm is the mean stress, which is defined 

as follows for the case of plane stress 

 
1

3
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and τoct is the octahedral shear stress, defined as 
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The parameter c1 can be expressed by the following 

equation: 
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where σ1 and σ2 are principal stresses for which it is true 

that σ1 ≥ σ2 (both principal stresses have positive values). 

In the case of the compression-tension region where 

concrete is exposed to compressive and tensile strain 

simultaneously, the yield function can be expressed using 

the following equation: 
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where σeqv is the equivalent stress. The equivalent stress is a 

hardening parameter which depends on the previous stress-

strain history of the material and its strain-hardening 

properties. As soon as the value of loading function F in Eq. 

(6) equals the value σeqv, yielding will occur and the 

equivalent stress gains a new value at the same time. The 

parameter c2 can be expressed by the following equations 

2

2 2
2

1 1

3

2 1

1 2

1 0.02886 0.006657

0.0002443 for 0.103

c
 

 

 

 

   
      

   

 
     

 

 
(7) 

2 3

1 1 1
2

2 2 2

1

2

1 6.339 68.82 183.8

for 0.103 0

c
  

  





     
        

     

  
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where σ1 is the maximum principal stress with a positive 

value and σ2 is the minimum principal stress with a negative 

value. 

In the case of the compression-compression region, 

where concrete is exposed only to compressive strain, the 

yield function is defined with the expression 
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in which  = 1.16 and the parameter c3 is defined as 
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where both principal stresses σ1 and σ2 have negative values 

and it is valid that σ1≥σ2. In this paper, in contrast with the 

work of Hu and Schnobrich (1989), the ratio of principal 

stresses in Eq. (10) is modified. 

In all the given c parameters, principal stresses are 

defined with equations (Meyers and Chawla 2009) 
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2.2 Hardening rule and flow rule 
 

In the case of strain-hardening models, shifts of yield 

surfaces occur during loading that causes plastic straining. 

The way in which yield surfaces are shifted is governed by 

a hardening rule. Various hardening rules can be applied as 

needed, such as kinematic hardening, isotropic hardening, 

and also some mixed hardening rules (Shames and 

Cozzarelli 1997, Rouainia and Muir Wood 2000, Rezaiee-

Pajand and Nasirai 2007, Kazaz 2011). A kinematic 

hardening rule is suitable for modeling cyclically loaded 

materials in which the “Bauschinger effect” needs to be 

monitored. With such materials, shifts of yield surfaces do 

not occur during plastic deformation via their expansion, 

but via their distortion. For the modeling of monotonically 

loaded materials it is completely sufficient to use an 

isotropic hardening rule, with which the distortion of yield 

surfaces does not occur, but only their expansion. Mixed 

hardening rules need to be used in cases when properties 

such as the isotropic hardening rule and kinematic 

hardening rule are important for the modeling. As only 

monotonic loading of concrete was considered in the 

calculations performed for this paper, the isotropic 

hardening rule was used for these purposes. 

With regard to the flow rule, either an associated flow 

rule or a non-associated flow rule (Bland 1957, Runesson 

and Mroz 1989) can be used within the context of the 

theory of plasticity. The difference between both rules 

consists in the type of plastic potential function involved, 

which is related to plastic strains. Within the framework of 

the associated flow rule it is assumed that the plastic 

potential function is equal to the yield function of the 

material, while in the case of the non-associated flow rule it 

is assumed that the plastic potential function and yield 

function of the material differ from each other. In this paper 

a non-associated flow rule was used. It can be formulated as 
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where  is a positive scalar factor which can vary during the 

hardening process. Eq. (13) shows the relationship between 

the plastic potential function and the incremental plastic 

strain vector. In the case of elasto-plastic material models 

this combine with the incremental elastic strain vector to 

form the incremental total strain vector according to the 

equation 

T T Td{ } d{ } +d{ }e pε ε ε  (14) 

where all vectors are row vectors. In non-incremental form, 

Eq. (14) can be written as the following equation: 

T T T{ } { } +{ }e pε ε ε  (15) 

The plastic potential function used for calculations in 

this paper was as follows 
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2.3 Equivalent uniaxial stress-strain curve 
 

An important aspect which needs to be defined for 

models including plastic strains with hardening is the 

equivalent uniaxial stress-strain curve in compression, to 

which the results of all of the different loading cases are 

related. For the purposes of this paper, the equivalent 

uniaxial stress-strain curve was used. It is defined using the 

mutual dependence of two parameters to which the 

multidimensional stress and strain conditions are related 

(Hu and Schnobrich 1988). This is the dependence of 

parameter σeqv (the equivalent stress) on parameter eqv (the 

equivalent strain), which can be expressed via the following 

equation 
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(17) 

in which the parameter Ec,init is the initial elastic modulus 

and R is the ratio relation defined as 
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In Eqs. (17)-(18), RE is the modular ratio, Rσ is the stress 

ratio and R is the strain ratio. These three ratios are given 

by the following expressions 
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where  f is the maximum strain on the equivalent uniaxial 

stress-strain curve, σ f is the stress corresponding to  f on 

the equivalent uniaxial stress-strain curve and Esc is the 

secant modulus defined as 

c
sc

f
E

 
  (22) 

In Eqs. (17), (21) and (22), the parameter  *
 is the strain 

corresponding to fc on the equivalent uniaxial stress-strain 

curve. The mathematical expression of this strain is as 

follows 

cq    (23) 

where  c is the strain corresponding to fc within the uniaxial 

compression test and q is a parameter via which greater 

generality can be achieved for the equivalent uniaxial 

stress-strain curve. The parameter q depends on the type of 

the yield surface region which corresponds to the given 

stress state. If the stress state corresponds to the 

compression-tension region, parameter q is defined using 

the following equations. 
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and for – 0.103≤σ1/σ2<0 

1

, , 2

2 3

1 1

2 2

1 1 13.96

59.21 69.24

c c

c init c c init c

f f
q

E E



  

 

 

    
         

  

   
    
    

 
(25) 

where σ1 is the maximum principal stress with a positive 

value and σ2 is the minimum principal stress with a negative 

value. For the case of biaxial compression (compression-

compression region), the parameter q is defined as 
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where both principal stresses σ1 and σ2 have negative 

values, and it is valid that σ1≥σ2. In calculations performed 

within this paper, the equivalent strain eqv given in Eq. (17) 

was calculated via the following equation 

2 2 22 3

3 4
eqv x x y y xy          (27) 

in which the individual strains are components of the total 

strain vector given for plane stress in row form as 

T{ } { , , }x y xy  ε  (28) 

 

2.4 Plastic hardening modulus 
 

Another important aspect which needs to be defined for 

models including plastic strains with hardening and which 

is related to the equivalent uniaxial stress-strain curve is the 

plastic hardening modulus. Generally, the plastic hardening 

modulus Hp is defined as a derivation of the function 

describing the shape of the equivalent uniaxial stress-strain 

curve according to the plastic component of the equivalent 

strain. This can be mathematically expressed as 

,

d
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eqv
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eqv p

H



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(29) 

With regard to the presence of the incremental plastic 

component of the equivalent strain in Eq. (29), it is clear 

that just as in the case of the total strain vector from Eq. 

(15) it is possible to divide the equivalent strain eqv into 

two parts in the form of its elastic component eqv,e and 

plastic component eqv,p. This fact can be written in 

incremental form as 

, ,d d deqv eqv e eqv p     (30) 
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After dividing Eq. (30) by the incremental equivalent 

stress d σeqv this equation will have the form 

, ,
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where Etg is the equivalent uniaxial tangent modulus. On 

the basis of Eq. (31), it is now easy to obtain the specific 

expression needed for the calculation of the plastic 

hardening modulus in the form 
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The mathematical expression for the equivalent uniaxial 

tangent modulus given in Eqs. (31)-(32) can be written as 

follows 
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(33) 

The shape of the equivalent uniaxial stress-strain curve, 

and thus the slope (sign) of the equivalent uniaxial tangent 

modulus, is strongly dependent on parameters  f and σ f. In 

Hu and Schnobrich (1989) the parameters mentioned are 

selected in such a way that R=4 and Rσ=4. Murray et al. 

(1979) also used the ratios R and Rσ that were equal to 4. A 

disadvantage of such selected parameter values is that in the 

region of the equivalent uniaxial stress-strain curve after 

exceeding the value fc the equivalent uniaxial tangent 

modulus gains negative values. This could cause 

considerable numerical difficulties. Within this paper, 

values of parameters  f and σ f were not selected for all 

cases in such a way that ratios R and Rσ equal one specific 

number, but they were selected so that they ensure a 

permanently growing equivalent uniaxial stress-strain curve 

for various cases in combination with other parameter 

values while achieving acceptable calculation results. This 

made use of the fact that the equivalent uniaxial stress-

strain curve does not have to have the same shape as the 

simulated stress-strain curve for the uniaxial compression 

test. During the calculations, this approach provided 

permanently positive values for the equivalent uniaxial 

tangent modulus. As a result, it can be stated that it is 

suitable for use in the removal of the above-mentioned 

numerical difficulties. 

 

2.5 The incremental form of constitutive equations 
 

If aspects such as yield surfaces, hardening rule, flow 

rule, equivalent uniaxial stress-strain curve and plastic 

hardening modulus are defined, constitutive relations can be 

composed (Hu and Schnobrich 1989). Within the 

framework of theory of elasticity, constitutive equations can 

be written in the form of the generalized Hooke’s law. 

When considering the decomposition of the total strain 

vector into its elastic and plastic components, the 

generalized Hooke’s law can be written down in the 

incremental form in the following way 

 d{ } [ ] d{ } [ ] d{ } d{ }e e e p  σ C ε C ε ε  (34) 

where d{σ} is the incremental stress vector in column form 

and [C]e is the elastic material property matrix for plane 

stress. The incremental form of the yield function obtained 

by its differentiation is given as follows 
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If Eqs. (13), (29) and (34) and equation 
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are applied to Eq. (35), and if it is considered that 
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then Eq. (35) gains the following form 
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By expressing the incremental equivalent plastic strain 

from the equation for the calculation of plastic work 

performed during plastic deformation and by applying Eq. 

(13), we obtain equation 
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By applying Eq. (39) to Eq. (38) and subsequent 

adjustment, an equation can be obtained for the calculation 

of parameter  in the form 
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(40) 

Now, if Eq. (13) and subsequently also Eq. (40) are 

applied to Eq. (34), Eq. (34) gains the form 
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(41) 

where the elastic material property matrix [C]e is given as 

follows 
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Table 1 Input parameters of the user function for concrete with a uniaxial compressive strength of 33 MPa 

Lab. Loading 
Ec,init 

[MPa] 
 [-] fc [MPa] ft [MPa]  c [-]  f [-] σ f [MPa] n 

1000Δ x 

[-] 

1000Δ y 

[-] 

1000Δγ xy 

[-] 

1 uxc 14500 0.2 33 3 0.0021 0.0035 38.5 400 -0.010 0.0020 0 

2 bxc 14500 0.2 33 3 0.0021 0.0035 38.5 442 -0.010 -0.0010 0 

3 bxc 14500 0.2 33 3 0.0021 0.0035 38.5 508 -0.010 -0.0030 0 

4 bxc 14500 0.2 33 3 0.0021 0.0035 38.5 552 -0.010 -0.0050 0 

5 bxc 14500 0.2 33 3 0.0021 0.0035 38.5 570 -0.010 -0.0070 0 

6 bxc 14500 0.2 33 3 0.0021 0.0035 38.5 560 -0.010 -0.0085 0 

7 bxc 14500 0.2 33 3 0.0021 0.0035 38.5 740 -0.010 -0.0100 0 

8 uxt 14500 0.2 33 3 0.0021 0.0035 38.5 207 0.001 -0.0002 0 

 

Fig. 2 Scheme of the user function algorithm 
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and where [C]p is the unsymmetric plastic material property 

matrix defined as 
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(43) 

The parameter  in Eq. (42) is the Poisson’s ratio of 

concrete. The constitutive relations given in the incremental 

form in Eq. (41) were used for all calculations performed 

within this paper. 

 

 

3. Calculation results and their evaluation 
 

For this paper, all calculations were carried out using the 

user function which was programmed in Matlab software 

(Matlab 2005) and which included the constitutive 

equations described in the previous chapter. A simplified 

scheme of the algorithm of the user function is shown in 

Fig. 2. It can be seen from the diagram in Fig. 2 that the 

purpose of the user function was to simulate the plane stress 

state of concrete under constantly growing strain on the 

basis of defined input parameters. It can also be seen from 

Fig. 2 that the output of the user function was data which 

enabled the subsequent construction of stress-strain 

diagrams which described the behavior of plain concrete 

during plane stress. 

Constitutive relations (material model) were tested via 

the user function and evaluated in a total of two cases. In 

the first case, they were tested for one specific type of 

concrete (concrete with a maximum uniaxial compressive 

strength of 33 MPa) via the following types of stresses: 

uniaxial compression (uxc), biaxial compression (bxc), 

uniaxial tension (uxt), see Table 1. In the second case, they 

were tested for concretes with various maximum uniaxial 

compressive strengths via the following types of stresses: 

uniaxial compression (uxc), uniaxial tension (uxt), see Table 

2. 

Table 1 presents the input parameters of the user 

function used to simulate the behavior of concrete with a 

maximum uniaxial compressive strength of 33 MPa for the 

given types of stresses (uxc, bxc and uxt). Parameter Δγ xy 

was defined with a zero value in all cases because shear 

stress τxy does not occur during the application of the above 

types of stresses, and as a consequence, shear strain γ xy does 

not occur either. With regard to this fact it is clear that the 

normal stresses and strains in the simulated plane were 

equal to the principal stresses and strains. In order to 

maintain the generality of notation, the following equalities 

were selected between the stresses and strains 

1x   (44) 

2y   (45) 
 

 

Fig. 3 Simulated plane stress state of concrete 

 

 

Fig. 4 Simulated stress-strain diagram for concrete under 

uniaxial compression (lab. 1 in Table 1) 

 

 

1x   (46) 

2y   (47) 

With regard to the stated facts, the testing of the plane 

stress state of concrete executed within this paper can be 

depicted schematically as the plane compressive or tensile 

loading of a concrete element in the shape of hexahedron 

whose dimensions are considerably greater in the tested 

plane than its thickness (see Fig. 3). 

Figs. 4-10 show the results of the calculations for cases 

1-7 from Table 1. The results take the form of stress-strain 

diagrams which describe the behavior of concrete during 

uniaxial and biaxial compression. The axes of the stress-

strain diagrams are formed by principal quantities as a 

result of Eqs. (44)-(47) and Fig. 3. With regard to the 

uniaxial compression of concrete, it can be seen from Fig. 4 

that during constantly growing strain the material model 

displayed elasto-plastic concrete behavior with strain-

hardening before attaining the maximum uniaxial 

compressive strength fc with subsequent compressive strain-

softening. Fig. 4 also shows that the peak of the stress-strain 

curve corresponds to fc and c in Table 1 completely 

correctly. Last but not least, Fig. 4 shows that the drop in 

stress caused by compressive strain-softening in the 

material model under further strain settled at approximately 

11 MPa, which can be labeled the residual compressive 

strength of the concrete. 
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Fig. 5 Simulated stress-strain diagram for concrete under 

biaxial compression (lab. 2 in Table 1) 

 

 

Fig. 6 Simulated stress-strain diagram for concrete under 

biaxial compression (lab. 3 in Table 1) 

 

 

Fig. 7 Simulated stress-strain diagram for concrete under 

biaxial compression (lab. 4 in Table 1) 

 

 

With regard to the biaxial compression of concrete, 

Figs. 5-10 show that during constantly growing biaxial 

strain the material model displayed very similar concrete 

behavior to that which occurs in the case of uniaxial 

compression. However, the peak of the stress-strain curve 

for the biaxial compression of concrete is shifted in 

comparison to the peak of the stress-strain curve for the 

uniaxial compression of concrete in all the simulated cases. 

This shows that the material model is able to simulate the 

growth of the maximum compressive strength and 

corresponding strain as a result of biaxial compressive 

loading. The stress state of concrete under biaxial  

 

Fig. 8 Simulated stress-strain diagram for concrete under 

biaxial compression (lab. 5 in Table 1) 

 

 

Fig. 9 Simulated stress-strain diagram for concrete under 

biaxial compression (lab. 6 in Table 1) 

 

 

Fig. 10 Simulated stress-strain diagram for concrete under 

biaxial compression (lab. 7 in Table 1) 

 

 

compression is thus completely in accordance with the yield 

surfaces in Fig. 1. 

Fig. 11 shows all simulated stress-strain curves for 

concrete under compression (labs. 1-7 in Table 1) and 

experimental data for the uniaxial compression of concrete 

obtained from an experimental investigation performed by 

Kupfer and Gerstle (1973). The purpose of Fig. 11 is both 

an illustrative demonstration of how the maximum 

compressive strength of concrete and corresponding strain 

both grow within the material model during increasing 

biaxial compressive loading and a validation of the relevant 

simulated data (lab. 1, uxc) using experimental data. The  
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Fig. 11 Simulated stress-strain curves for the compression 

of concrete and experimental data 

 

 

experimental stress-strain curve in Fig. 11 corresponds to 

the results of a uniaxial compression test performed on a 

plain concrete element with the dimensions 200 mm  200 

mm  50 mm. The comparison of the experimental curve 

with the simulated curve for the uniaxial compression of 

concrete shows that for the selected combination of input 

parameter values the material model is capable of 

accurately reproducing both the peak of the real stress-strain 

curve and also its shape to a certain degree. Smaller 

differences between both curves could be achieved by 

another combination of the input parameter values. 

However, it needs to be pointed out that for the selected 

combination of input parameter values, the equivalent 

uniaxial tangent modulus calculated within the framework 

of the algorithm of constitutive relations gained 

permanently positive values despite the fact that during 

compressive strain-softening the tangent modulus of the 

simulated stress-strain curve gained negative values, which 

were supposed to be achieved. An advantage of the 

permanently positive equivalent uniaxial tangent modulus 

values during the calculation could be the removal of the 

numerical difficulties which are usually associated with 

negative equivalent uniaxial tangent modulus values. 

Fig. 12 shows a stress-strain diagram obtained from the 

calculation within which the uniaxial stretching of concrete 

was simulated (lab. 8 in Table 1). It can be seen from Fig. 

12 that the material model displayed only linearly-elastic 

concrete behavior during constantly growing tensile strain 

up to the moment when the maximum uniaxial tensile 

strength ft was achieved. This is completely in accordance 

with the yield surface in Fig. 1, which unambiguously 

 

 

Fig. 12 Simulated stress-strain diagram for concrete under 

uniaxial tension (lab. 8 in Table 1) 

 

 

specifies that no plastic deformations occur in the tension-

tension region. As is shown in Fig. 12, the calculation for 

the uniaxial tension of concrete was terminated at the 

moment of the achievement of uniaxial tensile strength ft. 

This was due to the fact that the constitutive relations used 

within this paper do not include any model via which it 

would be possible to capture the effect of tensile strain-

softening as a result of the opening of cracks in concrete 

after the achievement of tensile strength ft. 

Table 2 shows the input parameters of the user function 

used for the simulations of the behavior of different types of 

concrete with various maximum uniaxial compressive 

strengths for the given types of stresses (uxc and uxt). The 

results of the computer simulations are shown in Fig. 13 for 

the uniaxial compression of concrete, or in Fig. 14 for the 

uniaxial tension of concrete. According to ACI Committee 

363 (1984), growth in the maximum uniaxial compressive 

strength of real concrete is in particular responsible for 

growth in compressive strain during which compressive 

strength is achieved, followed by growth in the stiffness of 

concrete (elastic modulus of concrete). In contrast, the 

ductility of real concrete in compression decreases with the 

growth of compressive strength. Fig. 13 and Table 2 show 

that the material model is able to accurately reproduce the 

above-mentioned aspects concerning the strength and 

stiffness of real concrete in compression on the basis of 

parameters Ec,init, fc and  c. With regard to the ductility of 

concrete in compression, Fig. 13 shows that during 

calculations the material model exhibited lower ductility or 

a steeper and more marked drop in stress with increasing 

compressive strength of concrete during compressive strain- 

Table 2 Input parameters of the user function for different types of concrete 

Lab. Loading 
Ec,init 

[MPa] 
 [-] fc [MPa] ft [MPa]  c [-]  f [-] σ f [MPa] n 

1000Δ x 

[-] 

1000Δ y 

[-] 

1000Δγ xy 

[-] 

1 uxc 11700 0.2 24 2.2 0.00190 0.0035 27.2 380 -0.010 0.0020 0 

2 uxc 14500 0.2 33 3.0 0.00210 0.0035 38.5 400 -0.010 0.0020 0 

3 uxc 17600 0.2 43 3.9 0.00225 0.0035 50.5 420 -0.010 0.0020 0 

4 uxc 20300 0.2 53 4.8 0.00240 0.0035 63.0 440 -0.010 0.0020 0 

5 uxt 11700 0.2 24 2.2 0.00190 0.0035 27.2 189 0.001 -0.0002 0 

6 uxt 14500 0.2 33 3.0 0.00210 0.0035 38.5 207 0.001 -0.0002 0 

7 uxt 17600 0.2 43 3.9 0.00225 0.0035 50.5 222 0.001 -0.0002 0 

8 uxt 20300 0.2 53 4.8 0.00240 0.0035 63.0 237 0.001 -0.0002 0 
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Fig. 13 Simulated stress-strain curves for different types of 

concrete under uniaxial compression (uxc) 

 

 

softening. Lower ductility of concrete in compression was 

achieved in the calculations by increasing the value of 

parameter σ f while keeping parameter  f at a constant value. 

The growth in the compressive strength of concrete seen 

within the calculations was (understandably) associated 

with the growth in the maximum uniaxial tensile strength of 

concrete and corresponding tensile strain, which is 

demonstrated in Fig. 14. 

Based on the obtained calculation results and their 

comparison with experimental data and findings from the 

real testing of concrete it can be stated that the constitutive 

relations described and tested within this paper are a 

suitable tool for modeling of the behavior of real concrete in 

the plane stress state. 

 

 

4. Conclusions 
 

This paper described and subsequently detailed the 

testing and evaluation of constitutive relations (material 

model) which are intended for modeling the plane stress 

state of concrete and are based on the incremental theory of 

elastic strain-hardening plasticity, within the context of 

which the following were applied: various yield surfaces, an 

isotropic hardening rule, a non-associated flow rule and the 

equivalent uniaxial stress-strain curve. The testing of the 

constitutive relations was carried out via the user function 

programmed in Matlab software and involved basic tasks 

such as the uniaxial compression and tensile testing of 

different types of concrete and the biaxial compression 

testing of concrete with a maximum uniaxial compressive 

strength of 33 MPa. The result of the calculation (stress-

strain curve) performed for the uniaxial compression of 

concrete with a maximum uniaxial compressive strength of 

33 MPa was compared with appropriate experimental data 

(a real stress-strain curve). The comparison showed that for 

the used combination of input parameter values the tested 

material model is able to accurately reproduce both the peak 

of the real stress-strain curve and, to a certain degree, also 

its shape. The used combination of input parameter values 

also resulted in permanently positive values being gained by 

the equivalent uniaxial tangent modulus calculated within 

the algorithm of constitutive relations. This fact could be 

used advantageously in the removal of numerical 

 
Fig. 14 Simulated stress-strain curves for different types of 

concrete under uniaxial tension (uxt) 

 

 

difficulties which are usually connected with negative 

equivalent uniaxial tangent modulus values. Based on the 

executed calculations and comparisons, the conclusion can 

be drawn that the constitutive relations used have the 

potential to be used successfully within finite element 

computational systems as they appear to be a suitable tool 

for modeling the behavior of real concrete in a plane stress 

state. 
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