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1. Introduction 
 

Since 1969, when Leicester published his pioneering 

research (Leicester 1969), the study of size effect 

phenomenon has gathered lots of attention within 

researchers. Recently, this field of interest not only was of 

the most important subjects in fracture mechanics but also it 

extended to be used in different aspects of engineering 

problems, material testing, and numerical solutions. For 

instance, Yoo and Yang studied the effect of beam size on 

shear behavior of high strength concrete beams (Yoo and 

Yang 2018). Their test results showed that the increase of 

beam size decreases the shear strength of the beams 

significantly. They further reported that this effect was more 

prevalent for beams cast of fiber-reinforced high-

performance concrete than for those without fibers. The 

age-dependent size effect and fracture characteristics of 

ultra-high performance concrete were investigated by (Wan-

Wendner et al. 2018). They performed both aging and size 

effect tests on notched three point bending specimens as 

well as using simulation methods. Rong and his co-workers 

considered the effects of specimen size and thermal-damage 

on physical and mechanical behavior of a fine-grained 

marble (Rong et al. 2018). Their uniaxial compression tests 

have been carried out on specimens of diameters 2, 50, 75, 

and 100 mm under different treatment temperatures. They 

reported that both the specimen size and thermal damage 

have significant influence on the rock strength and 

deformation behavior. Needleman investigated the effect of 
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size on necking of dynamically loaded notched bars and 

reported that the location of necking depends on the size of 

the specimen (Needleman 2018). The statistical size effect 

was studied on flexural strength of steel members (Li and 

Pasternak 2018). The size effect was included in discrete 

element modeling of quasi-brittle solids by (Liu et al. 

2018). They used an exponential softening contact bonds 

model, which is tied to input fracture energy and addresses 

particle size issue to model the size effect. In another 

statistical vision for study of size effect, Lei proposed a 

generalized weakest-link model for size effect on strength 

of quasi-brittle materials (Lei 2018). The influences of size 

and shape of specimen on compressive strength of concrete 

have been assessed and the results of dynamic and static 

tests showed major dependency between the results and the 

size and shape of specimens (Li et al. 2018). 

Generally, quasi-brittle fracture behavior is a failure 

process in which a large fracture process zone along with a 

small hardening plasticity zone takes place prior to peak 

load (Malíková and Veselý 2015). In this kind of materials, 

such as concrete, the multi-parameter fracture mechanics 

approach is necessary since the stress field is to be 

investigated at larger distances from the crack tip (Malíková 

and Veselý 2015). Besides, as reported by (Malíková and 

Veselý 2015), the lower stress levels or stress fields farther 

from the crack tip should be constructed by higher order 

terms. However, indicating the sufficient number of higher 

order terms is too case dependent (Malíková and Veselý 

2015). The influence of higher order terms on crack-tip 

stress field is of great importance. In this regard, some 

important studies have been reported in the literature about 

the higher order terms and three-dimensional effects. Berto 

and Lazzarin investigated the influence of higher order 

terms on the stress field of a cracked plate under plane 

loading (Berto and Lazzarin 2010). They also presented a 
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set of equations for accurately describing the stress field 

ahead of the crack tip, particularly for cases with mix mode 

condition (Berto and Lazzarin 2013). Berto and his co-

workers in a valuable study reviewed the application of 

strain energy density for brittle and quasi-brittle failure 

assessment of graphite, which is a quasi-brittle solid (Berto 

et al. 2013). Anti-plane shear loading on sharp notches or 

cracks could lead to a generation of coupled in plane 

singular shear stress field, while this mode was widely 

ignored in the stress analysis of notched components (Berto 

et al. 2013). Berto and his co-workers investigated the 

mentioned mode by means of 3D finite element method, 

which was applied to notched plated with different notch 

opening angles and plate thicknesses (Berto et al. 2013). 

According to their study, the stress field corresponding to 

the coupled mode is localized and quickly diminishes with 

the distance from the crack tip. Zappalorto and Lazzarin 

studied the features of three-dimensional elastic stress field 

ahead of the notches in finite thick plates under different 

loading regimes (Zappalorto and Lazzarin 2013). It is worth 

noting that the influence of higher order terms tied to mode 

II loading on the out of plane singular mode has been 

investigated by Berto et al. (2011). A valuable retrospective 

review of three-dimensional effects at cracks and sharp 

notches was published by Pook (2013). However, the 

review was limited to linear elastic, homogenous, isotropic 

materials, with yielding confined to a small region at the 

crack tip. Kotousov and his co-workers investigated the 

effect of thickness on elastic deformation and quasi-brittle 

fracture of plate components (Kotousov et al. 2010).  

Apart from all researches regarding size effect 

phenomenon in quasi brittle material, and particularly 

concrete (Xiao and Karihaloo 2006, Karihaloo and Xiao 

2007, Xiao and Karihaloo 2007, Karihaloo and Xiao 2008, 

Karihaloo and Xiao 2010, Muralidhara et al. 2011, 

Cifuentes and Karihaloo 2013, Karihaloo et al. 2013, 

Ramachandra Murthy et al. 2013, Ramachandra Murthy et 

al. 2013, Hoover and Bažant 2014, Hoover and Bažant 

2014, Hoover and Bažant 2014, Alyhya et al. 2016, 

Karamloo et al. 2016, Karamloo et al. 2016, Karamloo et 

al. 2017, Mazloom et al. 2017, Lei 2018), there are still 

debates on theoretical ground of this phenomenon. Bazant 

and his co-workers were confidently of the most inspiring 

scientists in this field after 1980’s. They published many 

papers and clarified many ambiguous points in the field. 

The study of deterministic size effect in quasi-brittle 

materials such as concrete, rock, sea ice, etc. goes back to 

1976, when Hillerborg et al. (1976) pioneered a cohesive 

crack model (fictitious crack model) by means of finite 

element analysis and modifying the Dugdale model for 

crack-tip plasticity to include the effects of quasi-brittle 

behavior of concrete. Then, Bazant and Oh (1983) proposed 

the crack band theory for heterogeneous aggregate material, 

which exhibits gradual softening due to micro-cracking, in 

mode I loading. They modeled the fracture as a blunted 

smeared crack band to derive a simple tri-axial stress-strain 

relation, which was able to describe the effects of gradual 

micro cracking. Bazant attributed the size effect to the 

blunted region ahead of the crack-tip and assumed that the 

width of this zone is constant and relative to maximum 

nominal size of aggregate (Bazant 1984). The analysis of 

this model rests on the hypothesis that the released energy 

caused by fracture, depends on both the area and the length 

of crack band (Bazant 1984). The model then exploited by 

Bazant et al. for determination of the parameters of R-

curve, crack band model, and fictitious crack model without 

measuring crack length or unloading compliance (Bazant et 

al. 1986). Bazant and Pfeiffer (1987) and Bazant and 

Kazemi (1990) investigate the effects of specimen shape 

and size on fracture energy of material, which must be 

constant in all shapes and sizes based on its definition. 

These studies showed that the proposed law of Bazant et al. 

could describe the effects of size and shape of the specimen 

on fracture parameters and load carrying capacity of the 

specimens with relatively large cracks. Further researches 

showed that the length of notch (pre-crack) could have 

prevalent effects on the results of the mentioned model. 

This concern was one of the most challenging issues in the 

fracture mechanics of quasi-brittle solids. Duan et al. (2003) 

were of researchers who tried to explain the effects of 

relative crack length of specimens on fracture parameters. 

They used the concepts of “local fracture energy 

distribution” and “boundary effects” to explain the size 

effects on fracture parameters of concrete. Duan et al. 

(Duan et al. 2006, Duan et al. 2007), Hu and Duan (2004, 

2007, 2009), pioneered their analysis on the basis of two 

hypothesis: 1) The size-dependent quasi-brittle fracture 

transition is due to the interactions of the nearest boundary 

with the FPZ, instead of size variations. 2) The widely 

accepted Bazant’s size effect law, which holds in 

geometrically similar specimens, is a special case of Hu-

Duan’s model. These hypotheses were criticized on 

theoretical ground by Yu et al. (2010). They illustrated an 

example in which the boundary was too far but the strongest 

size effect (i.e., LEFM) existed. In addition, two instances 

were illustrated in which the FPZ could increase or decrease 

the size effect. The cohesive stress analyses, which were 

reported by Cedolin and Cusatis (2008), Cusatis and 

Schauffert (2009), were in line with this assertion. 

Therefore, one can conclude that the former hypothesis was 

erroneous. Furthermore, the assumed stress profile at 

varying crack length, and the matched asymptote for large-

size structures with no notch, were of the most important 

problematic aspects, which were criticized by Yu et al. 

(2010).  

Generally, six asymptotic cases can be distinguished for 

cohesive fracture of quasi-brittle materials: 1) the behavior 

of very small structures; 2) the behavior of very large 

structures; 3) structures with no notch; 4) structures with 

deep notches; 5) structures in which purely statistical 

Weibull-type (Weibull 1939, Weibull 1951) size effect 

governs; 6) structures with purely deterministic size effect. 

The aim to build a bridge between these six cases was a 

motivation for Bazant and Yu to propose a universal size 

effect law by which these asymptotic cases could be 

connected smoothly (Bazant and Yu 2009). However, 

further experiments by Hoover et al. (Hoover et al. 2013) 

showed that the Type I-Type II transition in this law (study 

of Yu and Bazant) yields erroneous results (Hoover and 

Bažant 2014). Hence, a new size effect law, called 
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“universal size-shape effect law”, were proposed by Hoover 

and Bazant (2014). Although Hoover and Bazant stated that 

this model could handle all the asymptotic cases, it is shown 

in the present study that the use of statistical methods of 

nonlinear curve fitting could result in different values of 

fracture parameters. Consequently, the precisions of 

predictions could be affected by these differences. In other 

words, the universal size effect law of Bazant and his co-

workers is an eighteen-parameter equation, which needs 

nonlinear techniques for curve fitting to be used (Hu et al. 

2017).    

Recently, researchers conducted experimental and 

analytical studies about the effects of higher order terms of 

stress field. For example, the influence of higher order 

terms of Williams’s series on accuracy of the description of 

stress fields around the tip of the crack were investigated by 

some researchers (Malíková and Veselý 2015). Malíková 

and Veselý also discussed the significance of the multi-

parameter fracture mechanics approach especially in failure 

of quasi-brittle materials and estimation of plastic zone 

extent. By using the meso-scale modeling approach, 

Aissaoui and Matallah (2017) analytically investigated the 

classical Bazant SEL and a new size effect law based on 

enrichment of the stress field of the crack tip. Berto et al. 

(2011) investigated the effects of higher order terms , tied to 

mode II loading, on out of plane singular mode. Akbardoost 

and Rastin (2015) investigated the effects of higher order 

terms of crack-tip stress field for two disk-type specimens 

under wide range combination of mixed-mode I/II loading. 

The aim of this study is to review the universal size-

shape effect law (USSEL) and propose a new stress based 

law, which is able to predict deterministic size effects in 

three point bending specimens with shallow to deep 

notches. To do so, a summary review of USSEL is 

presented in the following section. 

 

 

2. Brief review of USSEL and problem statement 
 

For a crack, which is neither large nor negligible, at 

failure, a smooth transition between Type 2 and Type 1 size 

effect was proposed by Hoover and Bazant (2014) as 

follows 
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is a Type 1 to Type 2 transition parameter, where 0  is 

initial span/depth ratio, and da is maximum nominal size of 

the aggregate. Gf, cf, fr, Db, r, k, p, q, and lp, are parameters 

to be calibrated by data fitting, g0 is non-dimensional 

energy release rate function, and g0
′ is derivative of g0 with 

respect to α0 (notch/depth ratio). Hoover and Bazant defined 

D as 

,

2

n

D



  (3) 

where ε,n is strain gradient and equals to 
nx




, factor 

 Span
Depth

  is shape factor, which was defined as 1 for 

slender beams. Based on elastic stress analysis, they defined 

the shape factor for span/depth ratio of tested beams 

(2.176), as 0.896. They derived Eq. (1) such that it yields 

Type 1 size effect for α=0, and Type 2 size effect for deep 

notches. There are a few points, which are questionable. 

1. For the tested beams, which were not slender, a shape 

factor was defined. As stated previously, they used exact 

elastic solution of elasticity theory of beams and derived 

, 2n

D
 


  (4) 

If someone merge Eqs. (4) and (3), it would yield 

D D  (5) 

Therefore, the question is why this factor is defined. 

2. The other point is about the optimization algorithms, 

which are needed for nonlinear curve fitting e.g., trust-

region-reflective optimization algorithm (Coleman and Li 

1992, Coleman and Li 1996), or Levenberg-Marquardt 

algorithm (Moré 1978). It will be shown in the subsequent 

sections that these methods could yield far different 

parameters according to the bounds or start point selection. 

Therefore, an efficient method is proposed for capturing the 

size effect of concrete structures and consequently, to 

determine the fracture parameters by linear regression, 

which could yield more reliable results. 

According to the mentioned issues regarding the use of 

USSEL as well as computational burden of estimating of 

needed parameters in Eq. (1) and Eq. (2), the use of USSEL 

is somehow cumbersome. In this paper, an efficient 

algorithm has been presented in which the effects of higher 

order terms of stress field have been considered as well as 

the effect of the size of FPZ on fracture parameters. In fact, 

in contrast to Bazant’s SEL, the proposed algorithm 

calculates the size of FPZ based on Williams’ solution along 

with maximum tangential stress criterion. Accordingly, this 

algorithm could circumvent the mentioned concern raised 

by Hu, Duan, and their co-workers. It is worth noting that 

Hu and his co-workers recently modified their methods to 

include the influence of maximum size of aggregate in 

concrete (Hu et al. 2017). However, to the authors’ 

knowledge, the effects of this parameter were considered in 

the earlier studies of Bazant and his co-workers. Of course, 

the mentioned contribution of professor Hu is so valuable in 

many aspects and can shed light on our understanding about 

the fracture behavior of concrete. Thanks to the use of 

higher order terms of Williams’s expansion, the method 

could be extended to include the effect of T-stresses as well 

as mixed mode condition. However, the inclusion of these 

parameters was beyond the scope of this study. The other 

main contribution about the effects of size on fracture 

parameters of concrete is the study of Ayatollahi and 

Akbardoost (2012). In the mentioned study, by using the  
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Fig. 1 (a) Three-point bending configuration. (b) Crack-tip 

coordinate system. (c) Fracture process zone 

 

 

first three terms of Williams’s expansion, the effect of size 

on fracture toughness of concrete has been assessed. 

However, the variation of notch length and the cases with 

the so-called Type I size effect was not considered. In the 

present study, the exact beam theory has been used to 

introduce the concept of equivalent notch length for beams 

with no notch. Besides, the first five terms of Williams’s 

expansion have been used which could lead to better 

precisions of the peak loads. 

 

 

3. Proposed size-FPZ dependent criterion 
 

According to the published literature (Hillerborg et al. 

1976, Bazant and Oh 1983, Bazant 1984), propagation of a 

crack in a quasi-brittle solid is preceded by localization of 

micro-cracks in a limited zone ahead of a crack-tip, called 

fracture process zone (FPZ). These micro-cracks become 

inter-connected as the load increases and consequently, the 

fracture would take place (see Fig. 1(c)). Since the material 

exhibits softening behavior in FPZ, the LEFM, explicitly, 

does not hold in quasi-brittle materials such as concrete. 

Therefore, the effective elastic crack model and cohesive 

crack model have been proposed in the literature. As stated 

in the previous sections, one of the most famous theories, 

describing the behavior of the crack-tip in concrete, is 

fictitious crack model by Hillerborg (Hillerborg et al. 

1976). Based on this model, a crack will initiate in concrete 

if a normal-to-crack component of the stress field reaches 

tensile strength of concrete ft. Williams’s series expansion is 

one of the most well-known solutions, describing the stress 

and displacement fields near the crack-tip (Williams 1961). 

According to Williams’s expansion, one can determine the 

normal-to-crack component of stress field as 
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where r and θ are polar coordinates, illustrated in Fig. 1(b), 

n is the order of terms in series expansion, and an are 

coefficients, which reflect the effects of geometry and 

loading mode. 

In this study, only mode I condition is going to be 

considered. Hence, by setting θ=0, and considering the first 

five terms of Williams’s expansion, one can write 

0.5 1.51
3 53 5yy

a
a r a r

r
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Based on Hillerborg’s assumption, the crack initiates 

when σθ=0 reaches ft. Moreover, as stated in the previous 

sections, the importance of including the higher order terms 

of stress field around the crack-tip is obvious (Karihaloo 

and Xiao 2001, Ayatollahi and Nejati 2011, Ayatollahi and 

Akbardoost 2012, Ayatollahi and Akbardoost 2013, 

Ayatollahi and Akbardoost 2013, Khoramishad et al. 2013). 

Hence, by using the idea of including higher order terms of 

stress field in size effect study (Ayatollahi and Akbardoost 

2012, Ayatollahi and Akbardoost 2013, Ayatollahi and 

Akbardoost 2013, Khoramishad et al. 2013) along with the 

assumptions of effective elastic crack model, it could be 

written that 
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In order to solve the Eq. (8), the coefficients should be 

normalized as 
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Substituting Eqs. (9)-(11) to Eq. (8), one can obtain 
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(12) 

As stated in the preceding sections, Hu and Duan 

(2004), Duan et al. (2003, 2003, Duan et al. 2006, 2007), 

claimed that the interactions between FPZ and the 

neighboring boundaries governs the size effects rather than 

the size of specimen. In contrast, the studies of Yu et al. 

(2010), Hoover and Bazant (2014) showed that the FPZ 

could have effect on size effects, nevertheless these effects 

could not lead to a conclusion that the size of specimen is 

not important. Eq. (12) is a stress-based size effect criterion, 

which includes the effects of FPZ dimension as well as the 

effects of specimen size, on the size effect criterion. 

Moreover, it can include the effects of higher order terms of 

stress field, whose effects are significant in fracture 

behavior of structures (Karihaloo and Xiao 2001, Karihaloo 

and Xiao 2001, Berto et al. 2011). 

The other advantage of this criterion is that it could be 

manipulated for determination of apparent fracture 
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toughness (KC). To do so, it is assumed that the a1, reflects 

only the effects of mode I stress intensity factor as (Owen 

and Fawkes 1983, Karihaloo and Xiao 2001) 

1
2
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
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Thus, one can obtain the apparent toughness criterion as 
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(14) 

The normalized higher order coefficients are obtainable 

using hybrid-crack-element method, originally proposed by 

Tong et al. (1973), and extended by Karihaloo and Xiao 

(2001, 2001), as 

   

 

   
*

1 1.5

4

...

4
...2 1 1 3

F

a
F F




   






  
 

  
      

 

 (15) 

     *

3 4

4
a t t t  


       (16) 

     *

5 4

4
a h h h  


       (17) 

where F4(α), F∞(α), t∞(α), t4(α), h∞(α), and h4(α), are 

auxiliary functions, which can be found for three point 

bending configuration in Karihaloo and Xiao’s study 

(Karihaloo and Xiao 2001), and β is span/depth ratio of 

specimen. 

 

 

4. Determination of size dependent length of FPZ 
 

In order to use Eq. (12) and Eq. (14), the values of size 

dependent length of fracture process zone should be 

calculated. To do so, the recorded values of nominal 

strength should set to be equal to Eq. (12). Hence, Eq. (18) 

should be solved for each specimen. 
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. Then one can obtain r as 

.r X d  (19) 

It should be noted that the minimum real positive root of 

Eq. (18) should be substituted in Eq. (19) for determination 

of r. The other important ambiguity that should be clarified 

is the asymptotic values of r. In other words, the changes of 

FPZ length should be nearly constant in large specimens. 

The studies of Karihaloo (1999), Bazant et al. (1991) are of 

the most significant instances for description of the relation 

between r, specimen depth, and the asymptotic value of 

FPZ length (r∞). Bazant et al. considered geometric 

nonlinearity in propagation of a crack and described the size 

dependency of FPZ based on fracture energy approach as 

(Bazant et al. 1991) 
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where α=α0+r/d, g(α) is non-dimensional fracture energy, 

and g′(α) is derivative of g(α) to α. Bazant et al. proposed 

Eq. (20) for determination of size and geometry dependent 

R-curves (Bazant et al. 1991), however it did not affect the 

size effect plot in the Bazant’s method. Is Eq. (20) suitable 

for the proposed method of this paper? Actually, no! To 

consider the suitability of this equation, Eq. (20) is 

mathematically manipulated and the Taylor’s series 

expansion of the method is calculated as 

5

4 3

2

193.12 ...

... 459.033 15.384 ...

... 2.568

b

b

C
r

C d



 

 

  
 

    
  

  

 (21) 

where Cb is a constant, which could be determined in terms 

of g(α0), g′(α0), and r∞. As can be seen, when the size of 

specimen approaches infinity, r→0; when the size of 

specimen approaches to zero, the r approaches a constant 

value. Instead, it is well-known that the size of fracture 

process zone should approach a constant value (i.e., r∞) for 

large specimens. Therefore, this function is not suitable to 

be used in the proposed method. There are two critical 

condition for variation of r versus d: 1) the length of FPZ 

approaches constant value for large specimens, 2) for small 

specimens, the FPZ length is small. Are these conditions 

sufficient for defining a suitable function? Not really. 

According to these conditions, one can use a simple 

function as 

.
B

dr A e


  (22) 

where A and B are empirical constants, which can be 

obtained by regression analysis. Considering Eq. (22), it is 

apparent that this relation satisfies both conditions. 

Whereas, it is not suitable to be used. The substitution of 

Eq. (22) into Eq. (12) yields 

2
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   

 
(23) 

Considering Eq. (23), one can conclude that when d→∞, 

LEFM does not govern (size effect plot does not approach, 

in the doubly logarithmic plot, an asymptote of slope -1/2). 

Moreover, Eq. (23) does not approach strength criterion for 

small specimens. These observations are not in line with 

reality. Hence, Eq. (22) is not a suitable function.    

Karihaloo (1999), assumed that the crack-tip opening 

displacement (CTODC) is a constant material property and 

used the Hillerborg’s model for FPZ. Afterwards, he  

43



 

Mohammad Karamloo and Moosa Mazloom 

 

Table 1(a) Dimensions of specimens and their corrected 

peak loads (a/d=0.3) 

Series 
Depth, 

d (mm) 

Span, 

S (mm) 

Thickness, 

b (mm) 
a/d 

Corrected peak 

loads P0 (kN) 

AL0.3 

500 1088 40 0.3 11.581 

500 1088 40 0.3 11.336 

500 1088 40 0.3 12.316 

500 1088 40 0.3 10.907 

500 1088 40 0.3 11.029 

500 1088 40 0.3 12.132 

215 468 40 0.3 6.271 

215 468 40 0.3 7.061 

215 468 40 0.3 6.877 

215 468 40 0.3 7.509 

215 468 40 0.3 6.297 

215 468 40 0.3 6.323 

93 202 40 0.3 3.203 

93 202 40 0.3 3.567 

93 202 40 0.3 3.385 

93 202 40 0.3 3.590 

93 202 40 0.3 3.453 

93 202 40 0.3 3.453 

93 202 40 0.3 3.533 

93 202 40 0.3 3.533 

40 87 40 0.3 1.819 

40 87 40 0.3 1.525 

40 87 40 0.3 1.578 

40 87 40 0.3 1.662 

40 87 40 0.3 2.260 

40 87 40 0.3 1.941 

40 87 40 0.3 2.010 

40 87 40 0.3 1.642 

 

 

reported that the size dependent length of fracture process 

zone is related to its asymptotic value and size of specimen 

as 

 

 
0

0

1 0.5
gr

r r
d g








   
         

 (24) 

By using the mathematical manipulation, one can write 

Eq. (24) as 

0

0

A d
r

d B



 (25) 

in which A0=r∞, and 
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
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
   are empirical 

coefficient, which are also obtainable from linear regression 

analysis. Substituting Eq. (25) into Eq. (12), one can obtain 

a size effect law as 
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(26) 

It is apparent that both Eqs. (25) and (26) satisfies the 

mentioned conditions and this function could be a suitable 

Table 1(b) Dimensions of specimens and their corrected 

peak loads (a/d=0.15) 

Series 
Depth, 

d (mm) 

Span, 

S (mm) 

Thickness, 

b (mm) 
a/d 

Corrected peak 

loads P0 (kN) 

AL0.15 

500 1088 40 0.15 18.260 

500 1088 40 0.15 18.321 

500 1088 40 0.15 17.402 

500 1088 40 0.15 17.402 

500 1088 40 0.15 18.627 

500 1088 40 0.15 17.524 

215 468 40 0.15 9.406 

215 468 40 0.15 9.722 

215 468 40 0.15 9.801 

215 468 40 0.15 10.302 

215 468 40 0.15 9.169 

215 468 40 0.15 9.722 

93 202 40 0.15 5.858 

93 202 40 0.15 5.391 

93 202 40 0.15 5.243 

93 202 40 0.15 5.322 

93 202 40 0.15 4.992 

93 202 40 0.15 4.787 

93 202 40 0.15 4.912 

93 202 40 0.15 4.889 

40 87 40 0.15 2.422 

40 87 40 0.15 2.819 

40 87 40 0.15 2.417 

40 87 40 0.15 2.662 

40 87 40 0.15 2.569 

40 87 40 0.15 2.627 

40 87 40 0.15 2.853 

40 87 40 0.15 2.593 

40 87 40 0.15 2.490 

40 87 40 0.15 2.936 

 

 

selection for the proposed method. Eq. (25) is similar to 

equation, which was proposed by Ayatollahi and 

Akbardoost (2012).  

 

 

5. Experimental data 
 

Progress in the modeling of concrete fracture and 

introduction of these concepts to practitioners and scientists 

has major dependency on availability of comprehensive 

database for fracture. There are a vast number of fracture 

data in the literature (Bazant and Pfeiffer 1987, Bazant and 

Planas 1998, Bazant and Becq-Giraudon 2002, Karihaloo, 

Abdalla et al. 2003), nevertheless they cover limited range 

of α0, and specimen size. In addition, the tests have been 

performed on different batches of concrete at different ages 

and different conditions with various test procedures. 

Combination of all these data produces a database, which is 

prone to a scatter of data that makes modelling very 

difficult. Fortunately, Hoover and his co-workers remedied 

this situation by performing comprehensive fracture tests on 

the specimens made from same batch of one typical  
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Table 1(c) Dimensions of specimens and their corrected 

peak loads (a/d=0.075) 

Series 
Depth, d 

(mm) 

Span, S 

(mm) 

Thickness, 

b (mm) 
a/d 

Corrected peak 

loads P0 (kN) 

AL0.0

75 

500 1088 40 0.075 24.203 

500 1088 40 0.075 21.385 

500 1088 40 0.075 23.897 

500 1088 40 0.075 24.265 

500 1088 40 0.075 21.017 

500 1088 40 0.075 18.750 

215 468 40 0.075 12.225 

215 468 40 0.075 11.435 

215 468 40 0.075 11.988 

215 468 40 0.075 13.148 

215 468 40 0.075 11.883 

215 468 40 0.075 11.909 

93 202 40 0.075 6.359 

93 202 40 0.075 6.291 

93 202 40 0.075 6.371 

93 202 40 0.075 6.508 

93 202 40 0.075 6.804 

93 202 40 0.075 7.499 

93 202 40 0.075 6.804 

93 202 40 0.075 7.853 

40 87 40 0.075 2.946 

40 87 40 0.075 3.304 

40 87 40 0.075 3.274 

40 87 40 0.075 3.167 

40 87 40 0.075 3.260 

40 87 40 0.075 3.451 

40 87 40 0.075 3.721 

40 87 40 0.075 3.304 

40 87 40 0.075 3.118 

 

Table 1(d) Dimensions of specimens and their corrected 

peak loads (a/d=0.025) 

Series 
Depth, 

d (mm) 

Span, 

S (mm) 

Thickness, 

b (mm) 
a/d 

Corrected peak 

loads P0 (kN) 

AL0.025 

500 1088 40 0.025 32.475 

500 1088 40 0.025 26.409 

500 1088 40 0.025 30.637 

500 1088 40 0.025 30.392 

500 1088 40 0.025 24.632 

500 1088 40 0.025 28.615 

215 468 40 0.025 14.149 

215 468 40 0.025 13.754 

215 468 40 0.025 14.254 

215 468 40 0.025 14.992 

215 468 40 0.025 14.202 

215 468 40 0.025 12.805 

 

 

concrete of same age and curing conditions (Hoover et al. 

2013). Their tests were carried out on three-point bending 

specimens of size range 1:12.5 and notch/depth ratios from 

zero to 0.3. Table 1 (a)-(e) shows the values of corrected 

peak loads (according to weight of each specimen) for each 

specimen according to Hoover et al. (2013). It should be  

Table 1(e) Dimensions of specimens and their corrected 

peak loads (a/d=0.0) 

Series 
Depth, d 

(mm) 

Span, S 

(mm) 

Thickness, 

b (mm) 
a/d 

Corrected peak 

loads P0 (kN) 

AL0.0 

500 1088 40 0 30.147 

500 1088 40 0 34.498 

500 1088 40 0 35.723 

500 1088 40 0 34.620 

500 1088 40 0 34.804 

500 1088 40 0 38.971 

215 468 40 0 16.362 

215 468 40 0 22.290 

215 468 40 0 16.415 

215 468 40 0 21.816 

215 468 40 0 17.785 

215 468 40 0 15.782 

93 202 40 0 8.400 

93 202 40 0 7.921 

93 202 40 0 8.434 

93 202 40 0 8.001 

93 202 40 0 8.764 

93 202 40 0 7.682 

40 87 40 0 3.735 

40 87 40 0 3.706 

40 87 40 0 3.588 

40 87 40 0 3.613 

40 87 40 0 4.255 

40 87 40 0 4.201 

40 87 40 0 3.515 

 

 

noted that the tensile strength of the concrete was 6.72 MPa 

and the modulus of elasticity was reported 41.24 GPa. 

 

 

5. Results and discussion 
 

In the previous sections, a new size effect law has been 

proposed for size effect studies. In this section, two sub-

sections are presented in which the USSEL is discussed and 

the results of the proposed algorithm are compared with the 

Bazant’s method. To do so, the nominal stress σN should be 

determined for each specimen as 

0

2

3

2
N

P S

bd
   (27) 

Afterwards, the values of *

1a , *

3a , and *

5a  should be 

obtained by using Eqs. (9)-(11). One can find the empirical 

coefficients of A0, and B0 by plotting the data of x=d-1, and 

y=r-1 for each group and fitting a regression line as 

y px q   (28) 

where 0

0

B
p

A
 , and 

0

1
q

A
 . 

 

5.1 Ambiguity of using USSEL 
 

As stated briefly in section 2, for determination of 

fracture parameters by USSEL, there is a need to use  
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Table 2 Effects of selecting the start point and bounds on 

trust-region-reflective method 

  Try 1 Try 2 Try 3 Try 4 Try 5 

Bounds 

Db (−∞,+∞) (−∞,+∞) (−∞,+∞) (0,100) (0,500) 

lp (−∞,+∞) (−∞,+∞) (−∞,+∞) (0,500) (0,500) 

fr (−∞,+∞) (−∞,+∞) (0,+∞) (0,10) (0,10) 

r (−∞,+∞) (−∞,+∞) (0.49,2) (0.49,2) (0.49,2) 

Start 

points 

Db 0.9549 80 80 80 80 

lp 0.9134 130 130 130 130 

fr 0.2722 5 5 5 5 

r 0.0843 0.5 0.5 0.5 0.5 

R-square R2 _ 0.5239 0.5665 0.5301 0.5614 

Fitted 

equation 

Db The 

optimization 

did not 

converge 

243.4 985.1 99.96 465.6 

lp 19.72 601.5 182.2 491.4 

fr 4.826 3.11 5.194 3.865 

r 6.876 1.073 0.4915 0.6419 

 

 

nonlinear regression analysis and consequently, using 

optimization methods such as trust-region-reflective or 

Levenberg-Marquardt algorithms. For instance, let us check 

the trust-region-reflective method for specimens with α=0. 

Hoover and Bazant (2014) carried out a nonlinear 

regression analysis for fitting Eq. (1) by using trust-region-

reflective optimization algorithm and reported the 

parameters as 

73.2 mm; 126.6 mm; 5.27 MPa; 0.5b p rD l f r     (29) 

Table 2 shows the fitted values of these parameters in 

different start point or different values of bounds. It is 

apparent that the method is dependent on the selection of 

bounds and start points. For instance, in Try 1, the bounds 

were selected (−∞,+∞) and the start points were arbitrary, 

this conditions lead to a convergence problem. In Try 2 to 

Try 5, the start points were selected in order to be close to 

that reported in Eq. (29). However, the bounds were 

different. It can be seen through Table 2 that the fitted 

equations were completely different and none of them was 

similar to the reported values in Eq. (29). Hence, nonlinear 

regression could lead to different answers and should be 

avoided if possible. These explanations also hold in 

Levenberg-Marquardt method. In addition, the use of latter 

method should be avoided in non-convex problems. 

The other point was the ambiguity in the use of shape 

factor, which was discussed in section 2. 

 

5.2 The results of the proposed method 
 
As stated previously, for determination of fracture 

parameters, the values of nominal stress, *

1a , *

3a , and *

5a , 

should be determined. Then, by using linear regression 

analysis for each series (i.e., α=0.3, α=0.15, α=0.075, 

α=0.025, or α=0), the asymptotic values of fracture energy, 

fracture toughness, and effective length of fracture process 

zone should be obtained. Fig. 2 shows an illustration of the 

linear regression analysis of group AL0.3. It can be seen 

that the slope and intercept of the fitted line were p=22.618, 

and q=147.71 m-1, respectively. Therefore, the values of 

fracture toughness (KIC) and the size independent length of 

FPZ, could be determined as 

 

 
0 0.5

0

0

4 43.828 MPa.mmIC t

g
K f B

g





  


, and 5.45 mm, 

respectively. Moreover, based on the well-known relation 

between fracture toughness and energy ( IC fK EG  ), the 

value of fracture energy is equal to 46.46 N/m. The 

determined values of p, q, *

1a , *

3a , *

5a , KIC, and Gf are 

reflected in Table 3. It should be noted that when a/d=0, Eq. 

(18) is not solvable. To remedy this situation, the concept of 

exact solution for three point bending, which can be found 

in theory of elasticity books such as Timoshenko and 

Goodier (1951), is used. They stated that the normal stress 

does not follow a linear law and the exact stress in the 

tensile face of the beam is smaller than that is expected 

from the elementary beam theory (Timoshenko and Goodier 

1951). Assuming that this variation is due to stress 

redistribution in the tensile face, one can find the effective 

depth of stress redistribution layer for S/d=2.176 by 

comparing the exact and elementary values of bending 

stress in tensile face as 

0.844 0.9187

0.0815

Exact Exact

Elementary Elementary

eq

d

d








    

 

 (30) 

By using this simplifying assumption, the fracture 

parameters for specimens with no notch are determined. Are 

they real? Not really. These values are not true and should 

be avoided in determination of fracture parameters. 

However, they could be used for predicting the load 

carrying capacity of the specimens with no notch. This  

 

 

 

Fig. 2 The linear curve fitting for series AL0.3 

 

Table 3 Fracture parameters for different a/d ratios 

 AL0.3 AL0.15 AL0.075 AL0.025 AL0.0 

p 22.618 20.363 17.963 75.368 15.226 

q (m-1) 147.71 148.69 170.28 140.16 37.755 
*

1a
 

0.3806 0.2527 0.1840 0.1113 0.1910 

*

3a
 

-0.2641 -0.0471 0.1480 0.4067 0.1241 

*

5a
 

-0.1766 -0.1594 0.058 0.9364 0.0064 

Gf (N/m) 46.46 46.01 40.48 49.62 168.84 

KIC (MPa.mm0.5) 43.83 43.68 40.82 44.99 86.69 

r∞ (mm) 6.8 6.8 5.9 7.13 26.5 
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Fig. 3 Predicted peak loads versus experimental peak loads 

 

Table 4 Coefficients of variation of predictions for different 

series 

 AL0.3 AL0.15 AL0.075 AL0.025 AL0.0 

C.O.V (%) 5.951 6.152 8.764 8.604 9.369 

 

 

Fig. 4 Size effect plot for a/d=0.3 

 

 

disability is similar to Bazant’s method (Hoover and Bažant 

2014). Hoover and Bazant stated that the Type 1 size effect 

should not be used in determination of fracture parameters.  

Fig. 3 shows the values of predicted peak loads versus 

experimental peak loads. As can be seen, the proposed 

model could predict the values of peak loads with good 

precisions. To compare the workability of the model in 

different a/d ratios, the coefficients of variation for all series 

were determined and tabulated in Table 4. It is apparent that 

the reliability of the model decreases as the a/d ratio 

decreases. However, the amounts of errors are still 

negligible.  

Fig. 4 shows the size effect plot for AL0.03 based on 

Eq. (26). It is clear that as the depth of specimen increases, 

the behavior of the specimen approaches LEFM. Besides, 

the method is in close agreement with Bazant’s size effect 

law in this series. It should be noted that proposing this 

method does not infer weakness of Bazant’s approach in 

prediction of load carrying capacity of specimens. However, 

the proposed method could make inclusion of T-stress 

effects and 3-d effects in the size effect study possible, since 

it uses Williams’s expansion and higher order terms. 

Table 5 Reported values for fracture energy and effective 

length of fracture process zone by different methods 

Type 2 Type 2 USSEL 

α=0.3 α=0.15 α=0.3, α=0.15 

Gf (N/m) Cf (mm) Gf (N/m) Cf (mm) Gf (N/m) Cf (mm) 

51.9 28 49.8 21.0 56.25 29.79 

 

 

Although these effects did not studied in the present paper, 

some researchers such as Lazzarin, Berto, Kotousov, 

Ayatollahi, Akbardoost and Pook conducted many 

experimental and theoretical researches in the mentioned 

field (Ayatollahi and Akbardoost 2013, Akbardoost and 

Rastin 2015, He et al. 2016, Berto et al. 2017, Cendón et al. 

2017, Heydari-Meybodi et al. 2017, Pook et al. 2017).    

In order to compare the results of the method with those 

methods, which were extensively developed by Bazant and 

his co-workers, the results of the USSEL, Type 2, and Type 

1 size effect are reflected in this section. Table 5 shows the 

values reported for the series, using Type 1 and Type 2 

(Hoover and Bažant 2013), and USSEL (Hoover and Bažant 

2014). It is clear that the values of fracture energy in the 

methods are in close agreement with each other, whereas 

the asymptotic values for effective length of fracture 

process zone is different. These differences could be 

attributed to different assumptions, which were extensively 

explained in Eqs. (20) and (21). 

Fig. 5 shows the size effect plots for different a/d ratios. 

It is apparent that the proposed method can capture the 

effects of specimens’ sizes in different a/d ratios. In 

addition, it is clear that the parameters, reflected in Eq. (29), 

did not match with the experiments. This could be attributed 

to the typographical errors in (Hoover and Bažant 2013, 

Hoover and Bažant 2014), or wrong convergence of the 

trust-region-reflective method. Moreover, the Type 2 size 

effect law of Bazant was depicted for series AL0.3 and 

AL0.15. As was expected, the two of the methods are in 

close agreement. Based on Hoover and Bazant’s study 

(Hoover and Bažant 2014), the Type 2 size effect could not 

predict the behavior of specimens with relatively shallow 

notches. On the other hand, the proposed method is shown 

to be able to predict the behavior of structure with shallow 

to deep notches.  

 

 

6. Conclusions 
 

In the present study, an efficient algorithm has been 

proposed in which neither separate size effect laws nor 

comprehensive nonlinear regression is needed. Besides, by 

using the exact beam theory, concept of equivalent notch 

length has been introduced to handle the problems with no 

notches without using different size effect law. Actually, 

since the proposed algorithm calculates the size of fracture 

process zone based on fracture mechanics, it is able to 

handle the variation relative notch length as well as the 

effect of boundaries. Moreover, it was shown that the 

method could predict the failure loads of the beams with 

good precisions. From the obtained results of this 

investigation, the following conclusions could be drawn: 
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1- The proposed method is able to predict the failure 

loads of specimens with shallow to deep notches with 

good precisions. 

2- By using the equivalent crack length for specimen 

with no notches, the method is able to predict the size 

effects. 

3- The method is able to reflect the effects of higher 

order terms of stress fields on fracture parameters of 

concrete. 

4- In the presented algorithm, the size of fracture 

process zone should be calculated by means of 

Williams’s expansion. To do so, it was assumed that 
the onset of the crack occurs when the normal-to-crack 

component of stress reaches tensile strength. This 

 

 

procedure makes the method able to track the influence 

of the size of fracture process zone on size effect 

phenomenon.    

The derivation of the size of fracture process zone was 

based on experiment and the assumption that the onset of 

crack is when the normal-to-crack component of stress 

reaches tensile strength. Therefore, the values of fracture 

process zone effective length could be somehow more 

reliable than the method in which this length is obtained 

indirectly from other fracture parameters. 

5- The difficulty, raised due to the use of nonlinear 

regression analysis, could be circumvented by using the 

proposed method. 

 

 

 

 
Fig. 5 Size effect plots of the proposed method 
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Nomenclature 
 

a Crack length 

a0 Notch length 

an Coefficients of Williams’s expansion 

A0 Empirical coefficient  

b Beam width 

B0 Empirical coefficient 

cf 
Effective length of fracture process zone in Bazant’s 

method 

d Beam depth 

D   Depth of beam with no notch in Bazant’s method 

Db Empirical coefficient 

E Modulus of elasticity 

ft Tensile strength 

fr∞ Empirical coefficient 

gf(α)  Non-dimensional energy release rate function  

Gf Initial fracture energy 

k Empirical coefficient 

KC Apparent toughness  

KIC Fracture toughness 

lp Empirical coefficient 

L Length of the beam 

r Size dependent length of fracture process zone 

r∞ Size independent length of fracture process zone 

S Span of the beam 

σN Nominal stress 

ε  Strain 

ε,n Strain gradient 

ψ  Shape factor 

FPZ Fracture process zone 

USSEL Universal size-shape effect law 
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