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1. Introduction 
 

One of the most important factors which can affect the 

durability of concrete structures is the alkali-silica-reaction 

(ASR). In recent decades several experimental and 

numerical studies have been conducted to understand this 

chemical process and to reduce the vulnerability of 

important structures such as dams and power plants. 

Although the chemistry behind the reaction is not 

completely understood, it has been generally accepted that 

in the presence of water the alkaline components of cement 

may react with silica present in the aggregate and produce a 

silica gel (Bazant and Meyer 2000). The experimental work 

has shown that the kinetics of this chemical process is a 

function of relative humidity, temperature, size and type of 

aggregates as well as the stress state (Pan et al. 2012, Berra 

et al. 2010, Diamond and Thaulow 1974, Multon et.al 

2008). As the silica gel is formed and absorbs water, it can 

expand throughout the concrete mass and induce damage 

within its microstructure. First, the swelling gel fills the 

pores in the concrete skeleton and subsequently the pressure 

is exerted on constituents which leads to formation of 

microcracks and the reduction of concrete strength.  

The research on development of continuum approaches 

describing the chemo-mechanical interaction started in the 

mid 1990‟s (Pietruszczak 1996, Capra and Bournazel 1998).  

Later, several derivative concepts were proposed that 

included both the continuum models (Ulm et al. 2000, 

Saouma and Perotti 2006) as well as micromechanical 

descriptions of ASR-induced deformation (Bazant and 
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Steffens 2000). It needs to be pointed out that there have 

only been a few attempts to perform large-scale simulations 

that involved the actual engineering structures. Most of 

these attempts (Saouma and Perotti 2006, Sellier et al. 

2009, Pan et al. 2013, Winnicki et al. 2014) dealt mainly 

with the assessment of the influence of concrete expansion 

on the structural integrity, without accounting for the 

reaction-dependent degradation of material properties, and 

employed quite restrictive approaches for describing the 

onset and propagation of localized damage, particularly in 

compression regime. 

Modeling of the progressive failure within the finite 

element framework has received a significant attention over 

the last few decades. A large number of studies have been 

conducted dealing with the onset and propagation of cracks 

in tensile regime (Hillerborg et al. 1976, Devloo 1991) as 

well as the formation of shear bands in compressive zones 

(Belytschko and Tabbara 1993, Zienkiewicz et al. 1995). 

The use of the standard finite element methodology has 

some limitations for modeling discontinuities. In order to 

overcome these limitations, the so-called strong 

discontinuity approach (SDA) was developed (Oliver 1996, 

Simo et al. 1993) in which the mesh sensitivity is reduced 

by embedding the displacement discontinues within the 

element. In this approach, a discontinuity function is added 

to the consistent part of the displacement field by 

employing new degrees of freedom in enhanced element 

(Sancho et al. 2007). Another scheme that incorporates the 

embedded discontinuity approach is known as eXtended 

Finite Element Method (XFEM). The latter involves the 

nodes enrichment within the enhanced element and employs 

the concept of partition of unity to update the related shape 

functions (Moës et al. 1999, Moës and Belytschko 2002, 

Sukumar et al. 2000). Several studies have been conducted 

to compare the accuracy different methodologies (cf. Oliver 

et al. 2006) and lately a significant amount of work was 
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dedicated to the application of these methods to practical 

problems, e.g., the crack growth in concrete dams under 

gravitational and seismic loading (Pan et al. 2011, Pan et al. 

2014). 

In this study, an approach based on volume averaging 

within the region adjacent to the embedded discontinuity is 

examined. The procedure was developed in the early 1980‟s 

(Pietruszczak and Mroz 1981) and later modified by 

Pietruszczak (1999). Here, an enhanced methodology that 

stems from the recent work reported by Haghighat and 

Pietruszczak (2015, 2016) is employed that allows for a 

discrete representation of the crack propagation. The 

original approach outlined in Haghighat and Pietruszczak 

(2015) is extended here to 3D domain and the problem is 

reformulated to address the damage induced by continuing 

ASR. In the next section, an implicit formulation for 

chemo-mechanical interaction in concrete is outlined. Later 

on, in section 3, the constitutive relation in the presence of 

discontinuity is discussed. In section 4, the procedure for 

tracing the path of crack propagation in three-dimensional 

domain is explained and a smoothening algorithm is 

discussed. Finally, in the last section several numerical 

examples of damage propagation in plain and reinforced 

concrete structures subjected to various loading 

configurations, including chemical interaction and/or 

mechanical load, are presented. 

  

 

2. Mathematical description of chemo-mechanical 
interaction in concrete 
 

There are two main aspects involved in simulation of 

ASR in concrete, which are considered in a 

phenomenological framework: (i) the kinetics of the 

reaction and (ii) the degradation of mechanical properties of 

concrete. The former, i.e. the kinetics of the reaction, may 

be defined by introducing a scalar parameter ζ which is an 

explicit function of time and its evolution is affected by 

humidity, temperature and the confining pressure. In this 

study, humidity and temperature are considered constant, 

and an exponential relation (cf. Pietruszczak et al. 2013) is 

used to describe the kinetics of reaction, viz.  

𝜁 = 1 − exp⁡(−𝐴1𝑡) 
(1) 

where, A1 is a material constant which controls the rate of 

the reaction. As it can be seen, 𝜁 is defined within the 

interval [0,1) whereas the reaction time varies within [0, ∞). 

Degradation of concrete begins as soon as the macrocracks 

caused by the expansion of silica gels, start to appear. This 

affects both the deformation and strength properties. 

Restricting ourselves to the class of problems that involve 

failure in the tensile regime, the evolution laws for the 

modulus of elasticity, E, and tensile strength, ft, may be 

expressed in the following form  

𝐸 = 𝐸0(1 − 𝐺𝐸𝜁) 𝑓𝑡 = 𝑓𝑡0(1 − 𝐺𝑓𝜁)
 

(2) 

where, E0 and ft0 are the initial values before the onset of the 

reaction and GE and Gf are material constants that control 

the rate of degradation and can be identified from relevant 

experiments. Within the current framework, the chemical 

strain εASR is defined as a function of the kinetics of 

reaction and the confining pressure, i.e. 

εASR =
1

3
[B(𝛔)⁡⁡𝜁⁡⁡𝜀∞]𝐈,⁡ 

B(𝛔) = {
exp (−

𝐴2𝑡𝑟(𝛔)

𝑓𝑐
) 𝑡𝑟(𝛔) < 0

1.0 ⁡𝑡𝑟(𝛔) > 0

 

(3) 

Here, ε∞ is the maximum volumetric free expansion for a 

given alkali content, A2 is a material constants, fc denotes 

the compressive strength of concrete and I  is the identity 

tensor. Moreover, B(σ) describes the effect of confinement, 

which reduces the total ASR-related expansion, as reported 

in the literature (Larive 1998, Léger et al. 1996).  

It is noted that the dependence of the kinetics of the 

reaction on the stress state may, in general, results in an 

anisotropic expansion. In this case, the problem may be 

reformulated by postulating that the strain tensor εASR is co-

linear with the stress tensor, i.e. 

𝛆𝐀𝐒𝐑 =∈𝛼 𝐞(𝛼) ⊗𝐞(𝛼); ⁡∈𝛼=
1

3
B𝛼(𝛔𝜶)𝜺∞𝜁⁡

 
(4) 

where α=1,2,3 and e
(α)

 are the principal stress directions 

defined through an eigenvalue problem 

   ( ): 0 det 0     ζ I e ζ I  (5) 

The constitutive relation may now be derived by 

invoking the framework of chemo-elasticity. In this case 

𝛔 = ⁡𝔻𝒆: (𝛆 − 𝛆𝐀𝐒𝐑) (6) 

where 𝔻𝒆 is the elastic stiffness. By differentiating of Eq. 

(6) with respect to time and also taking into account the 

variation of material properties during the continuing 

reaction, one can write 

𝛔̇ = 𝔻e:⁡(𝛆̇ −⁡ 𝛆̇𝐀𝐒𝐑) + ⁡𝔻̇e:⁡[𝔻e]−1:⁡𝛔 (7) 

where, the rate of change of elastic stiffness and the ASR-

induced strain rate, Eq. (3), can be defined as  

𝔻̇e =⁡
𝜕𝔻e

𝜕𝐸
⁡
𝜕𝐸

𝜕𝜁
⁡
𝜕𝜁

𝜕𝑡
⁡⁡ 

𝛆̇𝐀𝐒𝐑 =⁡
1

3
⁡𝜀∞ ⁡*𝜁⁡

𝜕B(𝛔)

𝜕𝛔
:⁡𝛔̇ + ⁡B(𝛔)⁡𝜁̇+ ⁡𝐈 

(8) 

By substituting the above relation into Eq. (7), the stress 

rate can be expressed as 

𝛔̇ = ⁡ [𝕋]−𝟏 ∶ ⁡ {𝔻𝐞: (𝛆̇ − ⁡ 𝛆̇𝒄) +⁡𝔻̇e:⁡[𝔻e]−1 ∶ 𝛔} 

𝕋 =⁡ *𝕀 +⁡
1

3
⁡𝜁⁡𝜀∞⁡𝔻

𝐞 ∶ ⁡ (𝜕𝝈B⁡⨂⁡𝐈)+,  𝛆̇𝒄 = (
1

3
⁡𝜀∞B(𝛔)𝜁̇) ⁡𝐈 

(9) 

In the numerical integration process, two different 

schemes can be employed, i.e., either explicit or implicit. In 

the explicit scheme, the stress state at time tn+1 can be 

determined directly by using the values of internal 

parameters at the previous time step tn; whereas in implicit 

scheme, the unknowns at time tn+1 can be found through an 

iterative process by satisfying constrains at the current time. 

Based on Eq. (9), the stress increment at each time step Δt 

can be approximated by the backward Euler scheme 

(Pietruszczak and Haghighat 2013). Thus 
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𝛔𝑡+Δ𝑡 = 𝛔𝑡 +⁡𝛔̇𝑡+Δ𝑡 ⁡𝛥𝑡 = 

= 𝛔𝑡 + [𝕋]−𝟏 ∶ {𝔻𝐞: (𝛆̇ −⁡ 𝛆̇𝐜)𝛥𝑡 + 𝔻̇e: [𝔻e]−1 ∶ 𝛔𝑡+Δ𝑡 ⁡𝛥𝑡} 
(10) 

By solving for σt+Δt 
we have 

𝛔𝑡+Δ𝑡 =⁡ℚ−1: [𝛔𝑡 +⁡𝔻𝐞: 𝕋−𝟏: (𝛆̇ −⁡ 𝛆̇𝐜)⁡𝛥𝑡] 

ℚ = ⁡𝕀 + 𝕋−𝟏:⁡𝔻𝐞: [𝔻̇e]
−1
𝛥𝑡 

(11) 

where 𝕀 is the fourth order identity tensor and σt is the 

stress state at the beginning of increment.  

In order to define the tangential stiffness operator, Eq. 

(9) may be written as 

Δ𝛔𝑡+Δ𝑡 = 𝛔̇𝑡+Δ𝑡 ⁡𝛥𝑡 = 𝕋−𝟏:⁡𝔻𝐞: (Δ𝛆 − Δ𝛆𝐜) + 

𝕋−𝟏:⁡𝔻̇𝐞: [𝔻𝐞]−1: (𝛔𝑡 + Δ𝛔𝑡+Δ𝑡) 
(12) 

which, after some algebraic manipulations, leads to 

Δ𝛔𝑡+Δ𝑡 = ℚ−1:⁡𝕋−𝟏: 𝔻𝐞: (Δ𝛆 − Δ𝛆𝐜 − 𝛥𝑡[𝔻̇e]
−1
: 𝛔𝑡) 

= 𝔻T: (Δ𝛆 − Δ𝛆∗) 
(13) 

where 𝔻T is the tangential operator and Δε
*
 is the total 

strain generated by the chemical reaction. 

 

 

3. Modelling of discontinuous deformation 
 

In this section a mathematical description for a cracked 

domain subjected to chemical reaction is presented by 

incorporating a volume averaging scheme. The criterion for 

the crack initiation and the traction-separation law are 

discussed and an implicit formulation for updating the crack 

characteristics is developed. 

 

3.1 Description of macrocrack propagation 
 

Consider a domain contained within the volume Ω in 

which Γd denotes discontinuity surface that splits this 

domain into Ω
+
 and Ω

-
. The unit vector normal to crack is 

denoted by n and points to Ω
+
. 

Within this domain, the displacement field, u(x,t) can be 

expressed as a combination of two continuous fields ū(x,t) 

and u~ (x,t) with the discontinuous jump function H(x) 

(Oliver 1996) 

),( ~ )(),(),( tHtt xuxxuxu   (14) 

where, H(x) is the Heaviside function which is equal to zero 

for all points in Ω
-
 and is equal to unity in the remaining 

part of the domain 

 

 

 

Fig. 1 Geometry of the problem 
 

 

 

Fig. 2 Decomposition of displacement field for 1-D case 

 

 

1
( )

0
H





 
 



x
x

x
 (15) 

The terms defined in (14) are depicted in Fig. 2 to illustrate 

the displacement function in the context of a one-

dimensional problem. Here, the dashed line indicates the 

position of discontinuity. 

The strain tensor is calculated from the gradient of the 

displacement field (14) 

( , ) ( , )

( , ) ( ) ( , ) ( )

s s

s s

t t

t H t H

   

  

ε u x u x

u x x u x x

 

)(),( ~)( ),( ~ xxuxxu HtHt ss   
(16) 

where the superscript s denotes the symmetric part of the 

gradient operator. Now, by averaging (16) over the 

considered volume yields (Haghighat and Pietruszczak 

2015) 





1 1
d ( , )d

( , ) ( )d ( , ) ( )d

s

s s

t

t H t H

 

 

   
 

    

 

 

ε u x

u x x u x x

 

 
 dHtdHt ss )(),( ~ )( ),( ~ xxuxxu  

(17) 

The gradient of the Heaviside step function is defined by 

Dirac delta function as H(x)=δΓd
 n, so that Eq. (17) can be 

simplified to 



  d

1 1
d ( , )d

( , ) ( )d ( , ) d

s

ss

t

t H t

 

 

   
 

    

 

 

ε u x

u x x x nw

 

 
 d

ss dtdHt )),( ( )( ),( ~ nxxxu w

 

(18) 

where w(x,t) indicates the displacement discontinuity. Thus, 

in terms of volume averages, the strain rate within the 

considered domain can be approximated by  

s

ss

t

tt

)),((                      

),( ~ ),(

d nx

xuxuε
































w



 (19) 

n

d





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Given the expression above, the total strain rate can be 

interpreted as a superposition of two parts, i.e., the strain 

rate in the intact material, ε , and the strain rate in cracked 

zone, ε̂ , i.e.  

                   )),((ˆ

),( ~ ),(~
    ;ˆ~

s

s

t

tt
where

nxε

xuxuε
εεε





































w





 

(20) 

where χ denotes the ratio of the area of the crack to the 

referential volume. In order to satisfy the equilibrium 

condition, the traction along the crack surfaces should be 

continuous. Thus 

  n ζ t Kw  (21) 

where, t is the traction vector and K is the stiffness of the 

fractured zone in the global coordinate system. Substituting 

Eq. (21) into the constitutive relation for intact material 

(13), we have 

𝐧⁡. 𝔻T:⁡(𝛆̇̃ − 𝛆̇∗) = 𝐧⁡. 𝔻T: (𝛆̇ − 𝛆̇̂ − 𝛆̇∗)= 

𝐧⁡. 𝔻T:⁡(𝛆̇ − 𝛆̇∗) − 𝜒𝐧⁡. 𝔻T⁡. 𝐧⁡𝒘̇ = 𝐊𝒘̇ 
(22) 

Consequently, by solving for w  in Eq. (22), the velocity 

discontinuity can be defined as 

𝒘̇ = ⁡ (𝐒 ⊗ 𝐧): [𝔻T: (𝛆̇ − 𝛆̇∗)] 

𝑤ℎ𝑒𝑟𝑒⁡⁡⁡⁡𝐒 = [𝐊 + 𝜒𝐧⁡. 𝔻T⁡. 𝐧]
−1 

(23) 

Finally, substituting Eq. (23) into the constitutive 

relation for intact material, the global relation between the 

total stress and strain rates can be obtained. The latter takes 

the form 

𝛔̇ = ⁡𝔻T:⁡(𝛆̇ − 𝛆̇∗) − 𝜒𝔻T: (𝐧⊗ 𝒘̇) = 

𝔻T: [𝕀 − 𝜒(𝐧⁡⨂⁡𝐒⁡⨂⁡𝐧⁡):𝔻T]: (𝛆̇ − 𝛆̇∗) = 𝔻̅T ∶ (𝛆̇ − 𝛆̇∗) 
(24) 

 

3.2 Constitutive relation for macrocrack 
 

In this section the constitutive law for the fractured zone 

is discussed which relates the traction rate to the velocity 

discontinuity. Over the last few decades, different types of 

relations have been proposed to define the characteristics of 

crack in different propagation modes. In order to obtain a 

symmetric stiffness operator for tensile cracks, the concepts 

of equivalent displacement, weq, and equivalent traction, teq, 

is used here as employed in the articles by Dumstorff and 

Meschke (2007), and/or Mariani and Perego (2003). The 

constitutive law is taken in the form 

 2 2 2 2

1 2
ˆ ,eq eq eq n s st K w w w w w     (25) 

where K̂  is defined as 

0

0 0
ˆ exp ( )t

f

d f
K K d d

d G
  

 
 
 

 (26) 

In the equations above, the scalar parameter β controls 

the effect of shear sliding on the equivalent traction, while 

wn and ws denote displacement jumps in the normal and 

tangential direction, respectively, in the local coordinate 

system attached to the crack. Furthermore, K0 is the initial 

stiffness, d0 denotes the equivalent displacement at which 

the attenuation of stiffness starts, d is the maximum 

equivalent displacement during the loading history, ft 

represents the tensile strength and Gf is the fracture energy. 

It is noted that for β=0 the stiffness operator K̂  has the 

same form as that suggested by Wells and Sluys (2001).  

In order to obtain an explicit form of the constitutive 

relation in terms of normal and tangential tractions, the 

concept of total equivalent work is implemented, viz. 

1 1 2 2eq eq n n s s s st w t w t w t w    (27) 

By evaluating the rate of weq in Eq. (25) and using relation 

(27), we have 

2 21 2
1 2

1 1 2 2

n s s
eq n s s

eq eq eq

n n s s s s

w w w
t w w w

w w w

t w t w t w

 
 

    
 

 

 
(28) 

By comparing the two sides of Eq. (28) and using (25) one 

can write 

2

2

21

2

1
ˆ   ,ˆ   ,ˆ

ssssnn wKtwKtwKt    (29) 

In order to define now the second order tensor K, viz. Eq. 

(21), the rate form of Eq. (29) should be employed, i.e. 

)ˆˆ(

);ˆˆ(  ;ˆˆ

22

2

2

11

2

1

sss

sssnnn

wKwKt

wKwKtwKwKt
















 (30) 

For an active loading process 0d   , using relations (26) 

and (30) and noting that d=weq, leads to a following 

expression for the stiffness tensor K 

2

2

2 2 2

1 2

2 2

2 4 2 4

1 1 1 2

2 2

2 4 4 2

2 1 2 2

ˆ f eq t

eq f

eq f

n n s n s

f eq t

eq f

n s s s s

f eq t

eq f

n s s s s

f eq t

G w f
K

w G

w G
w w w w w

G w f

w G
w w w w w

G w f

w G
w w w w w

G w f

 


  


  

 
   

 

 
   

 
 
   
 
 
 

   
 

K

 

(31) 

Following the same procedure for the case of unloading (

0d  ), one obtains  

2

2

1 0 0

ˆ 0 0

0 0

K 



 
 


 
  

K
 

(32) 

 

3.3 Implicit integration for updating the crack 
characteristics 
 

During an active loading process, the mechanical 

4
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response of the macrocrack can be traced using an implicit 

integration scheme, similar to that outlined by Haghighat 

and Pietruszczak (2015). In this case, the following 

residuals at increment n and iteration k are defined 

𝑹1
𝑘 = 𝐧⁡. 𝛔̇𝑛

𝑘 − 𝐊𝒘̇𝑛
𝑘 = 𝟎 

𝑹2
𝑘 =⁡ 𝛔̇𝑛

𝑘 −𝔻T:⁡(𝛆̇ − 𝛆̇∗) + 𝜒𝔻T: (𝐧⁡⨂⁡𝒘̇𝑛
𝑘) = 𝟎 

(33) 

Employing Newton-Raphson algorithm, these can be 

approximated as 

1

1

:

:

k k
k k k k

k k
k k k k





 
   

 

 
   

 

δζ δ 0
ζ

δζ δ 0
ζ

1 1
1 1

2 2
2 2

R R
R R w

w

R R
R R w

w

 
(34) 

Substituting Eqs. (33) into (34) yields  

𝜹𝒘𝑘 =⁡ [𝐊 + 𝜒𝐧.𝔻T⁡. 𝐧]
−𝟏(𝑹1

𝑘 − 𝐧⁡. 𝑹2
𝑘) 

𝜹𝛔𝑘 = −𝜒𝔻T: (𝐧⁡⨂⁡𝜹𝒘𝑘) − 𝑹2
𝑘 

(35) 

This procedure is continued until the residuals given in 

Eq. (33) vanish. Note that at the end of each iteration the 

updated values of stress and crack opening are given by  

1

1

;

;

k k k k k

n n n n n n

k k k k k

n n n n n n





    

    

ζ ζ ζ ζ ζ δζ

w w w w w w
 (36) 

 

 

4. Three-dimensional crack propagation strategy 
 

Referring to Jäger et al. (2008), there are three different 

approaches for tracing the crack path in 3D problems, i.e., 

level set, global tracking and local tracking. Owing to high 

computational cost of the first two schemes, the local 

tracking approach is employed in this study. In what 

follows, the main strategy is presented first for 2D case and 

then extended to 3D applications. Referring to Gasser and 

Holzapfel (2006), each crack is composed of a number of 

line segments which pass through elements and cut the 

sides at two points. The location of these points is stored in 

order to trace the crack and also to define the characteristic 

length parameter, χ, Eq. (20). At the end of each load 

increment, two steps are required to update the crack 

configuration; the first one involves checking the failure 

criterion for the elements next to the crack tip, and the 

second deals with identifying elements which satisfy failure 

condition to establish a new crack within the domain. In the 

former case, the cut side of the crack tip element is searched 

to find the new candidate crack element with the joint side 

(Fig. 3). If the failure condition is satisfied, the crack will 

propagate from the cut point (former crack tip) in the 

direction perpendicular to maximum tensile stress (for 

tensile fracture) to form a new crack tip.  

This methodology has been extensively used, as 

evidenced in the existing literature (Manzoli and Shing 

2006, Linder and Armero 2007). In analogy to 2D case, a 

similar procedure can be implemented for three dimensional 

problems, whereby the triangular elements are replaced by a 

tetrahedral mesh and the crack segment is replaced by the 

crack surface. Fig.4 depicts the cracked elements containing 

 

Fig. 3 Crack propagation algorithm in 2D problems 

 

 

Fig. 4 Crack surface in tetrahedral elements 

 

 

Fig. 5 (a) Predicted direction for new crack surface (b) 

detecting elements in the vicinity of point P (c) modified 

normal direction to update crack surface 

 

 

a failure plane. As the crack propagates, new tip-facets are 

identified and the neighbor elements become candidate 

elements for the next crack tip. As pointed out by Gasser 

and Holzapfel (2006), using local tracking algorithm 

without modification cannot give reliable results, thereby a 

smoothing algorithm is employed here to overcome the 

difficulties related to 3D crack propagation. A brief review 

of this procedure is given below.  

The geometric scheme is shown in Fig. 5, where the 

bold lines define the crack edge and the thin lines are 

associated with cut surface in cracked elements. As the 

failure criterion is met in the front element, the direction of 

propagation is calculated and compared with that in the 

adjacent element. In some cases, the obtained crack 

segment may not be consistent with the crack surface, hence 

the smoothening is imposed to modify the crack 

propagation direction. It is noted that crack surface 

embedded in the new crack tip elements initiates from the 

point obtained as an average of cut facets in neighbor 

elements (point P). To adjust the normal direction, all points 

within the radius R of the current crack tip, which formed 

other crack surfaces, are picked to define a new surface to 
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approximate normal vector at any point of interest. 

In the first step, the centroid of the new surface, referred 

to as Pc, is obtained. To define the equation of the crack 

surface, the local coordinate system is introduced and 

placed at the centroid point. As discussed by Gasser and 

Holzapfel (2006), to obtain the local axis, the following 

covariance tensor is defined 

   
1: n p

i c i c

i

P P P P


   T
 

(37) 

where Pi is the location of cut points in the crack surface 

and np defines number of these points. The eigenvectors of 

this tensor define the local coordinate system at Pc. To 

achieve more accuracy, the second order approximation is 

considered for the surface, i.e. 

2 2

0 1 2 3 4 5z a a x a y a x a y a xy       (38) 

and the coefficients of approximation ai , are determined by 

minimizing the difference between z  and zi, where the 

latter is the value of the function in Eq. (38) at point Pi. 

Therefore, the problem can be formulated as a least square 

problem  

 
2

1:

minimize
R

i i

i n

z z solve for a


   
(39) 

Once the solution is obtained, the direction of the 

normal at point P can be determined by calculating the 

gradient of (38). Note that this direction is defined in the 

local coordinate system and it should be transformed to the 

global frame of reference.  

 

 

5. Numerical examples 
 

In this section several numerical examples are provided 

to demonstrate the robustness of the approach described in 

Sections 2-3. The governing constitutive relations, together 

with the proposed scheme for tracing the crack propagation, 

have been implemented into Abaqus FEA software. It 

should be pointed out that although the numerical analysis 

presented here has been conducted in 3D, all examples can 

be treated as 2D problems. In fact, the cracks propagate in 

quasi-3D mode, i.e., crack surfaces remain plane and 

undistorted along the thickness. The verification of the 

procedure for tracing the crack path in the context of real 

3D geometry is provided in the recent paper by Moallemi 

and Pietruszczak (2017). In that article, a three-point 

bending test is simulated in which the fracture pattern 

involves a progressive twisting of the crack surface and its 

propagation in the direction aligned with that of the 

prescribed displacements. 

 

5.1 L-Shape concrete panel 
 

In the first example the crack trajectory is investigated 

in an L-shaped pure concrete panel. The geometry and the 

FE discretization are shown in Fig. 6. The bottom of the L-

shaped specimen is fixed and the vertical displacement is 

applied incrementally to the left edge of the panel. This 

example simulates an experimental set up of Winkler et al.  

 
(a) 

 
(b) 

Fig. 6 (a) Geometry and boundary condition of problem; (b) 

Finite element discretization 

 

 

(2001) and was previously employed as a benchmark for 

examining the accuracy of different numerical approaches 

for modeling of the crack propagation (Dumstorff and 

Meschke 2007, Jäger et al. 2008). The material is 

considered here as elastic-brittle and the assumed properties 

are 

E=25.85 (GPa);  v=0.18;  ft=2.7 (MPa);  Gf=0.1 (N/nm) 

The thickness of the panel is 100 mm and the value of β 

given in Eq. (25) is set to 1.5 in order to consider the effects 

of tangential displacement in cohesive law. Three 

dimensional linear tetrahedral elements are used to 

discretize the structure, as depicted in Fig. 6. The loading is 

imposed incrementally and as the principal stress reaches ft, 

the crack initiates and progressively grows as the load 

increases. By applying the strategy described in the 

previous section, a smooth crack path is obtained, as shown 

in Fig. 7 which is similar to the results presented by 

Dumstorff and Meschke (2007). In addition, the load 

displacement curve for the panel is compared here with the 

experimental data given in the article by Winkler et al. 

(2001); clearly the results of simulations incorporating the 

proposed methodology are quite accurate. 

 

5.2 Crack propagation in reinforced concrete beam 
 

The next example studied here is involves a reinforced 

concrete beam subjected to a three-point bending. This 

problem was studied experimentally by Bresler and 

Scordelis (1963) using different ratios of reinforcements. 

The reinforcement is considered here in a discrete way 

using the standard Abaqus library.   

Fig. 8 shows the geometry of the problem. Four  
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(a) 

 
(b) 

Fig. 7 (a) load-displacement curve; (b) crack path 

 

 

Fig. 8 Geometry of simply supported reinforced concrete 

beam 

 

 

Fig. 9 FE discretization by tetrahedral elements 

 

 

longitudinal high strength steel bars#9 (#29 in metric unit) 

are placed within the concrete in two layers and the vertical 

load is applied incrementally to the top surface of the beam. 

The finite element discretization is provided in Fig. 9 and 

the material properties of steel and concrete are given below 

Steel:  

200 , 0.2, 555s yE GPa f MPa    

Concrete:

 

 

23.8 , 0.18, 1.82 ,

0.1 , 0.1/

c tE GPa f MPa

G N mm





  

 
 

Gf = 0.1N/mm,     β = 0.1 

 

 

Fig. 10 Crack path in beam after 2 mm deflection 

 

 

Fig. 11 Load displacement curve for reinforced concrete 

beam 

 

 

Fig. 12 Geometry of the right half of concrete beam 

 

 

As the load increases, the cracks initiate first at the mid-

span of the beam as soon as the maximum principal stress 

reaches the strength of concrete. Due to the presence of 

reinforcement in the tensile region of the beam, the cracks 

cannot propagate further since the steel bars resist the crack 

opening. Consequently, other flexural cracks form at the 

bottom and propagate upwards as shown in Fig. 10. 

In Fig. 11, the load-displacement response for the beam 

is compared with the experimental data reported by Bresler 

and Scordelis (1963). It is clear that the numerical results 

are fairly consistent here with the experimental evidence. 

Note that within the considered range of external load, the 

steel bars didn‟t reach the yield point, so that the 

mechanical characteristic remains stable. 

 

5.3 ASR in reinforced concrete beam 
 

In the last example dealing with the tensile fracture, the 

response of reinforced concrete beam subjected to ASR is 

examined. The experimental work has been conducted here 

by Swamy and Al-Asali (1990) who investigated the 

chemical interaction for different percentage of fly ash in 

concrete mixture. They tested three different sets of beams 

with different kinds of reactive aggregates. The beam was 

simply supported and its total length was 800 mm. The 

geometry of the problem and position of longitudinal and 

shear reinforcement are given in Fig. 12. For this study one 

of the beams, referred to as “B3” by Swamy and Al-Asali 

(1990), has been selected and the obtained results compared  
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Fig. 13 (top) Selected points for measuring strain in 

concrete; (bottom) Deformation of the right half of concrete 

beam after 2 years of ASR 

 

Table 1 Material properties of concrete and steel 

Concrete modulus of elasticity Ec=30 GPa 

Concrete Poisson‟s ratio v=0.18 

Tensile strength of concrete ft=1.8 MPa 

Concrete ASR constant A1=20 days 

Steel modulus of elasticity Es=200 GPa 

Steel Poisson‟s ratio v=0.2 

Steel yield stress fy=560 MPa 

Maximum free expansion ε∞=1% 

 

 

with the experiments. In view of the symmetry of the 

problem, only one half of beam was simulated. Material 

properties for concrete and reinforcement are summarized 

in the Table 1.  

The beam has been placed in the environment with the 

controlled humidity and temperature for two years. The 

deformation was measured in both the reinforcement and 

concrete at the set of selected points, as shown in Fig. 13. 

In the first stage of the test, i.e., in the two years‟ time 

interval, no external load was applied. Since the 

longitudinal reinforcement in the tensile region was more 

intense than that in the compressive zone, the beam has 

initially experienced an upward movement. In addition, as 

the compressive stress was increasing in the bottom layer, 

less chemical expansion occurred in the longitudinal 

direction, which lead to an increase in the curvature of 

beam. The final deformation after two years of progressive 

ASR is plotted in Fig. 13. The numerical simulations give 

similar results to laboratory tests as the total hogging of 

beam is reported to be about 3 mm. 

In Fig. 14, the evolution of strain in the longitudinal 

tensile steel bar and concrete is plotted versus time. The 

experimental data was collected using the strain gages that 

were placed directly on steel rebars as well as at the surface 

of the beam, to monitor the deformation history. As it can 

be seen, during the first 100 days of continuing reaction the 

reinforcement elongates and then the expansion stops due to 

 

 

Fig. 14 Strain variation in steel (top) and concrete (bottom) 

in time 

 

 

 

Fig. 15 (Top) Load vs displacement curve; (Bottom) crack 

pattern in 2D for the right half of beam 

 

 

the generation of compressive stress in the bottom layer of 

the beam. The second plot in Fig. 14 shows the variation of 

strain within the concrete during the first two years of the 

reaction. Again, the numerical results are quite consistent 

with the experimental data for all points at which the 

measurements were taken. 

The next stage of the experiment involved four-point 

bending of beams affected by ASR as well as the beam 

without any reactive aggregate. The corresponding load-

displacement curves are shown in Fig. 15. It is noted that 

for the beam considered here (i.e., „B3‟; Beltane opal as  
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Fig. 16 Crack pattern in 3D (the right half of the beam) 

 

 

reactive aggregate and 30% of fly ash as cement 

replacement) the stiffness recorded in the experimental test 

was virtually the same (or even marginally higher) as 

compared to that of the control beam with no ASR. In 

general, however, all the other results reported by Swamy 

and Al-Asali (1990) show that ASR substantially reduces 

both the stiffness and the flexure capacity of the beams. The 

latter is consistent with the numerical results which show a 

similar trend that can be attributed to progressive 

degradation in mechanical properties triggered by ASR. 

Finally, the predicted crack pattern, at the end of 

simulation, is shown in Figs. 15 and 16. The most intense 

damage is in the tensile zone in the area adjacent to the 

reinforcement. 

 

 

6. Conclusions 
 

In this work, the chemo-mechanical formulation for 

describing the damage propagation in concrete affected by 

ASR has been presented. Within this framework two key 

effects of the chemical interaction, i.e., expansion of silica 

gel and degradation of strength/stiffness properties of 

concrete, were taken into account and an implicit algorithm 

has been presented for integration of the chemo-elastic 

constitutive relation. 

The evolution of damage has been described using the 

concept of volume averaging, which discriminates between 

properties of the intact material and those of the interface 

and incorporates the characteristic length. The Rankine‟s 

criterion was used to define the onset of cracking. For 

tracing the crack path, a general three dimensional 

algorithm has been developed by employing tetrahedral 

elements and assuming that the crack is represented by a 

planar discontinuity surface formed within each element. 

For macroscopic description of cohesive cracks, the 

traction-separation law was formulated using a decaying 

exponential function which attenuated traction on crack 

faces during an active loading process.  

Three different numerical examples have been provided 
to illustrate the proposed methodology. The first two 
involved an L-shaped plain concrete panel and a reinforced 
concrete beam subjected to mechanical loads. For both 
these cases, the load-displacement characteristics and the 
fracture pattern were compared with the experimental data. 
The last example dealt with examining the effects of ASR in 
a reinforced concrete beam. Again, the results were 
compared with the experimental evidence and clearly 
demonstrated the predictive abilities of the outlined 
framework. 
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