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1. Introduction 
 

Composite cylindrical shell constructs are more widely 

used than the other geometric shapes in the industries due to 

the desired ratio of the strength to the weight and easy 

manufacturing. As these constructs are used, different 

dynamic energies effect on them which consequently may 

influence on their performance or that of in-made 

equipment. 

Love (1892) was the first researchers proposed the thin 

shell theory based on the linear elasticity theory. Following 

him, some other researchers such as Donnell (1934), 

Sanders (1959), Flog et al. (1973) applied the other 

hypothesis on the linear elasticity theory and proposed some 

more accurate movement equations. A geometrically 

nonlinear wind-induced vibration analysis strategy for 

large-span single-layer reticulated shell structures based on 

the nonlinear finite element method was introduced by Li 

and Tamura (2005). Amabili (2008) compared the different 

theories to analyze the nonlinear vibrations of layer 

cylindrical shells in a comprehensive study. The vibrations 

of sandwich cylindrical shapes shells were analyzed by 

Kumar et al. (2013) based on Zigzag shear theory. 

Kamarian et al. (2014) studied functionally graded 

sandwich cylindrical shells in the elastic area. Functionally 

graded cylindrical shells were analyzed by Mantari and 

Guedes Soares (2014) using high order sine shear theory in 

which system governing equations are obtained using the 

method of energy and virtual work principle. Duc and Than 

(2015) studied the dynamic and the vibrations of the 

functionally graded cylindrical shells. Sofiyev (2016)  
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studied nonlinear vibrations of the functionally graded 

cylindrical shells using the orthotropic shear theory. 

Bahadori and Najafizadeh (2015) analyzed the free 

vibrations of the functionally graded cylindrical shells in the 

elastic area. 

Cylindrical shells with fluid are widely used in the 

industry and biomechanical systems. For example, the 

thermal shields of the nuclear reactors and the ignition 

motor of the airplanes, thermal convertors, oil and gas 

transportation pipes, veins, pulmonary system and etc are 

modeled by the cylindrical shells having fluid. Amabili 

(2003) has mostly analyzed and studied these shells. The 

effect of the shell fluid is studied by Paidoussis and Denise 

(1972), Weaver and Unny (1973), Paidoussis et al. (2003, 

1985), Amabili and Garziera (2002). The pressure caused 

by the fluid is extracted by the function of confusion 

potential caused by the axial velocity of the fluid in the 

shell. The effect of the geometric parameters on the 

nonlinear vibrations in the cylindrical shell with fluid is 

studied by Pellicanoa et al. (2002). De Bellis et al. (2010) 

analyzed the dynamic stability of the fluid carrying tube in 

the elasticity area. They used Timoshenko beam model to 

mathematically model the construct and used Galerkin 

method to analyze the system. This article mainly discusses 

the critical velocity of the fluid and analyzes its different 

parameters. Wang (2009) analyzed the nonlinear dynamic 

of the tube with variable fluid. Numerical analysis of a 

rotating cylindrical shell with fluid was performed by 

Bochkarev and Matveenko (2013). Dai et al. (2014) studied 

fluid carrying tubes using Euler- Bernoulli beam theory, 

considering the effect of the fluid damping and eddy current 

caused in the tube. Ghorbanpour Arani et al. (2016) 

analyzed the vibrations and instabilities in the Nano 

composite cylindrical shell surrounded by tow piezoelectric 

layers. 
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Mechanical analysis of nanostructures, sensor and 

compter programs has been reported by many researchers 

(Zemri 2015, Larbi Chaht 2015, Belkorissat 2015, Ahouel 

2016, Bounouara 2016, Bouafia 2017, Besseghier 2017, 

Bellifa 2017, Mouffoki 2017, Khetir 2017, Yang and Yu 

2017, Li et al. 2017, Padhy and Panda 2017, Zhao et al. 

2017, Rishikeshan and Ramesh 2017, Wen et al. 2017, 

Torres-Jimenez and Rodriguez-Cristerna 2017, Liu et al. 

2018). There is non- composite structure in all of the above 

mentioned works. These structures, particularly polymeric 

Nano composites are widely used in the industries such as 

in the sensors and operators of the oil and gas transportation 

pipes. As the technology is advancing, these structures have 

found a special position in the industries and they are 

increasingly used because the static and dynamic behavior 

of the construct can be improved by the good mechanical 

and thermal features of the carbon Nano tubes as the 

reinforcers. A few works have done in this regard. Messina 

and Soldatos (1999) studied the free vibrations of the 

composite cylindrical shell. Tan and Tong (2001) proposed 

a micromechanical model to calculate the composite 

equivalent properties. The free vibrations of the composite 

cylindrical shell with fluid were studied by Kadoli and 

Ganesan (2003). The dynamic behavior of the fluid carrying 

composite cylindrical shell was considered by Seo et al. 

(2015). Wuite and Adali (2005) analyzed the tension in the 

beams reinforced by the carbon Nano tubes and used Mori- 

Tanaka Model to equalize the composite equivalent 

properties. Liew et al. (2014) analyzed the post buckling of 

the Nano composite shells. Mixing law was used in this 

research to gain Nano composite equivalent properties. In 

another similar work, Lei et al. (2014) analyzed the 

dynamic stability of the panels reinforced by carbon Nano 

tubes.  

So, it is concluded that many researchers have been 

performed to analyze the vibrations and instability of the 

cylindrical shells with fluid so far but no studies have been 

done about Nano composite shells with the Nano particle 

fluid in spite of being modern. So, the different aspects 

between the present research and the other ones are as 

composite shell (Using carbon Nano tubes as reinforcement 

phase), considering the accumulation of the Nano tubes, 

passage of the fluid with Nano particles through the shell 

and considering the viscoelastic area around the tube. Some  

 

 

explanations will be given briefly about the Nano 

composites and the methods of producing the composite 

equivalent properties in the following due to this fact that 

the background material of the shell is made of polymer and 

reinforced by the carbon Nano tubes. 

 

 

2. Mathematical modeling 
 

Fig. 1 shows a tube modeled by a circular cylindrical 

shell with the mean radius of R, thickness of h , length of L, 

density of ρ and the cylindrical coordinate system of (x,θ,ρ 

=R+z). This shell is reinforced by the carbon nanotubes and 

has a fluid mixed with the nanoparticles.  The viscoelastic 

area around the tube is modeled by the Winkler vertical 

coefficient kw, shear coefficient kg and the Damper 

coefficient cd . 

There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim 2013, Bouderba 2013, 

Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi 

2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili 

2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia 

2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina 

2017, Menasria 2017, Chikh 2017). In this paper, classical 

theory is used. Movement field can be expressed as below 

based on the classic theory (Reddy 2004) 
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in which (u,v,w) are the movement elements of the middle 
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relationships of strain-displacement are 
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Fig. 1 Scheme of nano composite tube with nanoparticles mixed fluid considering the effect of accumulation 
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The construct’s strain -tension relationships are 

simplified as 
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The potential energy of the Nano composite tube is as 

the following 
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By replacing the strain- shift equations in the above 

relationships, we have 
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By defining the energy and intra -plane moments as 

below 

,
2

2

dz

N

N

N h

h

x

x

x

x



















































 (10) 

,
2

2

zdz

M

M

M h

h

x

x

x

x


 














































 

(11) 

relationship (9) will be as 
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Kinetic energy of the construct is as 
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where ρ is the nano composite shell equivalent density. By
 replacing the movement fields in the above equation, we 

will have
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By integration in the thickness direction and considering 

this fact that the range of integer is symmetric, the odd 

integers will be zero. So the kinetic energy would be 

simplified as below: 

(15) 
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The work of the external energies is divided to two 

parts: work of the viscoelastic area around the tube and 

work of the fluid in the tube. 

 

→ Work of the Viscoelastic Area 

Viscoelastic area around the tube includes the spring, 

shear and damper coefficient whose equivalent energy is 

gained according to the below (Ghorbanpour Arani 2016) 

(16)  ,2wkwcwkF gdwelastic    

in which kw, kg
 
and cd 

are the Winkler vertical flexibility 

coefficient, Pasternak shear coefficient and damper 

coefficient, respectively. So, the external work We in the 

viscoelastic area is 

(17)   ,2

  wdAwkwcwkW gdwe
  

Considering the fluid incompressible, Newtonian and 

viscose, the fluid’s behavior governing equation is as  

,bodyf
dt

d
FVP

V 2    (18) 

which is known as Navier- Stockes in which 

),,( xz vvv V  is the velocity of the fluid in the 

cylindrical coordinates in the direction of length, 

circumference and radius and P, μ and ρf are pressure, 

viscosity and the dense of the fluid, respectively and Fbody  

is the volumetric force. The operator of the complete 

derivative is as below in the Navier- Stockes equation 

,
z

vv
x

v
tdt

d
zx























 
(19) 

The relative velocity and acceleration are equal in the 

direction of the radial movement in the contact point of the 

fluid and tube. So 

,
dt

dw
vz 

 (20) 
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Using Eqs. (19) and (20) and placing them in Eq. (18), 

the pressure in the tube will be 
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(21) 

If two sides of the equality are multiplied to the interior 

surface of the tube (A), the radial force in the tube is 

calculated 
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(22) 

Finally, the external work caused by the fluid pressure is 

determined by 
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(23) 

Now, applying Hamilton principle, using fractional 

integral and sorting the relationships in the direction of the 

mechanical movements will lead to the three main 

equations 
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(26) 

By integrating Eqs. (10) and (11) in the direction of 

thickness and using Eq. (7), the relationships of the forces 

and interior moments of the tube can be calculated as 

(27) 
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Now, placing the Eqs. (27) to (32) in the main equations 

and using the dimensionless parameters of 
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(33) 

these formed relationships will be produced according to 

the mechanical movements 
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Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation 
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(36) 

The border conditions are as the following in the two 

ends of the tube: 

√ Clamped- Clamped 
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√ Clamped-Simple 
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√ Simple-Simple 
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(39) 

The coefficients of tube elasticity, fluid density and fluid 

viscosity should be made equivalent in the gained equations 

because there are two phases of background and 

reinforcement in the tube and there are two phases of water 

and nanoparticles mixed in the water for the fluid. Mori- 

Tanaka model is used to make the elastic properties of the 

tube equivalent by considering the accumulation features of 

the nanotube. Mixing law is used to make the tube density, 

fluid density and fluid viscosity equivalent as well. 

 

 

3. Mori-Tanaka model 
 

In this section, the elastic properties and coefficients of 

the polymeric composite reinforced by the single walled 

carbon nanotubes are analyzed micromechanically.  Some 

case like direct regular carbon nanotubes as well as two 

models of accumulation are analyzed by considering the 

effect of volumetric fraction and the micromechanical 

model. It is assumed that polymer is elastic and isotropic 

and its Young module and Poisson ratio are Em and νm 

respectively. It is assumed that the yarns of the single 

walled carbon nanotubes are long, orderly, in a same row 

and with the transverse elastic properties. So, the considered 

polymeric composite has got transverse elastic properties. 

Therefore, the strain- tension relationship is as follows in 

the local coordinates of an initial element (Shi and Feng 

2004) 
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(40) 

where k,l,m,n,p are Hill elastic module; k: planestrain 

volumetric module which is vertical to the yarns, n: non-

axial tensile module in the length direction of the yarns, l : 

cross dependent module, m and p are the shear modules in 

the planes parallel and verticle to the direction of the yarns, 

respectively. Hill elastic modules are as the below 

relationships by Mori- Tanaka method 
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(41) 

where kr, lr, nr, pr, mr are Hill elasticity module in the 

reinforced phase (Shi and Feng 2004). The empirical results 

show that most of the carbon nanotubes lie as a curve in 

polymers. It is observed that a great part of carbon 

nanotubes are concentrated in one place in the composite 

which is assumed to be spherical and so called “inclusion”. 

It has properties different from that of its surrounding 

material. Vr is the final volume of carbon nanotubes. We 

have 

inclusion m

r r rV V V   (42) 

whereVr
m, Vr

inclusion are respectively a volume of the carbon 

nanotube in the polymer and inclusion. Two following 

parameters are used to show the effect of accumulation in 

the micromechanical model 

,inclusionV

V
   (43) 

.
inclusion

r

r

V

V
   (44) 

Cr, the mean volumetric fraction of carbon nanotubes is 

expressed as 

.r
r

V
C

V
  (45) 

in composite. The relationship between the volumetric 

fractions of nanotubes in inclusion and polymer is as the 

following using above relationships 
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Assuming that carbon nanotubes are transverse 

isotropic, and randomly lie in the inclusion, the inclusion is 

assumed isotropic. The volumetric module Kand shear 

module G is as Eqs. (48) and (49) using Mori- Tanaka 

method 
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where Kin and Kout are the volumetric module of inclusion 

and that of composite minus inclusion, respectively. In the 

same manner, Gin and Gout are the volumetric module of 

inclusion and that of composite minus inclusion, 

respectively which are gained by the following relationships 

 

 

3
,

3

r m r r

in m

r r r

K C
K K

C C

  

  


 

 
 (50) 

  

   

3 1
,

3 1 1 1

r r m r

out m

r r r

C K
K K

C C

  

   

 
 

        
(51) 

 

 

3
,

2

r m r r

in m

r r r

G C
G G

C C

  

  


 

 
 (52) 

  

   

3 1
,

2 1 1 1

r r m r

out m

r r r

C G
G G

C C

  

   

 
 

      

 (53) 

where χr, βr, δr, ηr 
are 
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Km, Gm are the volumetric and shear module of the base 

phase 
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In addition, β, α in Eqs. (48) and (49) are obtained by 
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Having the volumetric module K and shear module G of 

nano composite by the above relationships, E and υ in the 

isotropic composite material is gained by 
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Having E and υ, the hardness construct matrix is 

calculated. 

 

 

4. Mixing law 
 

Mixing law is used to calculate the properties equivalent 

to the tube density and fluid density and viscosity. Tube 

equivalent density is as follows according to the mixing law 

  ,1 mCNTrCNT VV    (65) 

where ρm 
and ρr are the densities of background and 

nanotube, respectively. VCNT 
is the volumetric percent of the 

nanotube in the tube. According to the mixing law, fluid 

equivalent density and viscosity of the iron oxide 

nanoparticle with the diameter of 28 nanometers is 

  ,1 fluidnpnpnpf VV    (66) 

  ,1233.71 2

fluidnpnp VV  
 

(67) 

where ρfluid and ρnp
 
are respectively the density of the fluid 

and nanoparticles, μnp
 
and μfluid are respectively the viscosity 

of the fluid and nanoparticles and Vnp is the volumetric 

percent of the nanoparticles in the fluid. 

 

 

5. DQM method 
 

DQM is one of the numerical methods in which the 

governing differential equations are converted to the first 

order algebraic equations by the weight ratios so that 

derivative is expressed as a linear sum of weight ratios in a 
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point and the functional amounts there and the other range 

points in the direction of the coordinate axes. The main 

relationships of these methods are expressed as the 

following for a single case (Kolahchi et al. 2015, 2016a, 

2016b, 2017, Zamanian 2017) 
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So, it is observed that Selection of the sample points and 

weight ratios are two very important and determining 

factors in the accuracy of DQM method which will be 

mentioned later. Chebyshev polynomial is widely used for 

solving the engineering problems and produces good results 

which is expressed as 

(71) x

x

i Ni
N

iL
X ,...,1

1

1
cos1

2
























  x

x

i Ni
N

iL
X ,...,1

1

1
cos1

2
























   

(72) 






 Ni
N

i
i ,...,1

1

1
cos1

2

2






















 






 Ni
N

i
i ,...,1

1

1
cos1

2

2






















  

The weight ratios are generalized as below for the two 

dimension case: 

a) for the first order derivative 
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b) for higher derivative 
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Using the following time modes, the terms with the time 

derivative are omitted and the differential equations will be 

entirely based on the local derivatives. 
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(79) 

where λ refers to frequency and ū(x,y), ),( yxv and 

),( yxw  
show the vibration ranges in three directions of 

length, circumference and transverse. So, the governing 

equations and the border condition is written as below in a 

matrix form 
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in which 



11C

h
   refers the dimensionless 

frequency. [KL], [KNL], [C]
 
and [M] show the linear part of 

the hardness matrix, the nonlinear part of the hardness 

matrix, Damper matrix and mass matrix, respectively. {db} 

& {dd} are the dynamic range vectors in points of the 

border and field term 
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The above equation is in the total form of aeigenvalue 

problem but should be converted to the standard form of a 

eigenvalue problem to be solved. So, Eq. (80) is changed to 

(83) by defining the change of variable d′=Ωdeq
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n which [I] shows the identity matrix and {d′} is the 

derivative of the movement vectors or vibration range. The 

mentioned equation is aeigenvalue problem which is solved 

as follows: 

• Nonlinear terms are ignored in the hardness matrix and 

the special vector (the movement vector {z}) and the 

eigenvalue (Ω) are calculated in the linear manner. 

• The movement vectors in the previous step are placed 

in the nonlinear terms of the hardness matrix and the 

eigenvalue and special vector of the nonlinear term are 

calculated again. 

• This process is continued until below convergence 

ratio is satisfied. 
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Fig. 2 Validation of imaginary part of frequency 
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It should be mentioned that   means system 

frequency. 

 

 

6. Results 
 

The numerical results of the vibrations and instability in 

the tube reinforced by the carbon nanotubes having fluid 

mixed with the nanoparticles were analyzed in this section. 

In this study, the tube is simulated by the cylindrical shell 

model located in the viscoelastic area. The numerical 

method of Square differences is used due to the nonlinear 

nature of the equations. This study is aimed to analyze the 

effect of nanoparticles of the fluid, geometric parameters of 

tube, viscoelastic area, volumetric percent of carbon 

nanotube and the accumulation of nanotubes on the 

frequency and critical velocity of the fluid. The material of 

the pipe is made of elastic module Em=125 GPa, Poisson 

ratio vm=0.3 and density ρm=1.45 Kg/m3. Elastic module 

and Poisson ratio of carbon nanotubes are Er=1 TPa and 

vr=0.3, respectively with length to radius ratio of L/R=2 and 

thickness to radius ratio of h/R=0.02. The density of the 

fluid in the water tube is ρfluid=998.2 Kg/m3 and its viscosity 

is μfluid=1×10-3 Pa.s. It has iron oxide nanoparticles with the 

density of ρnp=3970 Kg/m3 . 

 

6.1 Validation 
 

In this section, it is used algorithm to test the accuracy. 

The graph for the effect of dimensionless velocity of the 

fluid (uf=V/{π2/L[D/ρh]}0.5) on the imaginary and real part 

of the dimensionless frequency (ω=λ/{π2/L2[D/ρh]}0.5) is 

shown in Figs. 2 and 3, respectively and is compared with 

the research of Amabili (2008). The parameters considered 

for accuracy testing are the same as those in Amabili’s 

research (2008) which is shell without carbon nanotube and 

nanoparticles and with the elasticity module of E=206 GPa, 

Poisson ratio v=0.3, density ρ=7850 Kg/m3, length to radius 

L/R=2, thickness to radius h/R=0.01 and with the fluid of 

water. Results show a relative good agreement between the 

 

Fig. 3 Validation of real part of frequency 

 

 

Fig. 4 Convergence of DQM for imaginary part of 

frequency 

 

 

present research and Amabili (2008). 

 

6.2 Convergence of numerical method 
 

Figs. 4 and 5 show the convergence and accuracy of 

square differences method to obtain the imaginary and real 

part of the dimensionless eigenvalue against the 

dimensionless velocity of the fluid. Chebychev polynomial 

is used to choose the points in the network about which is 

explained in part 3. It is clearly seen that there is a fast 

convergence ratio for the solution method on the imaginary 

and real part of the dimensionless eigenvalue and the 

answers reach to a desirable convergence for 14 points. 

Therefore, the number of the points is considered 14 to 

extract the results in this research.   

  

6.3 The effect of the different parameters 
 

In this section, it is going to analyze the effects of 

nanoparticles of the fluid, tube’s geometric parameters, 

viscoelastic area, the volumetric percent of carbon nanotube 

and accumulation of nanotube on the frequency and critical 

velocity of the fluid. In the given graphs, the imaginary part 

of the eigenvalue shows the frequency and its real part 

shows damping of the construct. 
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Fig. 5 Convergence of DQM for real part of frequency 

 

 

Fig. 6 The effect of volume percent of SWCNTs on the 

imaginary part of frequency 

 

 

Figs. 6 and 7 show the effect of the volume percent of 

the carbon nanotubes on the frequency (Im(Ω)) and system 

damping (Re(Ω)) according to the fluid velocity (V) in a 

dimensionless manner. As it can be seen, as the velocity of 

the fluid increases, the imaginary part of the eigenvalue 

decreases. There is an equal amount with an opposite sign 

for the real parts of the eigenvalue from this velocity on. Its 

positive root causes divergence instability in the system. 

The velocity in which the imaginary and real part of the 

eigenvalue get zero is called the critical velocity of the 

fluid. It is observed that the volumetric percent of carbon 

nanotubes greatly effects on the vibrations and instability of 

the system. As the volumetric percent of carbon nanotubes 

increases, frequency (the imaginary part of the eigenvalue) 

and critical velocity of the fluid increase due to the increase 

of construct’s hardness by the increase in the volumetric 

percent of carbon nanotubes. 

The effect of agglomeration in carbon nanotubes in a 

special part on the imaginary and real part of the eigenvalue 

is shown respectively in Figs. 8 and 9 according to the fluid 

velocity in a dimensionless velocity. As it can be seen, 

accumulation decreases the hardness of the construct so the 

frequency and critical velocity of the fluid will decrease. 

The results in this graph can be very important due to this 

fact that the uniform distribution of the nanotubes is 

impossible in making the nano composite constructs. 

 

Fig. 7 The effect of volume percent of SWCNTs on the real 

part of frequency 

 

 

Fig. 8 The effect of agglomeration of SWCNTs on the 

imaginary part of frequency 

 

 

Fig. 9 The effect of agglomeration of SWCNTs on the real 

part of frequency 

 

 

Consequently, the less the accumulation in the different 

points, the more the frequency and critical velocity of the 

fluid to reinforce the tube by the nanotubes. 

Figs. 10 and 11 show the effect of volume percent of the 

nanoparticles in the accumulation volume on the frequency 

and damping of the construct based on the fluid velocity, 

respectively. As it can be seen, there is a direct relationship  
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Fig. 10 The effect of volume percent of the nanoparticles in 

the accumulation volume on the imaginary part of 

frequency 

 

 

Fig. 11 The effect of volume percent of the nanoparticles in 

the accumulation volume on the real part of frequency 

 

 

between the changes in the volumetric percent of the 

nanoparticles and accumulation, frequency changes and 

critical velocity of the fluid so that as the volumetric percent 

of the nanotubes increases in the accumulation, the 

frequency and critical velocity of the fluid will increase too. 

In another word, the decrease of the volumetric percent of 

the nanoparticles in the accumulation volume delays the 

instability of the tube caused by the passage of the fluid. 

The effect of thickness to length ratio (γ=h/L) of the tube 

on the imaginary and real part of the dimensionless 

eigenvalue is shown respectively in Figs. 12 and 13 based 

on the velocity of the dimensionless fluid. It can be 

understood that the increase in the thickness-length ratio 

increases the frequency and critical velocity of the fluid 

which is due to the increasing hardness of the system. 

Figs. 14 and 15 show the effect of thickness to radius 

ratio of the tube (β=h/R) on the frequency and damping of 

the construct against the dimensionless velocity of the fluid. 

The results show that as this ratio increases, so does the 

hardness of the tube so the frequency and critical velocity of 

the fluid increase. 

The effect of volume percent of iron oxide nanoparticles 

in the fluid on the vibrations of the construct is discussed in 

 

Fig. 12 The effect of thickness to length ratio on the 

imaginary part of frequency 

 

 

Fig. 13 The effect of thickness to length ratio on the real 

part of frequency 

 

 

Fig. 14 The effect of thickness to radius ratio on the 

imaginary part of frequency 

 

 

this section. Figs. 16 and 17 shows the imaginary part of the 

dimensionless eigenvalue and the real part of the 

dimensionless eigenvalue against the dimensionless 

velocity of the fluid, respectively. It is observed that as the 

volumetric percent of the iron oxide nanoparticles increases 

in the fluid, the frequency and the critical velocity of the 
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Fig. 15 The effect of thickness to radius ratio on the real 

part of frequency 

 

 

Fig. 16 The effect of volume percent of iron oxide 

nanoparticles in the fluid on the imaginary part of frequency 

 

 

fluid will increase because as the volumetric percent of iron 

oxide particles increases in the fluid, the velocity of the 

fluid decreases and the damping caused in the construct 

decreases. So, as the damping decreases, its frequency and 

critical velocity increase. 

The effect of the viscoelastic area is considered as the 

vertical spring (Winkler), shear layer (Pasternak) and 

damping ratio. Four aspects are considered to show this 

effect: 

• without viscoelastic area 

• Visco-Winkler area without considering Pasternak 

shear module 

• orthotropic Visco- Pasternak area    

• Visco- Pasternak area 

The effect of viscoelastic medium on the frequency and 

damping of the construct is shown respectively in Figs. 18 

and 19 against the dimensionless velocity of the fluid. It is 

observed that the bed in which the system is located 

considerable effects on its vibrations and instability of the 

system so that if the area is considered viscoelastic, the 

frequency and the critical velocity of the fluid will increase. 

As it can be seen, the critical velocity of the fluid follows 

the following arrangement in the various areas: 

Visco-Pasternak< orthotropic Visco- Pasternak<Visco- 

 

Fig. 17 The effect of volume percent of iron oxide 

nanoparticles in the fluid on the real part of frequency 

 

 

Fig. 18 The effect of viscoelastic medium on the imaginary 

part of frequency 

 

 

Winkler< without area 

The effect of Pasternak area is more than that of 

Winkler generally since it considers the effect of the shear 

layer besides the vertical springs. In addition, the critical 

velocity and frequency of the fluid decrease while using the 

orthotropic area because the shear layer is considered in the 

45°angle. 

The imaginary and real parts of the frequency for the 

eigenvalue are shown in the Figs. 20 and 21 according to 

the velocity of the fluid for different boundary conditions, 

respectively. It is observed that the kind of the support 

severely effects on the instability of the system. As it can be 

seen, there is a less movement freedom for the system with 

the clamped support due to its two bounded ends and 

frequency and critical velocity of fluid is more in it than 

those in the other supports. Generally, the critical velocity 

of the fluid is based on the following order in the different 

border conditions: 

clamped-clamped > clamped-Simple> Simple-Simple 

 

 

7. Conclusions 
 

This research analyzed the vibrations and instability in a  
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Fig. 19 The effect of viscoelastic medium on the real part of 

frequency 

 

 

Fig. 20 The effect of different boundary conditions on the 

imaginary part of frequency 

 

 

polymer tube reinforced by the carbon nanotube located in a 

viscoelastic area with fluid current mixed with the 

nanoparticles. Mori- Tanaka model is used to model and 

determine composite equivalent mechanical properties and 

to consider the accumulation property. Navier-Stocks 

equation is applied to extract the force caused by the fluid 

in the tube and mixing law was used to consider the effect 

of nanoparticles of the fluid. The movement equations were 

extracted using nonlinear strain- shift equation, tension- 

strain equation, energy method and Hamilton principle. 

This research is aimed to analyze the effect of volumetric 

percent of carbon nanotube, tube accumulation, viscoelastic 

area, volumetric percent of the nanoparticles in the fluid, 

fluid velocity and the geometric parameters of the tube on 

the frequency and critical velocity of the fluid. The final 

results of this research are: 

• Considering 14 network points leads to the 

convergence of the results 

• The imaginary and real parts of the eigenvalue reach 

zero simultaneously in a special amount of the fluid 

velocity called the critical velocity. 

• As the volumetric percent of carbon nanotubes 

increases, the frequency (the imaginary part of 

eigenvalue) and critical velocity of the fluid will 

increase too. 

 

Fig. 21 The effect of different boundary conditions on the 

real part of frequency 

 

 

• Considering accumulation decreases the hardness of 

the construct and so do the frequency and critical 

velocity of the fluid. 

• The more the volumetric percent of the nanotubes in 

accumulation, the more the frequency and critical 

velocity of the fluid. 

• The increase of thickness- length ratio causes the 

increase of the frequency and critical velocity of the 

fluid. 

• As the thickness- radius ratio of the tube increases, the 

tube hardness increases too and the frequency and 

critical velocity of the fluid increase. 

• As the volumetric percent of the iron oxide 

nanoparticles increases in the fluid, the frequency and 

critical velocity of the fluid will increase. 

• The effect of Pastrnak area is more than that of 

Winkler since it considers the effect of the shear layer 

besides that of the vertical spring. 

• The frequency and critical velocity of the fluid get less 

while using the orthotropic area because the shear layer 

is considered 45°. 

• There are less movement freedom and higher 

frequency and critical velocity in the fluid in the system 

with the tight supports than the other supports due to 

being bounded in two ends.  
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