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1. Introduction 
 

The greatness of the engineering constructions 

constitutes difficulties in experimental work. For this 

purpose, small scale models of the systems are created and 

experimental studies are carried out. There are many studies 

conducted within the scope of this subject in literature. The 

effects of gun voices to structures have been investigated in 

around the military area by Jiang and Shu (2005). For this 

purpose, using scaled models created in the laboratory 

environment with different acceleration records on the 

shake table and examined the changes in dynamic 

characteristics. Oliveira and Faria (2006) aimed to 

determine damage levels for arch dams in a study 

conducted using small scale models. Ramu et al. (2013) 

demonstrate the applicability of the similarity theory on 

designed models small scale. Three comparisons were made 

in the study, on the brink of the validity of analytical, 

numerical and experimental analysis. Lu et al. (2015) 

investigated the earthquake performance of a multi-story 

structure with steel reinforced columns and a concrete core 

tube. A scaled model was constructed to test the 54-story 

structure with 242 m height at the shaking table and the 

structural performance under different earthquakes was 

examined. In this study, a scaled model and prototype of the 

drilling rig located on the deck are produced to investigate 

the numerical estimation of the pressure distribution of 
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large oil drilling tools and the elastic deformation under 

continuous loads by Shehadeh et al. (2015). Maximum 

stresses and displacements of prototype and model exposure 

to loads were calculated according to the parameters 

obtained from the Buckingham Π theorem. Scaled models 

studies carried out on dams, one of the important 

engineering structures (Zhou et al. 2000, Wang and Li 

2006, Wang and He 2007, Wang and Li 2007, Sevim et al. 

2011, Sevim et al. 2012, Sevim et al. 2013, Sevim et al. 

2014) 

Buckingham pi Theorem is the most common use in 

dimensional analysis used to establish similarity 

relationships between systems. There are many theoretical 

studies conducted using Buckingham Pi Theorem. Scale 

factors obtained by dimensional analysis is reflected the 

relation between prototype and model. In this study, 

Carpinteri and Corrado (2010) examined structural 

behaviors such as cracking or fracture of concrete and 

yielding or rupture of reinforced during the loading process 

in reinforced concrete beams subjected to bending effect by 

means of dimensional analysis. Ramu et al. (2010) aimed to 

develop the rules of scaling with respect to Buckingham Π 

Theorem and the similarity relationships. It is stated that 

scaled models similar to prototype can be created and use 

load. Balaguer and Claramonte (2011), in the work 

presented, investigated importance, advantages and the 

goals of dimensional analysis in detailed. It has correlated 

in between prototype and scaled models with the help of 

dimensional analysis that created with Buckingham Pi 

Theorem. In those studies, is stated that provide enable in 

experimental study fields of scaled models that used in 

many scientific area (Ghosh 2011). Datin and Prevatt 
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(2013) aimed to improve the parts related to the codes in 

order to increase the wind resistance of the structures in the 

hurricane regions. To investigate the structural effects of the 

wind load, 1/3 scale wooden roofs were produced from 

lightweight wooden rods. The Buckingham theorem is used 

to establish the similarity between the prototype and the 

model roofs. Balawi et al. (2015) aimed at examining the 

scale law based on the theory of similarity in plates and 

beams under low velocity impact and static loading. In this 

study, in order to ensure compliance with prototypes, the 

scale factor is presented as the ratio of each change in the 

scaled models. Hafeez and Almaskari (2015) are stated that 

studies on the behavior of composite tubes under lateral 

loads have been continuing for many years, but studies 

investigating the effect of scaling using cylindrical 

specimens are not sufficient. Tubes that can be damaged 

under lateral load used Buckingham Theorem for the 

purpose of dimensional analysis. 

Concrete load bearing system elements have been 

studied by taking the scaling principles into consideration. 

In the scope of the study, 1/2, 1/5 and 1/10 scaled models of 

column, frame, beam and cantilever prototypes were 

created. Dynamic characteristics and structural behavior 

such as displacements, stresses and strains between 

prototypes and models were investigated. 

 

 

2. Scaling 
 
2.1 Scope and usage area of the scaling 
 

Scaling is a work that can be done in every area, by 

shrinking large elements or systems and by enlarge small 

elements or systems in a certain way to make them easy to 

work on. The main purpose of the scaling concept used in 

many areas is basically the same, and the main purpose is to 

simplify the work by making the hard and time-consuming 

systems smaller and simpler to test. The study areas of Civil 

Engineering are multi-story buildings, dams, airports etc. 

examining and testing such prototypes are a very expensive, 

time-consuming and difficult-to-control process. For this 

reason, it is very easy and convenient to do the desired work 

on the small models created by scaling the prototype. Due 

to the similarity between the prototype and the model, the 

results obtained in the small model will be interpreted so 

that the behavior of the prototype can be predicted. There 

are basically two types of scaling; 

√ Scaling physical dimension of element or system 

√ Scaling the internal behavior of the element or system 

 

2.2 Similarity between systems 
 

The aim of similarity analysis is to obtain design 
information of a large and expensive system by correlating 
the information obtained from experiments on a small and 
inexpensive model. The similarity conditions of the systems 
require that the relevant system parameters be the same, and 
these systems are controlled by the creation of special 
equations. Thus, equality or relativity of variables written 
for a system is valid for all systems. Each variable in a 
model is proportional with the matching variable in the 

prototype. 

 
2.3 Dimensional analysis 

 

The solution of the problems is obtained with respect to 

the results of the analytical and experimental studies. First 

of all, mathematical model is applied to obtain the solution 

of the problem. Experimental measurements are then made 

to check the analytical results. Experimental studies, which 

are an important step in comparing results and confirming 

correctness, require analysis of appropriate experimental 

data and careful examination. The main purpose of these 

experimental studies is having more knowledge with the 

least experiment. This purpose is being used in dimensional 

analysis as an important means of reaching. Dimensional 

analysis; is a method used to reduce the number and 

complexity of experimental variables affecting a physical 

phenomenon. If an event is based on n dimensional 

variables, this event can reduce to k (k<n) dimensionless 

variables with an appropriate dimensional analysis (URL-

1). 

Any physical state can be expressed together with size 

and unity. While the dimension describes the measurable 

physical size, the unit is important in terms of describing 

the intensity of this physical size. When doing dimensional 

analysis, character is much more important than the 

quantity of physical size. For this reason, only dimensions 

are taken into consideration in dimensional analysis. The 

size of each physical size is expressed by the size and 

symbol of the basic sizes (Table 1). Thus, all dimensions 

can be collected and processed in the same way. 

In its broadest terms, there are two main ways to relate 

the model to the prototype. Similarity conditions are 

derived from the relevant field equations if the system has a 

mathematical model or by dimensional analysis if the 

mathematical model of the system is not valid. In 

dimensional analysis, all parameters and variables that 

affect the behavior of the system have to be known. The 

obtained equation is the dimensionless product of system 

parameters and variables. Thus, similarity conditions can be 

created on the basis of the generated equation. 

 

2.4 Buckingham Π theorem 

 

Many methods are used to form equations by 

dimensional analysis. One of the most widely used method 

is the Buckingham Π Theorem. If the number of physical 

quantities (velocity, density, etc.) in a system is n and the 

number of basic dimensions (M, L, T) constituting these 

physical quantities is r, there is k=n−r dimensionless 

number (Π group) that defining the system. In other words, 

the physical quantities that make up a system (Ramu 2010) 

 1 2 3 i nf A ,A ,A ,...,A ,...,A 0   (1) 

When represented by the Eq. (1), indicating the 

relationship between variables Π groups 

( )1 2 3 i n rF Π ,Π ,Π ,...,Π ,...,Π 0-= =  (2) 

can be represented by the Eq. (2). Each Π group is 

determined to be a function of r repeating variables that  
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Table 1 Identification of according to M, L, T and F, L, T of 

the units of selected some sizes 

 FLT System MLT System 

Gravity LT-2 LT-2 

Angle F0L0T0 M0L0T0 

Area L2 L2 

Density FL-4T2 ML-3 

Force F MLT-2 

Frequency T-1 T-1 

Length L L 

Mass FL-1T2 M 

Modulus of Elasticity FL-2 ML-1T-2 

Moment of force FL ML2T-2 

Moment of inertia L4 L4 

Pressure FL-2 ML-1T-2 

Specify Weight FL-3 ML-2T-2 

Strain F0L0T0 M0L0T0 

Stress FL-2 ML-1T-2 

Surface Stress FL-1 MT-2 

Time T T 

Velocity LT-1 LT-1 

Volume L3 L3 

 

 

directly affect the physical problem and at least one 

different variable. In accordance with the Buckingham Π 

theorem, the following considerations must be taken into 

consideration when choosing r variables repeating in all Π 

groups; 

• Repeating variables must be dimensional 

• The size of any of the repeating variables must not be a 

combination of the size of the other repeating variables. 

For example; if r1=L, r2=T
-1

, cannot be r3=LT
-1

 

• Each of the base dimensions (M, L, T) must be present 

in at least one of the repeating variables. For example; 

cannot be r1=L
3
T

-1
, r2=LT

-1
 and r3=L. Because there is 

no M in the repeating parameters 

According to Buckingham Π theorem; 

√ Base quantity: Quantities in law of motion (length, 

time, force)  

√ Basic dimensions: Dimensions of base quantity 

In Buckingham's theorem, the size of the quantities is 

obtained either by the "F, L, T" dimensional system (force, 

length, time) or the "M, L, T" dimension system (mass, 

length, time). Table 1 show that some of the sizes can be 

compared with these systems. Among these basic 

dimensions, the use of "M, L, T" is more common and r=3 

is used. 

There are some situations that need to be taken into 

account choosing the parameters when forming the 

dimensionless Π groups. Selection unnecessary parameters 

that are not important for the physical problem can lead to 

the formation of an extra Π group. On the other hand, is not 

selecting parameters that are important for the physical 

problem can lead to deficiency an important Π group will 

be overlooked and the interpretation of the results may be 

lacking. 

3. Obtaining similarity formulas of structural 
behaviour by dimensional analysis and 
mathematical formulas 

 
3.1 Similarity formulas with dimensional analysis 
 

Dimensional analysis is carried out taking into 

consideration the points described related to Buckingham Π 

Theorem. The purpose here is to show the relationship 

between the prototype and the model. In order to compare 

the results of the dimensional analysis, it is first to 

formulate the frequency change in the columns with the 

cross-sectional dimensions and height a, b, c, respectively, 

by the Buckingham Π theorem. In the calculation of the 

frequency value, Eq. (3) and different forms of this equation 

are used. 

n

n n 3

k XEI
f , , k

2 m h


   


 (3) 

Parameters related to these equations; is state that M 

mass, k rigidity, π dimensionless parameter, E modulus of 

elasticity, I moment of inertia and X constant value. The 

steps of process applied according to the Buckingham Π 

theorem are presented below. 

 

Step 1: Determining the number of parameters (n) 

The parameters determined according to the frequency 

formula and the units of these parameters in terms of M, L, 

T are given in Table 2. There are total 8 parameters (n=8). 

 

Step 2: Identification of the limiter number (r) 

The rules expressed in the selection of r, which is the 

number of repeating parameters, are taken into account and 

is chosen as r=(E, h, m). 

 

Step 3: Determining the number of non-repeating 

parameters (k) and Π-group number 

There are total of 5 Π-groups for k=n−r. This 

expression, when represented by the Eq. (2) 

 1 2 3 4 5f , , , , 0        (4) 

Eq. (4) is obtained. In this way, each non-repeating 

parameter π1=f, π2=a, π3=b. π4=I and π5=k, is determined. 

 

Step 4: Calculation of non-repeating variables 

depending on repeating variables. 

Each non-repeating parameter can be obtained as 

follows 

 

 

 

 

 

a b c

1

a b c

2

a b c

3

a b c

4

a b c

5

f . E .h .m

a. E .h .m

b. E .h .m

I. E .h .m

k. E .h .m

 

 



  


  


  

 (5) 

In order to form groups (Eq. (5)) in this way to be 

dimensionless, the basic condition of M
0
L

0
T

0
 must also be  
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Table 2 Identification of according to M, L, T of the units of 

selected parameters 

a b h m E I k f 

L L L M ML-1T-2 L4 MT-2 T-1 

 

 

provided. 

for π1 

 

 

a b c

1

a
0 0 0 1 2 b c

a. E .h .m

M L T L. ML T .L .M 

 



 

 (6) 

expressions are obtained (Eq. (6)). The coefficients of a, b, 

c are obtained when the equation is solved considering the 

fact that the upper force of the same basic dimension is the 

same on both sides of the equation. When each parameter is 

calculated in all Π-groups, the final part is obtained as 

follows. 

   

   

   

   

   

1 model 1 prototype

2 model 2 prototype

3 model 3 prototype

4 model 4 prototype

5 model 5 prototype

  

  


   


   


   

 (7) 

With Eq. (7), the relation between prototype and model is 

established and solutions of Π-groups are made 

respectively. 

for π1=f. (E,h,m) 

 

 

a b c

1

a
0 0 0 1 1 2 b c

0 0 0 a c a b 2a-1

f . E .h .m

M L T T . ML T .L .M

M L T M .L .T

  

   

 



 


 


 (8) 

2

1
a , 

2

1
c  and 

2

1
b  are obtained with Eq. (8). 

When the relevant expressions are written to 

1 1 1

2 2 2
1

1

f . E .h .m ?

f m

E h

    
   

 



  


 (9) 

expressions are obtained (Eq. (9)). 

π1(model)= π1(prototype) 

When considering that m and p represent the model and 

the prototype, respectively, it's the expression of the 

equation 

p pm m

m m p p

p m mm

p m p p

f mf m
 

E h E h

m E hf

f m E h







 


 (10) 

it occurs. Eq. (10) is shown as the scale factor of the  

Table 3 Scale factors 

m

p

f

f
 p m m

m p p

m E h

m E h

 

m

p

a

a
 1

S
 

m

p

b

b
 1

S

 

m

p

I

I
 

4

1

S

 

m

p

k

k
 1

ES

 

 

 

frequency. Also 

p m m

m p

m p p

m E h
f f

m E h
  (11) 

The frequency of the model with the equation is 

obtained depend on the prototype frequency and the 

parameters (Eq. (11)). The same procedures for π2, π3, π4 

and π5 are repeated and each of the scale factors presented 

in Table 3. 

In Eq. (11) 

m

p

m

p

m

p

h 1
;Geometryscale

h S

E 1
;Materialscale

E E

m 1
;Massscale

m M


 





 





 (12) 

If expressions are given in Eq. (12) are taken into 

consideration and written in their places 

m p

1 1
f M f

E S
  (13) 

General relation is obtained. 

 

For example; 

• If the mass is assumed to be constant and only the 

geometry is scaled 

m

p

m

p

m

p

h 1

h S

E 1
1

E E

m 1
1

m M


 





  


 


 (14) 

expressions are obtained, and when these expressions Eq. 

(14) are written in the Eq. (13) 

m p

1
f f

S
  (15) 

connection is obtained (Eq. (15)). 
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• If only geometry scaling is done by considering mass 

change 

m

p

m

p

m

3

p

h 1

h S

E 1
1

E E

m 1 1

m M S


 





  


 


 (16) 

expressions are obtained, and when these expressions Eq. 

(16) are written in the Eq. (13) 

3

m p

m p

1
f S f

S

f S.f


 


 

 (17) 

connection is obtained (Eq. (17)). 

 

3.2 Similarity formulas with mathematical formulas 
 

According to different scaling states, the change of the 

general formula is obtained by Buckingham Π theorem. 

With the aid of the mathematical formula of frequency, 

dimensional analysis is carried out with different 

combinations according to geometric, mass and material 

scales and the results obtained are examined comparatively. 

• The solution of the column prototype with the help of 

the mathematical formula is summarized as follows; 

Column dimensions a b l m    

Other data in the system p,E ,g   

System rigidity 
p

3

12E I
k

L
   

The corresponding solution can be made as follows and 

 

3

3

3 3
p

p p

3 3 3

3 2

p p

n 3 4

2

pn

n prototype 4

ab
I

12

ab
12E 12E ab E ab12k

L 12L L

abL
m

g

E ab E b gk g

m abLL L

E b g 1
f

2 2L


 




  

 

 


   
 


 

  

 
(18) 

Eq. (18) is obtained. For the different scaled model 

situations of the column, the following steps are performed 

with the help of mathematical model. 

• In the case of only 1/S geometry scaling by 

considering the mass change; 

Column dimensions 
a b l

m
S S S

    

Other data in the system p,E ,g   

as considering data, the corresponding solution can be made 

as follows and 

 

3

3

4

3

3 3 3
p 4

p p

3 4 3 3

3 3

3 23
p p

n 3 4

2

pn

n Model 4

a b

abS S
I

12 S 12

ab
12E 12E ab S E ab 1S 12k

S12S L LL

S

abL

abL abL 1SSSm
g gS g S

E ab E b gk 1 g S
S

m S abL 1L L

E b g 1
f S

2 2L

 
 
 

 

  
 
 
 


 

  

   
 


 

 

 

(19) 

Eq. (19) is obtained. By establishing a relationship 

between the prototype and the scaled model of the column 

 

 

n Model

n prototype

n(m) n(p)

f S

f 1

f Sf


 




 

 (20) 

equality is reached (Eq. (20)). 

• If mass is assumed to be constant and only 1/S 

geometry scaling is considered; 

Column dimensions 
a b l

m
S S S

    

Other data in the system p,E ,g   

as considering data, the corresponding solution can be made 

as follows and 

 

3

3

4

3

3 3 3
p 4

p p

3 4 3 3

3 2

p p

n 3 4

2

pn

n Model 4

a b

abS S
I

12 S 12

ab
12E 12E ab S E ab 1S 12k

S12S L LL

S

abL
m

g

E ab E b gk 1 g 1

m S abLL L S

E b g 1 1
f

2 2L S

 
 
 

 

  
 
 
 




   
 


 

 

 
(21) 

Eq. (21) is obtained. By establishing a relationship 

between the prototype and the scaled model of the column 

 

 

n Model

n prototype

n(m) n(p)

1
f S

f 1

1
f f

S



 





 (22) 
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Equality is reached (Eq. (22)). 

• If only material scaling is considered; 

Column dimensions a b l m    

Other data in the system 
m,E ,g   

as considering data, the corresponding solution can be made 

as follows and 

 

3

3

3 3m
m m

3 3 3

3 2

m m

n 3 4

2

n m

n Model 4

ab
I

12

ab
12E

12E ab E ab12k
L 12 L L

abL
m

g

E ab E b gk g

m abLL L

E b g 1
f

2 2L


 





   

 

 


   
 



  
  

 (23) 

Eq. (23) is obtained. By establishing a relationship 

between the prototype and the scaled model of the column 

 

 

n Model m

n prototype p

m

n(m) n(p)

p

f E

f E

E
f f

E


 





 


 (24) 

Equality is reached (Eq. (24)). 

• If mass is assumed to be constant and 1/S geometry 

and material scaling are taken into account; 

Column dimensions 
a b l

m
S S S

    

Other data in the system 
m,E ,g   

as considering data, the corresponding solution can be made 

as follows and 

 
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(25) 

Eq. (25) is obtained. By establishing a relationship 

between the prototype and the scaled model of the column 

 

 
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n Model
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Equality is reached (Eq. (26)). 

• By considering the mass change, in the case of 1/S 

geometry and material scaling; 

Column dimensions 
a b l

m
S S S

    

Other data in the system 
m,E ,g   

as considering data, the corresponding solution can be made 

as follows and 

 
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(27) 

Eq. (27) is obtained. By establishing a relationship 

between the prototype and the scaled model of the column 

 

 

n Model m m

n(m) n(p)

pn prototype p

f E S E
f S f

f EE
    (28) 

Equality is reached (Eq. (28)). The frequency formulas 

obtained according to different scale types using the 

equations and expressions tried to be explained in detail 

above are summarized in Table 4. 

 

 

Table 4 Frequency formulas according to scale types 

Scale Types Formulas 

Geometry n(m) n(p)

1
f f

S
  

Geometry (constant mass) n(m) n(p)f Sf
 

Material 
m

n(m) n(p)

p

E
f f

E


 

Geometry and material (constant mass) 
m

n(m) n(p)

p

E1
f f

ES


 

Geometry and material 
m

n(m) n(p)

p

E
f S f

E
  
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When made work and the obtained equations are 

evaluated, it is seen that the frequency relations obtained 

from Buckingham Π theorem and field equations are the 

same. In the most general way, when is written prototype 

and model data in the Eq. (10), the frequency value of the 

scaled model is obtained. It is also possible to convert the 

data into different formats. When conversion is done for 

mass 

p p p

m m m

m V.

m V .

m V .

 


  


  

 (29) 

If the expressions (Eq. (29)) are written in Eq. (10) 

p p m m

m p

m m p p

V E h
f f

V . E h





 (30) 

Eq. (30) is obtained. When converting for volume 

3

p p p p

m m m m

V a.b.h (br )

V a .b .h

V a .b .h




 


 

 (31) 

If the expressions (Eq. (31)) are written in Eq. (10) 

p p p p m m

m p

m m m m p p

p p p p m m

m p

m m m m p p

a .b .h . E h
f f

a .b .h . E h
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 
 
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 (32) 

Volume scale factor m

p

h 1

h S
  is written in formula 

obtained with Eq. (32) 

3
p m

m p

m p

p m

m p

m p

ES 1
f f

1 E S

E
f S f

E



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

 
 
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 (33) 

Eq. (33) is obtained. Conclusions can be obtained with 

different density values γ in formula obtained. 

The weight of the build varies with the scale. In the 

scale study, the constant mass is formed by adding to the 

structure as extra load of the difference the mass formed by 

volume reduction. Different equations can be obtained by 

keeping the desired parameter scaled or fixed. 

The equations obtained by using the column are 

generalized by simplifying the system specific coefficients 

and obtaining the basic parameters, and these equations can 

be used in every system. 

In order to obtain the displacement relations, similarity 

conditions were formed according to different scale types 

using mathematical models. Using the general displacement 

equation, the relationship between the prototype and the 

scaled model for the column 

3

F K.U

F V.

12EI
k

L



 



 
(34) 

using the expressions (Eq. (34)), for prototype 

p p

p p p3

p

12E I
V . U

L
   (35) 

Eq. (35) is obtained. For model 

m m

m m m3

m

12E I
V . U

L
   (36) 

Eq. (36) is obtained. When 
p

m

U

U
 similarity condition is 

applied 

3

p m m p p p

3

m p p m m m

U E I L V

U E I L V





 (37) 

Eq. (37) is obtained. When the scale factor for the 

moment of inertia is taken as S
4
 

p p p3m

4

m p m m

p p pm

m p m m

U VE 1
S

U E VS

U VE 1

U E S V

 
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 
 

 (38) 

A general similarity formula is obtained for the 

displacement (Eq. (38)). In the equation, when the scale 

factor for volume S
3
 is written 

p p3m

m p m

p m

m p2

m p

U E 1
S

U E S

E 1
U U

E S

 
 

 


 
 

 (39) 

equation is obtained. The displacement value of the scaled 

model is obtained by writing the prototype displacement 

values in Eq. (39). To some different types of scaling, the 

corresponding formulas are summarized in Table 5. 

 

 

Table 5 Displacement formulas according to scale types 

Scale Types Formulas 

Geometry m pS    

Geometry (constant mass) m p2

1

S
  

 

Material 
p

m p

m

E

E
  

 

Geometry and material (constant mass) 
p

m p

m

E
S

E
  

 

Geometry and material 
p

m p2

m

E 1

E S
    
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(a) Column (b) Frame 

  
(c) Simple beam (d) Cantilever beam 

Fig. 1 Finite element models of load bearing systems 

 

Table 6 Size properties of load bearing systems 

Load 

Bearing 

Systems 

System Dimensions (m) 

Column Section Height Beam Section Span 

Column 0.5 0.5´  3 ---- ---- 

Frame 0.5 0.5´  3 0.3 0.5´  3 

Cantilever 

Beam 
---- ---- 0.5 0.5´  3 

Simple 

Beam 
---- ---- 0.5 0.5´  3 

 

 

4. Calculation of dynamic characteristics and 
structural properties of load bearing systems 

 

4.1 Finite element analysis 
 

Finite element models of selected columns, frames, 

simple beams and cantilever beam models are created with 

SAP2000 (2016) program in order to obtain the frequency 

and displacement of the structural system elements by using 

the finite element method. In order to evaluate the results 

obtained under different scale values, the corresponding 

processes were carried out with consideration of the 1/2, 1/5 

and 1/10 scale situations. In this way, the results of the 

finite element analysis obtained for the five different scaling 

states of the related systems are compared with the 

theoretical solutions calculated by using mathematical 

models. The finite element models generated by Sap2000 

program are shown in Fig. 1. 

The acceptance of bulk mass, which is taken into 

account during the mathematical modelling, is also taken 

into account during the finite element analysis. 

In the study, it was observed that the results obtained on 

the simple beam and cantilever beam elements are close to 

each other. In order to further improve the obtained results, 

singular forces representing their own weight were applied 

to the center of the simple beam span and to the cantilever 

beam end. Table 6 gives the dimension properties of the 

selected systems. The acceptance of bulk mass, which is 

taken into account during the mathematical modelling, is 

also taken into account during the analysis of the finite 

elements. 

In the study, it was observed that the results obtained on 

the simple beam and cantilever beam elements are close to 

each other. In order to further improve the obtained results, 

singular force representing weight of structure is applied to  

Table 7 Modulus of elasticity values of concrete class 

Concrete 

Classes 
E (N/mm2) Fck (N/mm2) 

Calculated E 

(N/mm2) 

C14/16 26000 14 26160.38651 

C16/20 27000 16 27000.00000 

C18/22.5 27500 18 27788.58223 

C20/25 28000 20 28534.44185 

C25/30 30000 25 30250.00000 

C30/37 32000 30 31800.98312 

C35/45 33000 35 33227.25930 

C40/50 34000 40 34554.80479 

C45/55 36000 45 35801.66278 

C50/60 37000 50 36980.97039 

 

 

the simple beam and the cantilever beam. Table 6 show that 

the dimension properties of the selected systems. 

C20/25 concrete is used in all the load bearing systems 

given in Fig. 1 and the unit volume weight of concrete is 

taken as 24,0345 kN/m
3
. For the Modulus of Elasticity 

value, the numerical values calculated using Eq. (40) 

specified in TERDC (2007) are taken into account. For 

different concrete classes, the Modulus of Elasticity values 

calculated using Eq. (40) are given in Table 7. 

2

ckE 3250 f 14000(Unity N / mm )= +  (40) 

The scaling of the Modulus of Elasticity has been taken 

into account with scaling of the material property. For 

example, for C20/25 concrete class, the strength 

corresponding to a 1/10 scale concrete is 2.0 N/mm
2
. The 

corresponding Modulus of Elasticity is obtained at 

Em=18596194.08 kN/m
2
 using Eq. (40). 

It has been observed that there are certain differences 

between the dynamic characteristic values obtained from 

the modal analysis results of the systems modelled in 

SAP2000 program and the values obtained as the result of 

mathematical formula. In order to reduce the specified 

differences to a minimum level, the model of the finite 

element mesh is modified and the most suitable model to 

improve the results is obtained. In the scope of the study, 

frequency, period, mode shape and displacement values are 

obtained. The obtained values are presented in next chapter. 

 

4.2 Analytical solution 
 

The frequency and displacement values of these systems 

are obtained analytically using mathematical models of 

columns, frames, simple beams and cantilever beams. The 

results obtained are explained in detail below on the 

cantilever beam example. The steps of calculation of the 

frequency value obtained as a result of the calculations 

performed considering the prototype and the 1/2 scaled 

model of the cantilever beam are presented as follows: 

 

The prototype data of the cantilever beam 

Dimensions 0.5 0.5 3m   

Other data in the system 
324.0345kN / m   

 
2

pE 2853441kN / m  
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2g 9.81m / s  

System rigidity 
p

3

3E I
k

L
  

The solution steps taken considering the above 

mentioned data are as follows. With the help of frequency 

equations 
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 (41) 

frequency value is obtained (Eq. (41)). 

 

1/2 geometry and mass scaling model data of the 

cantilever beam 

Dimensions 0.25 0.25 1.5m   

Other data in the system 
324.0345kN / m   

 
2

pE 2853441kN / m  

 
2g 9.81m / s  

System rigidity 
m

3

3E I
k

L
  

The solution steps taken considering the above 

mentioned data are as follows. With the help of equation 

Hz 17513827.30
2

5959854.189

2

rad/s 5959854.189
2296875.0

493344.8256

m/kNs 2296875.0
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(42) 

frequency value is obtained (Eq. (42)). Using the obtained 

geometric and mass scale similarity formula, the frequency 

value of the model obtained from the frequency value of the 

prototype 

0000.2
087564.15

17513827.30

)(

)(


p

m

n

n

f

f
 (43) 

is obtained (Eq. (43)). The frequency values of the other 

load bearing systems are presented in next chapter. 

The steps in the displacement calculation for the 

prototype and the 1/2 scaled model of the cantilever beam 

are as follows; 

 

The prototype data of the cantilever beam. 

Dimensions 0.5 0.5 3m   

Other data in the system 
324.0345kN / m   

 
2

pE 2853441kN / m  

System displacement 
3PL

3EI
   

The solution steps taken considering the above 

mentioned data are as follows. With the help of 

displacement equation 
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 (44) 

displacement value is obtained (Eq. (44)). P load according 

to bulk mass acceptance is applied as system weight. 

 

1/2 geometry and mass scaling model data of cantilever 

beam  

Dimensions 0.25 0.25 1.5m   

Other data in the system 
324.0345kN / m   

 
2

pE 2853441kN / m  

System displacement 
3PL

3EI
   

The solution steps taken considering the above 

mentioned data are as follows. With the help of equation 

mm 18.2

m 00218324.0
4255208333.3285344413

5.13253234375.2

kN 253234375.20345.245.125.025.0
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Displacement value is obtained (Eq. (45)). P load 

according to bulk mass acceptance is applied as system 

weight. Using the obtained geometric and mass scale 

similarity formula, the displacement value of the model 

obtained from the displacement value of the prototype 

0000.2
09.1

18.2


p

m




 (46) 

is obtained (Eq. (46)). The displacement values of the other 

load bearing systems are presented in next chapter. 

 

4.3 Comparison of results 

 

The frequency values of the all load bearing systems are 

presented in detail in Tables 8-10 for different scaling types 

of the results of finite element analysis and mathematical 

formula. 

As can be seen from the results, for the frequency 

values, the finite element model and the analytical solution 

results give approximate results with the results of the 

similarity formulas generated. The scale factors (fm/fp) 

between different systems with the same scale are constant. 

The scale factors of the different scaling types are be in the 
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position of multiplication. For example, when the scale 

factor of geometric scaling is multiplied by the scale factor 

of material scaling, the scaling factor of the system that is 

scaled as geometric and material is obtained. 

The displacement values of the other load bearing 

systems are presented in detail in Tables 11-12-13 for 

 

 

 

different scaling types of the results of finite element 

analysis and mathematical formula. 

As can be seen from the results, for the frequency 

values, the finite element model and the analytical solution 

results give approximate results with the results of the 

similarity formulas generated. The scale factors (δm/ δp) 

Table 8 The frequency values obtained from a result of analytical solutions and finite element analysis of concrete 

load bearing systems for 1/2 scaled ratio 

Scale 

Types 

Load Bearing 

System Elements 

Finite Element 

Analysis Results (Hz) 

Formula  

Results 
Analytical Results (Hz) 

Formula 

Results 

Prototype 
1/2 Scaled 

Model 

1/2 Scaled 

Model 
Prototype 

1/2 Scaled 

Model 

1/2 Scaled 

Model 

Geometry 

Column 30.1573 20.1049 21.3244 30.1750 21.3370 21.3370 

Frame 26.4612 18.0261 18.7109 26.4653 18.7138 18.7138 

Simple Beam 58.0622 41.0562 41.0562 60.3503 42.6741 42.6741 

Cantilever Beam 14.9363 10.5616 10.5616 15.0875 10.6685 10.6685 

Geometry 

and 

Mass 

Column 30.1573 60.3146 60.3146 30.1750 60.3503 60.3500 

Frame 26.4612 54.0359 52.9224 26.4653 52.9307 52.9306 

Simple Beam 58.0622 116.1243 116.1244 60.3503 120.7004 120.7006 

Cantilever Beam 14.9363 29.8727 29.8726 15.0875 30.1751 30.1750 

Material 

Column 30.1573 27.8169 28.9635 30.1750 27.8333 28.9805 

Frame 26.4612 24.4076 25.4137 26.4653 24.4115 25.4176 

Simple Beam 58.0622 53.5562 55.7637 60.3503 55.6667 57.9612 

Cantilever Beam 14.9363 13.7772 14.3450 15.0875 13.9167 14.4902 

Geometry 

and 

Material 

Column 30.1573 18.5446 20.4803 30.1750 19.6812 20.4923 

Frame 26.4612 16.6272 17.9702 26.4653 17.2616 17.9730 

Simple Beam 58.0622 37.8700 39.4309 60.3503 39.3623 40.9847 

Cantilever Beam 14.9363 9.7420 10.1435 15.0875 9.8406 10.2461 

Geometry, 

Material 

and Mass 

Column 30.1573 55.6339 57.9269 30.1750 55.6667 57.9609 

Frame 26.4612 49.8424 50.8274 26.4653 48.8229 50.8353 

Simple Beam 58.0622 107.1124 111.5274 60.3502 111.3334 115.9223 

Cantilever Beam 14.9363 27.5544 28.6900 15.0875 27.8334 28.9805 

Table 9 The frequency values obtained from a result of analytical solutions and finite element analysis of concrete 

load bearing systems for 1/5 scaled ratio 

Scale 

Types 

Load Bearing 

System Elements 

Finite Element 

Analysis Results (Hz) 

Formula 

Results 

Analytical Results 

(Hz) 

Formula 

Results 

Prototype 1/5 Scaled Model 
1/5 Scaled 

Model 
Prototype 1/5 Scaled Model 

1/5 Scaled 

Model 

Geometry 

Column 30.1573 13.4329 13.4868 30.1750 13.4947 13.4947 

Frame 26.4612 11.8849 11.8338 26.4653 11.8357 11.8356 

Simple Beam 58.0621 25.9662 25.9661 60.3503 26.9895 26.9895 

Cantilever Beam 14.9363 6.6798 6.6797 15.0875 6.7474 6.7473 

Geometry 

and 

Mass 

Column 30.1573 150.7844 150.7865 30.1750 150.8757 150.8750 

Frame 26.4612 133.4035 132.3060 26.4653 132.3267 132.3265 

Simple Beam 58.0622 290.3108 290.3110 60.3503 301.7513 301.7515 

Cantilever Beam 14.9363 74.6818 74.6815 15.0875 75.4378 75.4375 

Material 

Column 30.1573 25.5614 25.5614 30.1750 25.5765 25.5764 

Frame 26.4612 22.4286 22.4286 26.4653 22.4321 22.4320 

Simple Beam 58.0622 49.2136 49.2137 60.3503 51.1530 51.1531 

Cantilever Beam 14.9363 12.6601 12.6600 15.0875 12.7882 12.7882 

Geometry 

and 

Material 

Column 30.1573 11.3858 11.4314 30.1750 11.4382 11.4381 

Frame 26.4612 10.0736 10.0304 26.4653 10.0319 10.0319 

Simple Beam 58.0622 22.0090 22.0090 60.3502 22.8763 22.8763 

Cantilever Beam 14.9363 5.6618 5.6617 15.0875 5.7190 5.7191 

Geometry, 

Material 

and 

Mass 

Column 30.1573 127.8053 127.8070 30.1750 127.8825 127.8820 

Frame 26.4612 113.0732 112.1429 26.4653 112.1605 112.1603 

Simple Beam 58.0622 246.0682 246.0683 60.3503 255.7651 255.7653 

Cantilever Beam 14.9363 63.3005 63.3002 15.0875 63.8412 63.9410 
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between different systems with the same scale are constant. 

The scale factors of the different scaling types are be in the 

position of multiplication. For example, when the scale 

factor of geometric scaling is multiplied by the scale factor 

of material scaling, the scaling factor of the system that is 

scaled as geometric and material is obtained. 

 

 

 

5. Conclusions 
 

In this study, it is aimed to determine the characteristics 

properties and structural behaviors of concrete load bearing 

systems by establishing similarity relation between 

prototype and scaled models. Finite element models of  

Table 10 The frequency values obtained from a result of analytical solutions and finite element analysis of 

concrete load bearing systems for 1/10 scaled ratio 

Scale 

Types 

Load Bearing 

System Elements 

Finite Element 

Analysis Results (Hz) 

Formula 

Results 

Analytical Results 

(Hz) 

Formula 

Results 

Prototype 
1/10 Scaled 

Model 

1/10 Scaled 

Model 
Prototype 

1/10 Scaled 

Model 

1/10 Scaled 

Model 

Geometry 

Column 30.1573 9.5318 9.5366 30.1750 9.5421 9.5421 

Frame 26.4617 8.3219 8.3679 26.4653 8.3691 8.3690 

Simple Beam 58.0621 18.3608 18.3608 60.3503 19.0844 19.0844 

Cantilever Beam 14.9363 4.7233 4.7233 15.0875 4.7711 4.7711 

Geometry 

and 

Mass 

Column 30.1573 301.5732 301.5730 30.1750 301.751 301.7500 

Frame 26.4617 263.2899 264.6170 26.4653 264.6535 264.6530 

Simple Beam 58.0622 580.6217 580.6220 60.3503 603.5027 603.5030 

Cantilever Beam 14.9363 149.3637 149.3630 15.0875 150.8757 150.8750 

Material 

Column 30.1573 24.3455 24.3456 30.1750 24.3599 24.3599 

Frame 26.4617 21.3617 21.3622 26.4653 21.3651 21.3651 

Simple Beam 58.0622 46.8728 46.8728 60.3503 48.7199 48.7199 

Cantilever Beam 14.9363 12.0579 12.0579 15.0875 12.1799 12.1799 

Geometry 

and 

Material 

Column 30.1573 7.6949 7.6987 30.1750 7.7032 7.7032 

Frame 26.4617 6.7182 6.7553 26.4653 6.7562 6.7562 

Simple Beam 58.0622 14.8224 14.8224 60.3503 15.4066 15.4066 

Cantilever Beam 14.9363 3.8130 3.8130 15.0875 3.8516 3.8516 

Geometry, 

Material 

and 

Mass 

Column 30.1573 243.4558 243.4560 30.1750 243.5995 243.5990 

Frame 26.4617 212.5503 213.6220 26.4653 213.6509 213.6510 

Simple Beam 58.0622 468.7277 468.7280 60.3503 487.1992 487.1990 

Cantilever Beam 14.9363 120.5791 120.5790 15.0875 121.7997 121.7990 

Table 11 The displacement values obtained from a result of analytical solutions and finite element analysis of 

concrete load bearing systems for 1/2 scaled ratio 

Scale 

Types 

Load Bearing 

System Elements 

Finite Element 

Analysis Results (mm) 

Formula 

Results 

Analytical Results 

(mm) 

Formula 

Results 

Prototype 1/2 Scaled Model 
1/2 Scaled 

Model 
Prototype 

1/2 Scaled 

Model 

1/2 Scaled 

Model 

Geometry 

Column 0.0038 0.0076 0.0076 0.00379 0.00758 0.00758 

Frame 0.0061 0.01213 0.0122 0.0049 0.00985 0.00980 

Simple Beam 0.0737 0.1000 0.1468 0.0682 0.1364 0.1364 

Cantilever Beam 1.1000 2.2000 2.2000 1.0916 2.1832 2.1836 

Geometry 

and 

Mass 

Column 0.0038 0.0009 0.0009 0.00379 0.000948 0.000975 

Frame 0.0061 0.001516 0.0015 0.0049 0.000559 0.001225 

Simple Beam 0.0737 0.0184 0.0184 0.0682 0.0171 0.0171 

Cantilever Beam 1.1000 0.3000 0.2750 1.0916 0.2729 0.2729 

Material 

Column 0.0038 0.0045 0.0045 0.00379 0.00445 0.00445 

Frame 0.0061 0.007128 0.007169 0.0049 0.005791 0.005759 

Simple Beam 0.0737 0.0860 0.0866 0.0682 0.0802 0.0802 

Cantilever Beam 1.1000 1.3000 1.29288 1.0916 1.2830 1.2830 

Geometry 

and 

Material 

Column 0.0038 0.0089 0.00893 0.00379 0.008909 0.008909 

Frame 0.0061 0.01426 0.01434 0.0049 0.011583 0.011518 

Simple Beam 0.0737 0.2000 0.1732 0.0682 0.1604 0.1603 

Cantilever Beam 1.1000 2.6000 2.5858 1.0916 2.5660 2.5660 

Geometry, 

Material 

and 

Mass 

Column 0.0038 0.0011 0.0011 0.00379 0.001114 0.0011 

Frame 0.0061 0.001782 0.001792 0.0049 0.000657 0.00143 

Simple Beam 0.0737 0.0217 0.0217 0.0682 0.0200 0.0200 

Cantilever Beam 1.1000 0.3000 0.3232 1.0916 0.3208 0.3208 
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selected columns, frames, simple beams and cantilever 

beam systems are carried out with consideration of the 1/2, 

1/5 and 1/10 scale situations with SAP2000 (2016) program 

in order to obtain the dynamic characteristics, displacement, 

stress and strain of the structural system elements by using 

the finite element method. Also, the results of the finite 

 

 

 

element analysis are compared with the theoretical solutions 

calculated by using mathematical models. In order to reduce 

the specified differences to a minimum level, the model of 

the finite element mesh is modified and the most suitable 

model to improve the results is obtained. As can be seen 

from the results, the scale factors (fm/fp and δm/δp) between 

Table 12 The displacement values obtained from a result of analytical solutions and finite element analysis of 

concrete load bearing systems for 1/5 scaled ratio 

Scale 

Types 

Load Bearing 

System Elements 

Finite Element 

Analysis Results (mm) 

Formula 

Results 

Analytical Results 

(mm) 

Formula 

Results 

Prototype 
1/5 Scaled 

Model 

1/5 Scaled 

Model 
Prototype 

1/5 Scaled 

Model 

1/5 Scaled 

Model 

Geometry 

Column 0.0038 0.0190 0.0190 0.00379 0.01895 0.01895 

Frame 0.0061 0.03032 0.0305 0.0049 0.02464 0.02450 

Simple Beam 0.0737 0.4000 0.3685 0.0682 0.3411 0.3410 

Cantilever Beam 1.1000 5.6000 5.5000 1.0916 5.4581 5.4580 

Geometry 

and 

Mass 

Column 0.0038 0.0002 0.0002 0.00379 0.000152 0.000152 

Frame 0.0061 0.000243 0.000244 0.0049 0.000121 0.000196 

Simple Beam 0.0737 0.0029 0.00295 0.0682 0.0027 0.00273 

Cantilever Beam 1.1000 0.0445 0.0440 1.0916 0.0436 0.04366 

Material 

Column 0.0038 0.0053 0.0053 0.00379 0.00528 0.00528 

Frame 0.0061 0.008441 0.00849 0.0049 0.006859 0.00682 

Simple Beam 0.0737 0.1000 0.10258 0.0682 0.0950 0.09493 

Cantilever Beam 1.1000 1.5000 1.53111 1.0916 1.5194 1.5194 

Geometry 

and 

Material 

Column 0.0038 0.0264 0.0265 0.00379 0.026379 0.0264 

Frame 0.0061 0.04221 0.04245 0.0049 0.034293 0.0341 

Simple Beam 0.0737 0.5000 0.5129 0.0682 0.4749 0.4747 

Cantilever Beam 1.1000 7.7000 7.6555 1.0916 7.5972 5.4580 

Geometry, 

Material 

and 

Mass 

Column 0.0038 0.0002 0.0002 0.00379 0.000211 0.00211 

Frame 0.0061 0.0003377 0.00034 0.0049 0.000169 0.00027 

Simple Beam 0.0737 0.0041 0.0041 0.0682 0.0038 0.0038 

Cantilever Beam 1.1000 0.0620 0.0612 1.0916 0.0608 0.0608 

Table 13 The displacement values obtained from a result of analytical solutions and finite element analysis of 

concrete load bearing systems for 1/10 scaled ratio 

Scale 

Types 

Load Bearing 

System Elements 

Finite Element 

Analysis Results (mm) 

Formula 

Results 

Analytical Results 

(mm) 

Formula 

Results 

Prototype 
1/10 Scaled 

Model 

1/10 Scaled 

Model 
Prototype 

1/10 Scaled 

Model 

1/10 Scaled 

Model 

Geometry 

Column 0.0038 0.0379 0.03800 0.00379 0.0379 0.0379 

Frame 0.0061 0.0606 0.0610 0.0049 0.04927 0.0490 

Simple Beam 0.0737 0.7000 0.7370 0.0682 0.6823 0.6820 

Cantilever Beam 1.1000 11.1000 11.000 1.0916 10.9162 10.9160 

Geometry 

and 

Mass 

Column 0.0038 0.000038 0.00004 0.00379 0.000038 0.00004 

Frame 0.0061 0.00006065 0.00006 0.0049 0.000030 0.00004 

Simple Beam 0.0737 0.000737 0.00074 0.0682 0.00068 0.00068 

Cantilever Beam 1.1000 0.0111 0.0110 1.0916 0.01092 0.01092 

Material 

Column 0.0038 0.0058 0.00583 0.00379 0.00582 0.00582 

Frame 0.0061 0.009306 0.00936 0.0049 0.007561 0.00752 

Simple Beam 0.0737 0.1000 0.11309 0.0682 0.10469 0.10465 

Cantilever Beam 1.1000 1.7000 1.6879 1.0916 1.67500 1.67498 

Geometry 

and 

Material 

Column 0.0038 0.0582 0.05830 0.00379 0.058159 0.05820 

Frame 0.0061 0.09306 0.09360 0.0049 0.07561 0.07520 

Simple Beam 0.0737 1.1 1.13090 0.0682 1.04688 1.04650 

Cantilever Beam 1.1000 17.1 16.8790 1.0916 16.7500 16.7498 

Geometry, 

Material 

and 

Mass 

Column 0.0038 0.00005816 0.00006 0.00379 0.000058 0.00006 

Frame 0.0061 0.00009306 0.00009 0.0049 0.000047 0.00007 

Simple Beam 0.0737 0.001131 0.00113 0.0682 0.00105 0.00105 

Cantilever Beam 1.1000 0.01709 0.01688 1.0916 0.01675 0.01675 
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different systems with the same scale are constant. The 

scale factors of the different scaling types are be in the 

position of multiplication. For the characteristic properties 

and structural behaviors, the finite element model and the 

analytical solution results give approximate results with the 

results of the similarity formulas generated. It is seen in this 

study that the characteristic properties and structural 

behavior of the systems can be obtained establishing a 

similarity relation, by establishing small scale models. 
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