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1. Introduction 
 

Self-compacted concrete (SCC), also referred to as self-

consolidating concrete, is one of the recent advances in 

concrete technology with increasing applications. This is a 

fresh concrete mix, developed in Japan in 1988, where the 

concrete is placed without internal or external vibration. 

The concrete is self-compacted with an ability to fill the 

formwork corners and tight areas between steel bars by 

gravity. For this to happen, SCC should be flowable with no 

segregation of coarse aggregates. Usage advantages of SCC 

include producing durable concrete, reduction in labor, 

expedited construction time, elimination of vibration 

processes and equipment, and production of better finished 

surfaces in areas of limited access and heavy reinforcements 

(Sonebi 2004). 

Key components of SCC are similar to those ones used 

in conventional concrete. However, in order to maintain a 

sufficient flow, and cohesion and stability of the mix, an 

increase of the amount of powder materials as mineral 

additives, is usually utilized while manufacturing which 

reduces water-powder ratio. The increase in powder content 

is usually achieved by using pozzolana or less reactive filler 
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materials (Uysal 2012). Selection of most appropriate 

approach for producing SCC typically depends on the 

required strength and characteristics of the hardened 

concrete. With cement being the most expensive 

constituting component of concrete, reducing cement 

content may be considered as an economical alternative. 

Additionally, admixtures may improve particle packing and 

decrease the permeability of concrete which can improve its 

durability (Khayat et al. 2000, Khurana and Saccone 2001, 

Persson 2004). Moreover, certain industrial byproducts can 

be used as filler materials offering cost and environmental 

advantages. Typical examples include limestone, basalt, 

marble powder, fly ash, silica fume, quartz, granulated blast 

furnace slag, and glass (Yahia et al. 1999, Bouzoubaa and 

Lachemi 2001, Sonebi 2004, Ashteyat et al. 2012). 

Concrete is recognized as an excellent thermal-resistant 

material among various construction materials, even though 

a major deterioration of concrete is noticed when it is 

exposed to a high temperature as in the case of fire (Xu et 

al. 2001, Ashteyat et al. 2014). Upon exposure to high 

temperatures, some of the physical and chemical properties 

may be affected in a nonreversible manner causing 

reduction in unit weight, modulus of elasticity, compressive 

strength, and formation of cracks and large pores on the 

surface (Janotka and Mojumdar 2005, Fares et al. 2009). 

Concrete hydration, with an attendant release of heat, 

takes place at a temperature of up to 100
o
C. When 

 
 
 

Predicting residual compressive strength of self-compacted concrete 
under various temperatures and relative humidity conditions 

by artificial neural networks 
 

Ahmed M. Ashteyat
1 and Muhannad Ismeik1,2 

 
1Department of Civil Engineering, The University of Jordan, Amman 11942, Jordan 

2Department of Civil Engineering, Australian College of Kuwait, Safat 13015, Kuwait 

 
(Received January 5, 2017, Revised June 24, 2017, Accepted October 2, 2017) 

 
Abstract.  Artificial neural network models can be successfully used to simulate the complex behavior of many problems in 

civil engineering. As compared to conventional computational methods, this popular modeling technique is powerful when the 

relationship between system parameters is intrinsically nonlinear, or cannot be explicitly identified, as in the case of concrete 

behavior. In this investigation, an artificial neural network model was developed to assess the residual compressive strength of 

self-compacted concrete at elevated temperatures (20-900°C) and various relative humidity conditions (28-99%). A total of 332 

experimental datasets, collected from available literature, were used for model calibration and verification. Data used in model 

development incorporated concrete ingredients, filler and fiber types, and environmental conditions. Based on the feed-forward 

back propagation algorithm, systematic analyses were performed to improve the accuracy of prediction and determine the most 

appropriate network topology. Training, testing, and validation results indicated that residual compressive strength of self-

compacted concrete, exposed to high temperatures and relative humidity levels, could be estimated precisely with the suggested 

model. As illustrated by statistical indices, the reliability between experimental and predicted results was excellent. With new 

ingredients and different environmental conditions, the proposed model is an efficient approach to estimate the residual 

compressive strength of self-compacted concrete as a substitute for sophisticated laboratory procedures. 
 

Keywords:  modeling; artificial neural network; residual compressive strength; self-compacted concrete; temperature; 

relative humidity 

 



 

Ahmed M. Ashteyat and Muhannad Ismeik 

 

temperature exceeds such a value, some dehydration may 

take place with an attendant absorption of heat. Dehydration 

reactions continue to a temperature in excess of 300
o
C. At a 

temperature range of 500 to 700
o
C, more significant 

reactions occur by dehydration of calcium hydroxide and 

decomposition of hydrate calcium silicate. At such 

temperatures, most changes experienced by concrete can be 

considered to be irreversible (Tanyildizi and Cevik 2010). 
SCC features improve the internal structure of the 

material as compared to conventional concrete. However, 
the denser microstructure of SCC may be disadvantageous 
in a situation where SCC is exposed to fire. Experimental 
test results indicate that there is a huge difference between 
the properties of SCC and conventional concrete after being 
subjected to high temperatures as in the case of fire 
(Persson 2004, Annerel et al. 2007, Liu et al. 2008, Fares et 
al. 2009). 

Residual compressive strength (RCS) is an important 

design parameter used to measure the durability of concrete 

when subjected to severe heat. Many investigations on the 

performance of SCC under high temperatures focused on 

RCS of concrete (Annerel et al. 2007, Fares et al. 2009, 

Haddad et al. 2013). Most of the research has shown that as 

the temperature reaches 300
o
C, a mild reduction in RCS is 

observed, however, as the temperature increases, a 

significant reduction in RCS is noticed. In addition, RCS is 

affected by relative humidity at intermediate temperatures 

between 300 and 400
o
C. However, as the temperature 

approaches 600
o
C, the effect of humidity becomes minimal. 

Relative humidity becomes more detrimental to strength at 

values greater than 80% (Haddad et al. 2013). The vapor 

destruction of pore internal system explains the higher 

damage of concrete at a higher relative humidity. The 

drastic reduction in the influence of relative humidity on 

RCS at a temperature greater than 500
o
C is due to the 

damage induced by the destruction of bindery material in 

the hydrated cement (Neville 1996). 

Fibers are often used to overcome the adverse effect of 

fire induced spall ing (Khaliq and Kodur 2011). 

Polypropylene fiber and steel fiber have been used in SCC 

exposed to fire in order to reduce the effect of spalling 

(Persson 2004, Fares et al. 2009, Tao et al. 2010, Ding et al. 

2012). Polypropylene fibers shrink and melt when heated to 

a temperature above 170
o
C and create randomly oriented 

micro and macro channels inside concrete resulting in a 

slightly more porous concrete (Kalifa et al. 2001, Noumowe 

et al. 2006, Khaliq and Kodur 2011). These channels and 

 

 

the higher porosity can contribute to the relief of high 

internal moisture pressures at elevated temperatures thus 

decreasing fire spalling. Addition of steel fibers may 

compensate for the brittle nature and may enhance the 

tensile strength and toughness of SCC before, during, and 

after exposure to high temperatures. Although fibers 

showed an improvement in reducing fire spalling, many of 

the experimental research on SCC showed a decrease in 

RCS of concrete at elevated temperatures (Liu et al. 2008). 

Artificial neural network (ANN) technology, a sub-field 

of artificial intelligence, is often applied to solve various 

civil engineering problems. ANNs are a useful tool for 

information processing and many other applications. Unlike 

linear regression modeling in civil engineering (Ismeik 

2010, Aktas and Ozerdem 2016), ANNs can be used to 

solve complex problems that cannot be handled by 

analytical approaches or with problems whose underlining 

physical and mathematical models are not well-known 

(Fausett 1994). 
ANN models have been used in material modeling and 

behavior prediction (Chiang and Yang 2005, Alshihri et al. 
2009, Bilim et al. 2009, Gregor et al. 2009, Atici 2011, 
Siddique et al. 2011, Ismeik and Al-Rawi 2014, Duan and 
Poon 2014, Engin et al. 2015, Soneibi et al. 2016, Camoes 
and Martins 2017). The available research in the literature 
modeled the conventional concrete strength under selected 
conditions with limited attention to a comprehensive 
modeling approach to RCS of SCC. Therefore, the lack of 
knowledge in this direction is obvious.. 

The aim of this study is to build a general model to 

predict RCS of SCC exposed to elevated temperatures and 

high relative humidity conditions. For purpose of 

constructing the model, training, testing, and validation 

using the available experimental results of 332 concrete 

mixes were gathered from the technical literature. 

 

 

2. Methods and materials 
 

2.1 Artificial neural networks 
 

An ANN is as a massively parallel distributed processor, 

made up of simple processing units, that has a natural 

propensity for storing experiential knowledge and making it 

available for use. It resembles the brain in two aspects 1) 

knowledge is acquired by the network from this 

environment through a learning process, and 2) interneuron  

 

 

 

Fig. 1 A typical structure of an artificial neural network 
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connections strengths, known as synaptic weights, are used 

to store the acquired knowledge (Haykin 1999). 

The interest in ANNs is due to their capability to 

simulate natural intelligence in its learning from past 

experience. The method generally relies on experimental 

results, which are used to train the ANN model so that it 

can precisely predict system performance at other 

conditions. 

A typical ANN architecture is composed of at least three 

layers interconnected through some sort of processing 

elements known as neurons as shown in Fig. 1. The input 

layer contains input variables x1, x2, and xi, while the output 

layer contains output variables y1, y2, and yk. The hidden 

layer consists of a number j neurons connected to each input 

xi and output yk. A neuron consists of weight, bias, and a 

transfer function. Each neuron receives an input xi attached 

with a weight wij and a bias bi to obtain a weighted sum 

which then is passed through a nonlinear activation function 

as given by Eq. (1). The output yk is then obtained as given 

in Eq. (2). 









 

i
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In the above equations, wij is a weight linking the input 

variable xi to hidden neuron value uj, Wjk is a weight linking 

the hidden neuron value uj to the output yk, bj is the value of 

the bias of hidden neuron j, Bk is the value of the bias of 

output yk, and f is the activation function which transforms 

the weighted linear combination of inputs and the bias term 

into the value of neuron uj. Usually, the transfer function 

serves to introduce the nonlinearity into the model. It may 

be of any form, and the one used in this study was the 

logarithmic function. 

ANNs can be trained to reach from a particular input to 

a specific target output using the back-propagation 

algorithm. This is done through modifying the weights and 

biases of the network until the error between network 

output and experimental value is minimized. When the error 

falls below a specific range or maximum number of epochs 

are exceeded, the training process is usually terminated. The 

rate of this iterative procedure is controlled by a momentum 

term and a learning rate which are between 0 and 1. If 

convergence occurs, the trained network is able to estimate 

the results of other new original experiments (Rumelhart et 

al. 1986). 

Determining a proper structure for a network is an 

important issue since network topology greatly affects its 

simulation capability. In this investigation, trial-and-error 

approach was used to obtain the best architecture of the 

network by evaluating different number of transfer 

functions and neurons. Training was terminated when 

50000 epochs were reached or until the error over all 

training iterations was minimized to a stable value of less 

than 0.001.  

Performance of an ANN-based prediction is evaluated 

by several statistical indices and by a regression analysis 

between the predicted outputs and corresponding  

 

Fig. 2 ANN model development steps (Fausett 1994) 

 

 

experimental values. In this study, a large number of 

different networks were tested and statistically monitored. 

The one with highest strength was selected as it represented 

the best generalization. 

A typical flowchart of the major steps of developing an 

ANN model is presented in Fig. 2. For further details, a 

comprehensive description of ANN structures is given by 

Fausett (1994). 

 

2.2 Experimental database 
 

In order to build a comprehensive database, 

experimental results of 9 different sources, as reported in 

the literature, were used to develop the ANN model 

(Anagnostopoulos et al. 2009, Fares et al. 2009, Tao et al. 

2010, Bakhtiyari et al. 2011, Khaliq and Kodur 2011, Ding 

et al. 2012, Uysal 2012, Uysal et al. 2012, Haddad et al. 

2013). 

RCS was the key output parameter in this study. The 18 

input independent variables considered for model 

development were classified into 4 categories. First 

category was concrete ingredients such as cement (C), 

water (W), fine aggregate (FA), coarse aggregate (CA), 

water-to-cement ratio (WC), and super plasticizer dosage 

(SP). Second category was filler type such as silica fume 

(SF), slag (SG), fly ash (FAS), marble (M), basalt (B), 

limestone (LS), glass (G), and quartz (Q). Third category 

was fiber type such as polypropylene (PP), and steel fiber 

(ST). Fourth category was environmental conditions such as 

relative humidity (RH), and temperature (T). The collected 

experimental data consisted of 332 sets, in which 234 sets  
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Table 2 Descriptive statistics of database variables 

Var. Unit Range Min Max Mean S. Dev. Variation Skewness 

Concrete ingredients 

C kg/m3 330.00 220.00 550.00 398.10 70.62 0.18 0.06 

W kg/m3 79.00 143.00 222.00 180.51 17.69 0.10 0.18 

FA kg/m3 481.68 547.32 1029.00 801.40 123.51 0.15 -0.87 

CA kg/m3 278.00 626.00 904.00 758.06 56.23 0.07 0.52 

WC - 0.50 0.33 0.83 0.47 0.10 0.21 1.62 

SP kg/m3 11.66 1.64 13.30 7.92 2.32 0.29 -0.69 

Filler types 

SF kg/m3 28.00 0.00 28.00 0.67 4.29 6.36 6.24 

SG kg/m3 330.00 0.00 330.00 27.50 70.84 2.58 3.03 

FAS kg/m3 193.00 0.00 193.00 27.00 51.33 1.90 1.68 

M kg/m3 165.00 0.00 165.00 9.94 34.30 3.45 3.59 

B kg/m3 165.00 0.00 165.00 11.45 35.99 3.14 3.22 

LS kg/m3 225.00 0.00 225.00 47.68 65.94 1.38 1.01 

G kg/m3 130.00 0.00 130.00 2.08 15.45 7.43 7.46 

Q kg/m3 185.00 0.00 185.00 3.67 23.92 6.51 6.66 

Fiber types 

PP kg/m3 3.00 0.00 3.00 0.63 0.91 1.44 0.89 

ST kg/m3 55.00 0.00 55.00 3.81 12.68 3.33 3.13 

Environmental conditions 

RH % 71.00 28.00 99.00 84.92 18.14 0.21 -1.69 

T C 880.00 20.00 900.00 386.14 267.94 0.69 0.10 

Output variable 

RCS % 136.00 0.00 136.00 65.29 30.69 0.47 -0.32 

 

 

(70%) were used for training, 49 sets (15%) were used for 

testing, and 49 sets (15%) were used for validation. Due to 

the large amount of data used, a selected sample is 

presented in Table 1 with a descriptive statistics of all 

variables shown in Table 2. 

 

 

3. Results and discussion 
 

The RCS of SCC subjected to elevated temperatures and 

different humidity levels was predicted using ANN 

modeling. A multi-layered feed-forward neural network, 

with back-propagation algorithm, was employed during the 

analysis. The number of neurons, in the hidden layer, was 

determined by training a large number of networks with 

different numbers of hidden neurons while comparing the 

predicted results with experimental values to obtain the 

optimal structure. A source code was used to develop a 

relatively large number of different ANN configurations. 

With a trial-and-error approach, the code optimized the 

number of neurons and selection of transfer functions. 

Estimation of RCS was developed using the 

experimental database as obtained from literature. Input 

parameters were C, W, FA, CA, WC, SP, SF, SG, FAS, M, 

B, LS, G, Q, PP, ST, RH, and T, while the output variable 

was RCS. As seen in Fig. 3, the 18-5-1 structure (eighteen 

input neurons, five neurons in one hidden layer, one output  

Table 1 Sample of the data used for model development as obtained from literature 

C W FA CA WC SP SF SG FAS M B LS G Q PP ST RH T RCS Reference 

467 182 865 762 0.39 9.85 0 0 83 0 0 0 0 0 0 0 95 20 100 

Uysal 

(2012) 

467 182 865 762 0.39 9.85 0 0 83 0 0 0 0 0 0 0 95 200 103.1 

467 182 865 762 0.39 9.85 0 0 83 0 0 0 0 0 0 0 95 400 84 

440 182 863 772 0.41 9.63 0 0 0 0 110 0 0 0 2 0 95 400 73 

440 182 863 772 0.41 9.63 0 0 0 0 110 0 0 0 2 0 95 600 43 

440 182 863 772 0.41 9.63 0 0 0 0 110 0 0 0 2 0 95 800 18 

440 182 865 774 0.37 9.08 0 0 0 110 0 0 0 0 0 0 95 20 100 

440 182 865 774 0.37 9.08 0 0 0 110 0 0 0 0 0 0 95 600 51 

440 182 865 774 0.37 9.08 0 0 0 110 0 0 0 0 0 0 95 800 20.8 

320 175 1021 626 0.55 4.32 0 0 0 0 0 0 0 185 0 0 42 20 100 

Bakhtiyari 

et al. 

(2011) 

320 175 1021 626 0.55 4.32 0 0 0 0 0 0 0 185 0 0 42 150 103 

320 175 1021 626 0.55 4.32 0 0 0 0 0 0 0 185 0 0 42 500 118.7 

372 160 1029 629 0.43 5.76 28 0 0 0 0 0 0 120 0 0 42 500 136 

372 160 1029 629 0.43 5.76 28 0 0 0 0 0 0 120 0 0 42 750 0 

340 188 825 800 0.55 6.13 0 135 0 0 0 0 0 0 0 0 65 20 100 

Anagnostopoulos 

et al. (2009) 

340 188 825 800 0.55 6.13 0 135 0 0 0 0 0 0 0 0 65 300 85.3 

375 189 862 800 0.5 8.27 0 100 0 0 0 0 0 0 0 0 65 300 81.6 

375 189 862 800 0.5 8.27 0 100 0 0 0 0 0 0 0 0 65 600 43.7 

380 194 862 800 0.51 5.62 0 0 0 0 0 0 100 0 0 0 65 300 80 

380 194 862 800 0.51 5.62 0 0 0 0 0 0 100 0 0 0 65 600 44.3 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 28 20 100 

Haddad et al. 

(2013) 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 28 300 80.1 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 28 400 55 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 28 500 42.2 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 28 600 16.1 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 58 20 100 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 58 300 75.3 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 58 400 46.7 

400 160 547.32 710 0.4 11.6 0 0 0 0 0 75 0 0 0 0 58 600 16 
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Table 3 ANN model structure and performance 

Model properties 

Output Input Structure Function 

RCS 

C, W, FA, CA, WC, 

SP, SF, SG, FAS, M, 

B, LS, G, Q, PP, ST, 

RH, T 

18-5-1 Log-Log 

Training parameters 

R2 MAE RMSE MAPE E 

0.9686 3.5996 5.2939 7.2095 0.9229 

Testing parameters 

R2 MAE RMSE MAPE E 

0.9330 5.5611 7.9537 11.8489 0.8481 

Validation parameters 

R2 MAE RMSE MAPE E 

0.8566 7.0491 12.8482 13.1386 0.7264 

All datasets parameters 

R2 MAE RMSE MAPE E 

0.9443 4.3862 7.2553 48.8351 0.8775 

 

 

Fig. 3 Optimal ANN architecture 

 

 

neuron) was found to be the optimal architecture. The 

momentum term and learning rate were taken as 0.3 and 

0.1, respectively. Input and output transfer functions were 

logarithmic as shown in Table 3 while biases and 

connection weights were listed in Table 4. 

The developed model was evaluated for statistical 

performance using the coefficient of determination (R
2
), 

mean absolute error (MAE), root mean square error 

(RMSE), mean absolute percentage error (MAPE), and 

coefficient of efficiency (E) as defined by Eqs. (3) to (7). 

Strength of the model was measured for the training, 

testing, and validation data as well as for all datasets as 

reported in Table 3. In these equations, Zk is the 

Table 4 ANN model biases and connection weights (18-5-1) 

 N1 N2 N3 N4 N5 RCS 

C 1.7881 0.7017 -0.1622 -0.3071 -2.0436  

W 0.3700 0.1645 -0.8582 0.6523 -0.4721  

FA 0.1687 -0.1510 0.2316 0.0110 -0.0854  

CA -0.3361 0.1978 -4.5333 0.2091 0.4496  

WC 0.0054 0.3153 -0.6198 -0.6994 -0.5505  

SP 0.3959 -0.5134 0.1886 0.1772 -0.8565  

SF -8.0550 0.1357 -0.5326 0.8750 0.6785  

SG 0.4635 -0.1897 -0.7968 -0.1007 -0.1526  

FAS 0.1319 0.1752 0.0871 -0.1941 -0.3966  

M -0.0270 -0.1526 0.3349 -2.7270 1.1068  

B -0.2764 1.4854 -0.5297 -0.0364 -0.0477  

LS 0.8769 0.9512 -0.0302 -0.3124 0.4501  

G 0.1991 -0.5678 -0.3384 0.4468 0.2055  

Q 0.1456 1.6166 0.5952 -1.9716 1.7865  

PP 0.4769 -0.3522 -1.5571 -0.5194 0.8609  

ST 0.1609 0.1916 0.0369 -0.8867 -1.8306  

RH 0.5531 -0.6221 0.0720 -0.3916 -0.9210  

T -1.2643 -0.4972 1.7621 -2.1104 7.6217  

RCS 0.9552 -5.7158 6.0542 -2.3418 -5.2100  

Bias 0.1464 1.7709 1.2364 0.7788 -1.6368 2.9852 

 

 

experimental RCS, Yk is the predicted RCS, k is a counter, 

and N is the number of dataset.  

𝑅2 =
(∑ (𝑍𝑘−𝑍)(𝑌𝑘−�̅�)

𝑁
𝑘=1 )

2

∑ (𝑍𝑘−𝑍)
2𝑁

𝑘=1 ∑ (𝑌𝑘−�̅�)
2𝑁

𝑘=1
           (3) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑍𝑘 − 𝑌𝑘|
𝑁
𝑘=1              (4) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑍𝑘 − 𝑌𝑘)

2𝑁
𝑘=1            (5) 

𝑀𝐴𝑃𝐸 =
1

𝑁
[
∑ |𝑍𝑘−𝑌𝑘|
𝑁
𝑘=1

∑ 𝑍𝑘
𝑁
𝑘=1

× 100]          (6) 

 𝐸 = [∑ (𝑍𝑘 − �̅�)2𝑁
𝑘=1 − ∑ (𝑌𝑘 − 𝑍𝑘)

2𝑁
𝑘=1 ] [∑ (𝑍𝑘 − �̅�)2𝑁

𝑘=1 ]⁄   

(7) 

As listed in Table 3, a high prediction capability was 

obtained for the training, testing, and validation datasets as 

verified by the statistical indices. The R
2
, MAE, RMSE, 

MAPE, and E values for the training dataset were 0.9686, 

3.5996, 5.2939, 7.2095, 0.9229; for the testing dataset were 

0.9330, 5.5611, 7.9537, 11.8489, 0.8481; and for the 

validation dataset were 0.8566, 7.0491, 12.8482, 13.1386, 

0.7264, respectively. Thus, the proposed ANN model 

offered excellent performance capability of predicting RCS 

of SCC accurately with the selected input variables. 

To have a more precise investigation into the model, a 

comparison between experimental results and predicted 

values of RCS of SCC for the training, testing, and 

validation datasets was plotted. As illustrated by Figs. 4, 5, 

and 6, an excellent agreement existed between experimental 

and predicted values for the three datasets. This 

demonstrated that the suggested ANN model was successful 

in learning and capturing the relationship between the input 

parameters (C, W, FA, CA, WC, SP, SF, SG, FAS, M, B, 

LS, G, Q, PP, ST, RH, T) and the output variable (RCS). 
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Fig. 4 Comparison between predicted and experimental 

values of RCS of training data 

 

 

Fig. 5 Comparison between predicted and experimental 

values of RCS of testing data 

 

 

Fig. 6 Comparison between predicted and experimental 

values of RCS of validation data 

 

 

Fig. 7 Comparison between predicted and experimental 

values of RCS of all datasets 

Table 5 Statistical comparison between experimental data 

and ANN model prediction 

Parameter 
Experimental 

RCS (%) 

Predicted 

RCS (%) 

Variation 

(%) 

Range 136.0000 107.9956 20.5915 

Min 0.0000 10.2780 NA 

Max 136.0000 118.2737 13.0341 

Mean 65.2946 65.7057 0.6296 

Std. Deviation 30.6920 29.4593 4.0163 

Coef. of 

Variation 
0.4701 0.4484 4.6168 

Skewness -0.3178 -0.3111 2.0981 

R2 1.0000 0.9443 5.5681 

 

 

4. Model assessment 
 

A graphical illustration between predicted outputs and 

experimental values of RCS for all datasets is given in Fig. 

7. Inclination of the best fit is almost 45
o
 which means that 

the proposed model prediction capability is excellent; 

especially with the clear absence of outliers. The R
2
, MAE, 

RMSE, MAPE, and E values for all datasets were 0.9443, 

4.3862, 7.2553, 48.8351, and 0.8775, as cited from Table 3. 

A comparison in terms of statistical performance of the 

proposed model is believed to be useful. The statistical 

parameters range, min, max, mean, standard deviation, 

coefficient of variation, skewness, and coefficient of 

determination were used as a comparison tool. As seen in 

Table 5, the deviation between experimental and predicted 

values was relatively small. Thus, the ANN model outcome 

had a close distribution properties as compared to 

experimental values. 

 

 

5. Conclusions 
 

Self-compacted concrete is a nonlinear material, so 

modeling its performance under severe environmental 

conditions is a highly difficult task. An investigation was 

undertaken to develop an artificial neural network model 

that could be employed feasibly for estimating residual 

compressive strength of self-compacted concrete. Input 

parameters were concrete ingredients, filler type, fiber type, 

and environmental conditions. A multi-layered feed-

forward neural network model was used. Model architecture 

consisted of eighteen input neurons, five neurons in one 

hidden layer, and one output neuron. The adopted model 

was developed based on a reliable experimental data 

obtained from the technical literature. Residual compressive 

strength values predicted using the proposed model were 

very close to experimental results as illustrated by statistical 

indices. 

The present study shows that the determination of 

residual compressive strength of self-compacted concrete at 

elevated temperatures, and different humidity conditions, 

can be predicted accurately and reliably using the proposed 

artificial neural network model. Since concrete 

experimental testing requires specialized equipment and 
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expertise, the use of suggested model can be an alternative 

tool for estimating residual compressive strength of self-

compacted concrete efficiently and reliably. 
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Nomenclature 
 

 Symbol Unit Definition 

General ANN - artificial neural network 

 SSC - self-compacted concrete 

Concrete 

ingredients 
C kg/m

3
 cement 

 W kg/m
3
 water 

 FA kg/m
3
 fine aggregate 

 CA kg/m
3
 coarse aggregate 

 WC - water-to-cement ratio 

 SP kg/m
3
 super plasticizer dosage 

Filler types SF kg/m
3
 silica fume 

 SG kg/m
3
 slag 

 FAS kg/m
3
 fly ash 

 M kg/m
3
 marble 

 B kg/m
3
 basalt 

 LS kg/m
3
 limestone 

 G kg/m
3
 glass 

 Q kg/m
3
 quartz 

Fiber types PP kg/m
3
 polypropylene 

 ST kg/m
3
 steel fiber 

Environmental RH % relative humidity 

conditions T C temperature 

Output 

parameter 
RCS % residual compressive strength 

Variables Xi - input parameter 

 ͞X - 
average value of input 

parameters 

 Yk - output parameter 

 ͞Y - 
average value of output 

parameters 

 Zk - experimental result 

 ͞Z - 
average value of experimental 

results 

Statistical R
2
 - coefficient of determination 

indices MAE % mean absolute error 

 RMSE % root mean square error 

 MAPE % mean absolute percentage error 

 E - coefficient of efficiency 
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