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1. Introduction 
 

Concrete is a newer construction material compared to 

steel and stone. Use of concrete in constructions and 

buildings might have begun less than a century ago. In the 

past few decades, many researchers have used wide range 

of supplementary materials like nano particles. Carbon 

nanotubes, Silicon dioxide (SiO2), Nano-Clay, Aluminium 

oxide (AL2O3) and Titanium dioxide (TiO2) are some of the 

naturally occurring nano particles. The use of additional 

cementitious materials due to economic, technical and 

environmental considerations has become very common in 

modern concrete construction. 

Mechanical analysis of concrete column has been 

investigated by many researchers. Tan and Yao (2003) 

developed a simple and rational method to predict the fire 

resistance of reinforced concrete columns subjected to four-

face heating. Fire tests and calculation methods for circular 

concrete columns were presented by Franssen and Dotreppe 

(2003). A numerical model, in the form of a computer 

program, for tracing the behaviour of high performance 

concrete (HPC) columns exposed to fire was presented by 

Kodur et al. (2004). Bratina et al. (2005) used a two-step 

finite element formulation for the thermo-mechanical non-

linear analysis of the behaviour of the reinforced concrete 

columns in fire. The importance of capillary pressure and 

adsorbed water in the behaviour of heat and moisture 

transport in concrete exposed to high temperatures was 

explored by Davie et al. (2006) incorporating their  

                                           

Corresponding author, Assistant Professor 

E-mail: m.rabanibidgoli@gmail.com 

 

 

behaviour explicitly into a computational model. A 

nonlinear structural analysis of cross-sections of three-

dimensional reinforced concrete frames exposed to fire was 

studied by Capua and Mari (2007). A two-step formulation, 

consisting of separate thermal and mechanical analyses, was 

presented by Bratina and Saje (2007) for the thermo-

mechanical analysis of reinforced concrete planar frames 

subject to fire conditions. Buckling of restrained steel 

columns due to fire conditions was investigated by Hozjan 

et al. (2008). Rodrigues et al. (2010) presented the results 

of a research program on the behaviour of fiber reinforced 

concrete columns in fire. Several fire resistance tests on 

fiber reinforced concrete columns with restrained thermal 

elongation were carried out. Buckling of axially restrained 

steel columns in fire was presented by Shepherd and 

Burgess (2011). Fire analysis of steel-concrete composite 

eam with interlayer slip was developed by Hozjan et al. 

(2011). A numerical technique was proposed by Bacinskas 

et al. (2012) for the long-term deformation analysis of 

reinforced concrete members subjected to a bending 

moment. Wang et al. (2016) presented the experimental 

results of bond strength between the embedded steel and 

concrete in steel reinforced concrete (SRC) columns after 

fire exposure. Bajc et al. (2015) derived a new semi-

analytical procedure for the determination of buckling of 

the reinforced concrete column exposed to fire. The 

nonlinear buckling of straight concrete columns armed with 

single-walled carbon nanotubes (SWCNTs) resting on 

foundation was investigated by Safari Bilouei et al. (2016). 

The nonlinear buckling of straight concrete columns armed 

with single-walled carbon nanotubes (SWCNTs) resting on 

foundation was investigated by Jafarian Arani and Kolahchi 

(2016). The nonlinear buckling of an embedded straight 

concrete columns reinforced with silicon dioxide (SiO2)  
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Fig. 1 Geometry of the SiO2nano-particles-reinforced 

concrete column exposed to fire 

 

 

nanoparticles was investigated by Zamanian et al. (2016). 

It can be observed from literature that the theoretical 

researches on time-dependent buckling of concrete columns 

armed with SiO2nano-particles exposed to fire are rare. The 

main goal of the present paper is to present a mathematical 

model for concrete columns exposed to fire and discuss 

about the nanotechnology effects. For this ends, the 

concrete column is modelled with Timoshenko beam model. 

The heat and mass transfer is described considering the 

transfer of free water, water vapour and dry air caused by 

pressure and concentration gradients and the conversion of 

energy. The foundation is simulated with spring and shear 

constants. Applying energy method and Hamilton’s 

principal, the governing equations are derived. DQM is 

used for obtaining the critical buckling load and time of 

structure. The effects of different parameters such as 

volume percent of SiO2nano-particles, geometrical 

parameters, elastic foundation, and concrete porosity on the 

time-dependent buckling of concrete columns are discussed. 

 

 

2. Mathematical modelling 
 

Fig. 1 shows a SiO2nano-particles-reinforced concrete 

column exposed to fire with length L and thickness h 

embedded in foundation. The surrounding foundation is 

described by the spring constant kw and shear layer
 
kg. 

 

2.1 Timoshenko beam model 
 

The concrete column is modelled with Timoshenko 

beam. The displacements of an arbitrary point in the beam 

are (Brush and Almroth 1975) 
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Where U(x, t) and W(x, t) are displacement components 

in the mid-plane, ψ is the rotation of beam cross-section. 

The von Karman type nonlinear strain-displacement 

relations are given by 
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In addition, the stress-strain relations can be written as 

 ,11 TC xxxx    (4) 
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where C11 and C22 are elastic constants.  

 

2.2 Energy method 
 

2.2.1 Potential energy 
The potential energy of the structure can be expressed as 
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Submitting Eqs. (2) and (3) into Eq. (6) gives 
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where the resultant force (Nx, Qx)and bending moment Mx 

are defined as 
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where Ks is shear correction factor.  

 

2.2.2 Kinetic energy 

The kinetic energy of the structure can be expressed as 
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where ρ is the density of structure. 

 

2.2.3 External work 
The force induced by the foundation is denoted by 

(Ghorbanpour Arani et al. 2015) 

WkWkF gwMediumElastic

2
 

(12) 

The governing mass conservation equations to describe 

heat and moisture transport in concrete containing free 

water, water vapor, and dry air can be defined as follows 

(Colin et al. 2006) 
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where εi is the volume fraction of a phase i, ρi is the density 

of a phase i, 
i
 is the mass of a phasei per unit volume of 

gaseous material, Ji is the mass flux of a phase,
FWE is the 

rate of evaporation of free water (including desorption), t is 

time, and i=FE, V, A, D
 
are respectively free water, water 

vapor, dry air, and dehydrated water phases. The energy 

conservation for the system can be defined as 
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where
 
ρC is the heat capacity of concrete, k is the thermal 

conductivity of concrete, ρCv relates to the energy 

transferred by fluid flow, λE 
is the specific heat of 

evaporation (or of desorption when appropriate),
 
λD is the 

specific heat of dehydration, and T is the absolute 

temperature. Substituting 
FWE from Eq. (13) into Eqs. (14)-

(16) yields 
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Based on Fick’s laws, the mass fluxes of dry air, water 

vapor, and free water can be expressed in terms of pressure 

and concentration gradients as 
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(22) 

where DAV and DVA are respectively the diffusion 

coefficients of dry air in water vapor and water vapor in dry 

air within the porous concrete (which are subsequently 

assumed to be equal (Colin et al. 2006)), and vG 
and vL 

are 

the velocities of the gas and liquid water phases resulting 

from pressure-driven flow as given by Darcy’s law. 
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where K is the intrinsic permeability of the dry concrete, KG 

and KL 
are the relative permeability of the gas and liquid 

phases, μG 
and μL 

are their dynamic viscosities, and PG and 

PL are the corresponding pressures which can be assumed 

equal to each other’s (Capua and Mari 2007). After 

extensive algebraic manipulation, the system of governing 

differential equations can be written in the form (Colin et 

al. 2006).  
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where Cij and Kij are defined in Appendix A. 

However, the work done by the elastic medium and fire 

can be written as 
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2.3 Hamilton’s principle 
 

The governing equations of structure can be derived 

from the Hamilton’s principle as 
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Using above relation, the governing equations may be 

derived as 
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where
M

xN is the axial mechanical load applied to the 

concrete column.  

The mechanical boundary conditions at both ends of 

column are Clamped-Clamped (CC). Hence 
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Based on energy conservation equation, the temperature 

gradient across the boundary can be expressed as 
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For the gas pressure boundary condition, it may be 

noted that the gas pressure on the boundary will always be 

equal to the atmospheric pressure and so the gas pressure 

gradient across the boundary will always be zero 
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Based on mass conservation, the mass conservation of 

water vapor on the boundary can be written as 
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In addition, the initial boundary conditions can be 

written as 
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Since the boundary conditions are non-classical, 

assuming T−T∞=θ and VVV  
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and with respect 

to applied beam theory and T=T(x,t) yields 
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and the associated boundary conditions are 
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3. Mori-Tanaka rule 
 

In this section, the effective modulus of the concrete 

reinforced by SiO2nano-particles is developed. The 

SiO2nano-particles are assumed with the dispersion of 

uniform in the polymer.The matrix is assumed to be elastic 

and isotropic, with the Young’s modulus Em and the 

Poisson’s ratio υm. The constitutive relations for the 

composite are (Mori and Tanaka 1973) 
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where σij, εij, γij, k, m, n, l, p
 
are the stress components, the 

strain components and the stiffness coefficients 

respectively. According to the Mori-Tanaka method the 

stiffness coefficients are given by (Mori and Tanaka 1973) 
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where Cm and Cr are the volume fractions of the concrete 

and the SiO2nano-particles, respectively and kr ,lr, nr, pr, 

mr are the Hills elastic modulus for the SiO2nano-particles 

(Mori and Tanaka 1973).  

 

 
4. DQM 

 
The main idea of the DQM is that the derivative of a 

function at a sample point can be approximated as a 

weighted linear summation of the function value at all of 

the sample points in the domain. The functions f={U, W, ψ, 

T, PG, V


} and their kth derivatives with respect to x and t 

can be approximated as (Kolahchi et al. 2015, 2016). 
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where Nx and Nt are the total number of nodes distributed 

along the x and t, respectively which can be expressed as 
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In addition, Aij is the weighting coefficients for x 

direction which for the first derivative can be written as 
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The weighting coefficients for t(Bij) considering Teoplitz 

matrix can be expressed as 

    
    

11

1 1

,1
(1)

1 1

1,

1, 1

0,

1 cot ,

, 2,3,4,..., , 2 ,
1 cot ,

a ,

i i

i n

ijn j n j

j n

i j ij

a

a

i j n B a
a

a






 

   

 




 


    
 




 
(58) 

 
  

 
  

 

2

11

1

,1 12
2(2)

1

1, 12

1, 1

1
,

12 6

1
,

2sin
, 2,3,4,..., , 2 .

1
,

2sin

,

i

i i

n
ij

n j

j n j

n

i j ij

n
b

b

i j n B b

b

b b











 

 

 


  


 




    


 


 

 

(59) 

123



 

M. Rabani Bidgoli and M.Saeidifar 

 

 

Fig. 2 Accuracy of DQM for critical buckling load 

 

 

Fig. 3 Accuracy of DQM for critical buckling time 

 

 

Using DQM, the governing equations can be expressed 

in matrix form as 
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Where KL is the linear stiffness matrix; KNL is the 

nonlinear stiffness matrix; C is the coefficients of fist 

derivative to time, M is the coefficients of second derivative 

to time, Kg is geometric stiffness matrix; and   is the 

Kroniker product. Also, Yb and Yd represent boundary and 

domain points. Finally, based on an iterative method and 

eigenvalue problem,  

• The critical buckling time tcr can be obtained at the 

given constant load P. 

• The critical buckling load Pcr at the selected time. 

 

 

5. Numerical results 
 

In this section, a concrete column with elastic modules 

of Em=20 GPa is considered which is reinforced with 

SiO2nano-particles with elastic modules of Er=75 GPa. All 

of the properties related to fire are chosen from (Bajc et al.  

 

Fig. 4 Validation of critical buckling load 

 

 

Fig. 5 Validation of critical buckling time 

 

 

2015). Based on DQM, the critical buckling load and 

critical buckling time of structure are calculated. 

 

5.1 Accuracy of DQM 
 

The effect of the grid point number in DQM on the 

critical buckling load and critical buckling time of the 

concrete column is demonstrated in Figs. 2 and 3, 

respectively. As can be seen, fast rate of convergence of the 

method are quite evident and it is found that 15 DQM grid 

points can yield accurate results. In addition, with 

increasing slenderness ratio (λ) of column, the critical 

buckling load and critical buckling time decrease due to 

reduction in stiffness of system.  

 

5.2 Validation 
 

In the absence of similar publications in the literature 

covering the same scope of the problem, one cannot directly 

validate the results found here. However, the present work 

could be partially validated based on a simplified analysis 

suggested by (Bajc et al. 2015) on buckling of the concrete 

column for which the nano-particles and elastic foundation 

(cr=0, kw=kg=0) in this paper were ignored. The results are 

shown in Figs. 4 and 5 in which buckling load and critical 

buckling time versus slenderness ratio are plotted, 

respectively. As can be seen the two analyses agree well and 

show similar results. 
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Fig. 6 The effect of SiO2nano-particles volume percent on 

the critical buckling load 

 

 

Fig. 7 The effect of SiO2nano-particles volume percent on 

the critical buckling time 

 

 

Fig. 8 The foundation effect on the critical buckling load 

 

 

5.3 The effect of different parameters 
 

The effect of volume percent of SiO2nano-particles on 

the time-dependent critical buckling load and critical 

buckling time of concrete column is illustrated in Figs. 6 

and 7, respectively. It can be found that with increasing the 

volume percent of SiO2nano-particles, the critical buckling 

load and critical buckling time increase. It is due to the fact 

that with increasing volume percent of SiO2nano-particles,  

 

Fig. 9 The foundation effect on the critical buckling time 

 

 

Fig. 10 The concrete porosity effect on the critical buckling 

load 

 

 

Fig. 11 The concrete porosity effect on the critical buckling 

time 

 

 

the stiffness of structure increases. Hence, the SiO2nano-

particles volume fraction is effective controlling parameters 

for critical buckling load and critical buckling time of the 

concrete column. In addition, the effect of volume percent 

of SiO2nano-particles on the critical buckling load and 

critical buckling time load becomes prominent for short 

columns (λ<50). 

Figs. 8 and 9 illustrate the influence of elastic medium 

on the critical buckling load and critical buckling time 
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along the slenderness ratio, respectively. Obviously, the 

foundation has a significant effect on the critical buckling 

load and critical buckling time of the column, since the 

critical buckling load and critical buckling time of the 

system in the case of without foundation are lower than 

other cases. It can be concluded that the critical buckling 

load and critical buckling time for Pasternak model (spring 

and shear constants) are higher than Winkler (spring 

constant) one. The above results are reasonable, since the 

Pasternak medium considers not only the normal stresses 

(i.e., Winkler foundation) but also the transverse shear 

deformation and continuity among the spring elements. 

The effect of concrete porosity on the critical buckling 

load and critical buckling time of structure is showmen in 

Figs. 10 and 11, respectively. It can be found that increasing 

concrete porosity leads to higher critical buckling load and 

critical buckling time. It is reasonable since the stiffness of 

structure becomes lower with increasing concrete porosity. 

 

 

6. Conclusions 
 

The paper presents a new model for the SiO2nano-

particle reinforced concrete column exposed to fire 

theoretically for the first time. The Timoshenko beam 

model was used for mathematical modelling and the 

characteristics of the equivalent composite being 

determined using Mori-Tanaka rule. The governing mass 

conservation equations to describe heat and moisture 

transport in concrete containing free water, water vapor, and 

dry air in conjunction with the conversion of energy were 

considered. DQM and a direct iterative approach were 

employed to obtain the critical buckling load and critical 

buckling time. Results indicate that with increasing the 

volume percent of SiO2nano-particle, the critical buckling 

load and critical buckling time increase. It was also worth to 

mention that increasing concrete porosity leads to higher 

critical buckling load and critical buckling time. Obviously, 

the foundation has a significant effect on the critical 

buckling load and critical buckling time of the column. In 

addition, the effect of volume percent of SiO2nano-particles 

on the critical buckling load and critical buckling time load 

becomes prominent for short columns (λ<50). Finally, it is 

hoped that the results presented in this paper would be 

helpful for using nano-technology in concrete structures 

exposed to fire. 
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