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1. Introduction 
 

Recognition of the actual inelastic behavior of structures 

is necessary to design new ones or to rehabilitate existing 

structures. When a structure is subjected to severe 

earthquake, deforming well and dissipating the imposed 

energy is expected. To model the nonlinear analysis of 

reinforced concrete structures, many analytical models have 

been introduced. These analytical models include very 

refined and complex local models and simplified global 

models. In refined models, the structural behavior of 

elements is considered in detail; therefore, small structures 

or structural subassemblies are typically analyzed using 

these models. Contrary to refined models, simplified global 

models have been typically used for analysis of large 

structures. Although refined models consider more 

properties of structures in analysis, their time-consuming 

and calculus complexity make the cost of analysis very 

high, so these models are not proper to nonlinear analysis of 

reinforced concrete frames. On the other hand, global 

models are not appropriate to model the actual behavior of 

critical region of structures. In fact, the global models use 

the outcomes of local models obtained for critical regions  
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and the local models require the results of global models for 

loading history; therefore, the accuracy of the consequences 

of refined models for critical region of structures 

completely depends on global models and vice versa. 

Since the aim of this study is the nonlinear analysis of 

reinforced concrete frames, the global models are taken into 

account. To simulate the plastification of structures simply 

and efficiently, some macro-models (global) have been 

presented to date. These models are usually traced the 

change of structural properties like stiffness and strength 

along the members and are divided into two categories. The 

first category is the lumped plasticity (concentrated plastic 

hinge) and the second one is the distributed plasticity 

approach (spread plasticity). In the lumped plasticity 

models, it is assumed that plastification is concentrated in 

the two ends of element and the member between two zero-

length hinges remains fully elastic. Although this method is 

a computationally simple and efficient way to take the 

effect of inelastic material, it over predicts the limit strength 

of structures that can bring about unsafe designs (King et al. 

1992, White 1993, McGuire 1994). The research of Clough 

(1966), Giberson (1967), Al-Haddad and Wight (1968) and 

Aoyama and Sugano (1968) are from the first studies in this 

category. Otani and Sozen (1972) put forward “connected 

two-cantilever model”. As an option for concentrated 

plasticity, Kunnath and Reinhorn (1989) proposed a 

concentrated plasticity model used in IDARC2D (Park et al. 

1987). To evaluate the effect of different hysteretic models, 

Anderson and Townsend (1977) considered four different 
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types of hysteretic models. They concluded that the trilinear 

degrading connection model has the highest accuracy 

among the assessed hysteretic models. Inel and Ozmen 

(2006) studied the effect of plastic hinge properties in 

nonlinear analysis of reinforced concrete buildings. Alva 

and de Cresce El Debs (2010) applied a lumped dissipation 

model to nonlinear analysis of reinforced concrete 

structures. Birely et al. (2012) presented a model to 

simulate the nonlinear response of planar reinforced-

concrete frames including all sources of flexibility. They 

modeled nonlinearity introducing a dual-hinge lumped-

plasticity beam element comprising of two rotational 

springs in series; one spring simulates beam flexural 

response and another one models joint response. Zhao et al. 

(2012) evaluated the plastic hinge length in reinforced 

concrete flexural members. They analytically considered 

the performance of the plastic hinge zone with Finite 

Element Method.  

In the distributed plasticity models, flexibility is 

considered based on prescribed distribution pattern of 

flexural flexibility along the length of member. The 

parabolic-inflection distribution (Takizawa 1973) and 

linear-inflection distribution (Park et al. 1987) fall into this 

category. In parabolic-inflection model, an elastic flexibility 

is taken at the infection point into account. The linear-

inflection proposed by Park et al. (1987) was introduced in 

the original version of IDARC2D developed by Reinhorn et 

al. (2009). Depending on the location of inflection point is 

one of shortcomings in the parabolic-inflection and the 

linear-inflection models. To obviate this defect, two spread 

plasticity models that are linear and uniform flexibility 

distribution were proposed. In these two models, the 

flexibility varies only in inelastic zones while the rest of the 

member is elastic with constant flexibility (Kunnath and 

Reinhorn 1989). It is worth noting that in the plasticity 

models, the fiber model approach is utilized to acquire the 

moment-curvature relationship of the end sections (Mander 

1984). The fiber model can consider any hardening and 

softening stress-strain behavior (Roh et al. 2012). Kim and 

Kurama (2008) used the spread plasticity model to capture 

flexural nonlinearity. Roh et al. (2012) introduced a power 

spread plasticity model to inelastic analysis of reinforced 

concrete. They demonstrated that the high order spread 

plasticity models produce smaller displacement and higher 

acceleration, in the structural system. Hajjar et al. (1998) 

presented the constitutive formulation and cyclic analysis 

capability of a three-dimensional fiber-based distributed 

plasticity finite element for square or rectangular concrete-

filled steel tube (CFT) beam-columns. Lee and Filippou 

(2009) proposed a new flexibility-based finite element 

model with a variable inelastic zone model. Nguyen and 

Kim (2014) put forward a displacement-based finite 

element procedure to analyze of plane steel frames with 

nonlinear beam-to-column connections. IU (2016) used a 

method of the refined plastic hinge approach to nonlinear 

analysis of reinforced concrete structures.   
As pointed out, when reinforced concrete members 

encounter inelastic deformation, cracks tend to spread along 
the length of members; therefore, spread plasticity models 
are more proper than lumped plasticity for these members. 
In most of spread plasticity models like the linear flexibility  

 
(a) 

 
(b) 

Fig. 1(a) Rigid zone and ends definitions of a RC element 

(b) moment distribution and linear flexibility distribution 

(Reinhorn et al. 2009) 
 
 

that is one of prevalent models for reinforced concrete 
elements; prescribed distribution pattern of flexural 
flexibility is merely based on the lateral load effect. 
Neglecting gravity load effect, especially in cases of 
significant gravity load moments can induce a glaring error 
as it was illustrated by Izadpanah and Habibi (2015). They 
pointed out that in incremental nonlinear analyses; 
disregarding the gravity load effects can lead to incorrect 
results, because the tangent stiffness matrix at each load 
step depends on plasticity models in all previous steps and 
gravity load effects in many of these prior steps dominate 
the lateral loads. In the other words, ignoring gravity load 
effect in plasticity models, not only causes some errors in 
the tangent stiffness matrix at each step but also produces 
cumulative errors in the next steps (Izadpanah and Habibi 
2015). The main objective of this study is to improve the 
linear flexibility distribution model for taking both gravity 
and lateral load effects into account without subdividing the 
elements. To do so, a new formulation is presented using 
the unit load theory based on the principle of virtual work. 
In the proposed model, each member is taken as one 
element into account; therefore, there is an one-to-one 
correspondence between structural members (beams and 
columns) and model elements. 
 

 

2. Section spread plasticity model 
 

2.1 The linear flexibility formulation 

 
When an element experiences inelastic deformation, 

depending on the order of inelasticity, sections along the 

element display different flexibility values. In the spread 

plasticity models, the prescribed pattern is taken for 

explaining the flexibility variation. The Linear Flexibility 

Model (LFM) is indicated in Fig. 1. 

In Fig. 1, EIA and EIB are the current flexural stiffness of 
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the sections at ends „„A‟‟ and „„B‟‟, respectively; EI0 is the 

equivalent constant stiffness in the elastic portion of the 

element; ∝A and ∝B are the yield penetration coefficients 

(Reinhorn et al. 2009). The flexural stiffness EIA and EIB 

are determined from the hysteretic models. The rotation at 

each ends can be obtained using the flexural and shear 

flexibilities as follows 

[
𝜃𝐴

′

𝜃𝐵
′ ]=[

𝑓𝐴𝐴 𝑓𝐴𝐵

𝑓𝐵𝐴 𝑓𝐵𝐵
] [

𝑀𝐴
′

𝑀𝐵
′ ] (1) 

where fAA, fAB and fBB are the flexibility coefficients, θ’A and 

θ’B are the rotations at the ends of the element, while M’A 

and M’B are the corresponding moments. The flexibility 

coefficients in Eq. (1) are extracted using the unit load 

theory based on the principle of virtual work 

fij = ∫
mi(x)mj(x)

EI(x)

L′

0

dx  + ∫
νi(x)νj(x)

GA(x)

L′

0

dx (2) 

where mi(x) and mj(x) are the moment distributions due to 

a virtual unit moment at ends „„i‟‟ and „„j‟‟, respectively; 

vi(x) and vj(x) are the corresponding shear distributions 

(1/L‟) (that „„i‟‟ and „„j‟‟ can replaced by „„A‟‟ or „„B‟‟ for the 

element depicted in Fig. 1.); EI(x) and GA(x) are flexural 

and shear stiffness along the element, respectively. The 

linear flexibility coefficients for the linear flexibility 

assumption shown in Fig. 1(b) are obtained as follows. 

𝑓𝐴𝐴=
𝐿′

12
0

4

𝐸𝐼0
+ .

1

𝐸𝐼𝐴
−

1

𝐸𝐼0
/ (6 ∝𝐴− 4 ∝𝐴

2+∝𝐴
3) +

.
1

𝐸𝐼𝐵
−

1

𝐸𝐼0
/ (∝𝐵

3)1 +
1

𝐺𝐴0𝐿′ 
(3) 

𝑓𝐴𝐵 = 𝑓𝐵𝐴=
𝐿′

12
0

−2

𝐸𝐼0
− .

1

𝐸𝐼𝐴
−

1

𝐸𝐼0
/ (2 ∝𝐴

2−∝𝐴
3) −

.
1

𝐸𝐼𝐵
−

1

𝐸𝐼0
/ (2 ∝𝐵

2−∝𝐵
3)1 +

1

𝐺𝐴0𝐿′ 
(4) 

 𝑓𝐵𝐵=
𝐿′

12
0

4

𝐸𝐼0
+ .

1

𝐸𝐼𝐵
−

1

𝐸𝐼0
/ (6 ∝𝐵− 4 ∝𝐵

2+∝𝐵
3) +

.
1

𝐸𝐼𝐴
−

1

𝐸𝐼0
/ (∝𝐴

3)1 +
1

𝐺𝐴0𝐿′ 
(5) 

The above formulation was rewritten and the close-form 

solutions of the Eqs. (3)-(5) are defined as presented in 

Reinhorn et al. (2009). 

The yield penetration coefficients (∝A and ∝B) assign 

the portion of element where the acting moment is greater 

than the section cracking moment (McrA or McrB). 

 ∝𝐴=
𝑀𝐴

′ −𝑀𝑐𝑟𝐴

𝑀𝐴
′ −𝑀𝐵

′     for   |𝑀𝐴
′ |>|𝑀𝑐𝑟𝐴| (6) 

 ∝𝐵=
𝑀𝐵

′ −𝑀𝑐𝑟𝐵

𝑀𝐵
′ −𝑀𝐴

′     for   |𝑀𝐵
′ |>|𝑀𝑐𝑟𝐵| (7) 

These parameters are calculated for the current moment 

distribution, and then checked with the previous maximum 

penetration lengths ∝Amax  and ∝Bmax . The yield 

penetration parameters cannot be smaller than the previous 

maximum values regardless of the current moment 

distribution (Reinhorn et al. 2009).  

As it is clear in Fig. 1, the prescribed linear flexibility 

pattern was developed based on linear moment distribution.  

 

Fig. 2 The assumed linear flexibility between two 

successive transformation points 

 

 

Fig. 3 The considered degrees of freedom 

 

 

Linear moment distribution is proper for members simply 

subjected lateral loads. Although in IDARC2D report 

(Reinhorn et al. 2009) has been noted that the presence of 

gravity loads will alter the distribution and in cases of 

significant gravity load moments the structural elements 

should be subdivided to capture this variation, subdividing 

each member to some elements causes big stiffness matrix 

for each member and the huge stiffness matrix for global 

structure increasing the time of analysis. Furthermore, the 

number of parts required was not specified in IDARC2D 

(Reinhorn et al. 2009) so choosing the sufficient one is a 

trial and error process. Another drawback of the linear 

flexibility model is that the yielded and cracked lengths are 

not separated in yield penetration formulation. This obstacle 

can make errors in the stiffness matrices (Izadpanah and 

Habibi 2015).  

 

2.2 Improving the linear flexibility model 
 
As pointed out, the linear flexibility model has some 

defects; therefore, in this section an Improved Linear 

Flexibility Model (ILFM) is put forward to obviate 

aforementioned shortcomings. To derive new formulation, 

the flexibility and stiffness coefficients are determined 

using the unit load theory. The required process to 

determine the transformation points and the flexibility of 

each part will be illustrated in the next sections. 

 

2.2.1 The proposed model 
To develop the ILFM, a general formulation is derived 

for a member subdivided by „„m‟‟ transformation points 

(including both of ends) and the flexibility of each 

subdivided part is assumed linear (Fig. 2). 

In Fig. 2, xiL’ and xi+1L’ are the positions of two 

successive transformation points „„i‟‟ and „„i+1‟‟ and xi and 

xi+1 are two transformation points coefficients that are the 

ratios of distance of the points from the left end node to the 

length. The considered degrees of freedom for the member 

are according to Fig. 3. 

In Fig. 3, Mi, Vi and Ni are the moment, shear and axial 

forces of end „i‟ and θi, υi and ui are the rotation and 

deformations of it. The parameters of end „j‟ are similar to 

end „i‟.  
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The flexibility coefficients of the member are 

determined using the unit load theory based on the principle 

of virtual work as follows. 

𝑓𝐴𝐴=
𝐿′

12
(∑ (.

1

𝐸𝐼𝑖+1
−

1

𝐸𝐼𝑖
/ (3𝑥𝑖+1

3 − 𝑥𝑖+1𝑥𝑖
2 −𝑚−1

𝑖=1

𝑥𝑖𝑥𝑖+1
2 − 𝑥𝑖

3 − 6𝑥𝑖 + 6𝑥𝑖+1 − 8𝑥𝑖+1
2 − 8𝑥𝑖+1𝑥𝑖 −

 8𝑥𝑖
2) +

1

𝐸𝐼𝑖
(𝑥𝑖+1 − 𝑥𝑖)(4𝑥𝑖+1

2 + 𝑥𝑖+1𝑥𝑖 + 𝑥𝑖
2 + 12 −

12𝑥𝑖 − 12𝑥𝑖+1)) )+
1

𝐿′𝐺𝐴0
 

(8) 

−𝑓𝐴𝐵 = −𝑓𝐵𝐴=
𝐿′

12
(∑ (.

1

𝐸𝐼𝑖+1
−

1

𝐸𝐼𝑖
/ (4𝑥𝑖+1

2 −𝑚−1
𝑖=1

2𝑥𝑖+1𝑥𝑖 − 2𝑥𝑖
2 − 3𝑥𝑖+1

3 + 𝑥𝑖+1𝑥𝑖
2 + 5𝑥𝑖𝑥𝑖+1

2 −

 3𝑥𝑖
3) +

1

𝐸𝐼𝑖
(6𝑥𝑖+1

2 − 6𝑥𝑖
2 − 4𝑥𝑖+1

3 + 4𝑥𝑖
3) ) −  

1

𝐿′𝐺𝐴0
 

(9) 

𝑓𝐵𝐵=
𝐿′

12
(∑ (.

1

𝐸𝐼𝑖+1
−

1

𝐸𝐼𝑖
/ (3𝑥𝑖+1

3 − 𝑥𝑖+1𝑥𝑖
2 −𝑚−1

𝑖=1

𝑥𝑖𝑥𝑖+1
2 − 𝑥𝑖

3) +
4

𝐸𝐼𝑖
(𝑥𝑖+1 − 𝑥𝑖)(𝑥𝑖+1

2 + 𝑥𝑖+1𝑥𝑖 +

𝑥𝑖
2)) )+

1

𝐿′𝐺𝐴0
 

(10) 

The above formulation can be rewritten as follows 

𝑓𝐴𝐴=
𝐿′

12 ∏ 𝐸𝐼𝑖
𝑚
𝑖=1

𝑓𝐴𝐴
′ +

1

𝐿′𝐺𝐴0
 (11) 

- 𝑓𝐴𝐵 = - 𝑓𝐴𝐵=
𝐿′

12 ∏ 𝐸𝐼𝑖
𝑚
𝑖=1

𝑓𝐴𝐵
′  -

1

𝐿′𝐺𝐴0
 (12) 

 𝑓𝐵𝐵=
𝐿′

12 ∏ 𝐸𝐼𝑖
𝑚
𝑖=1

𝑓𝐵𝐵
′ +

1

𝐿′𝐺𝐴0
 (13) 

where 

𝑓𝐴𝐴
′ =∑ ((∏ 𝐸𝐼𝑖 −𝑚

𝑖=1
𝑖≠𝑗+1

∏ 𝐸𝐼𝑖
𝑚
𝑖=1
𝑖≠𝑗

)(3𝑥𝑗+1
3 −𝑚−1

𝑗=1

𝑥𝑗+1𝑥𝑗
2 − 𝑥𝑗𝑥𝑗+1

2 − 𝑥𝑗
3 − 6𝑥𝑗 + 6𝑥𝑗+1 − 8𝑥𝑗+1

2 −

8𝑥𝑗+1𝑥𝑗 − 8𝑥𝑗
2) + ∏ 𝐸𝐼𝑗

𝑚
𝑖=1
𝑖≠𝑗

(𝑥𝑗+1 − 𝑥𝑗)(4𝑥𝑗+1
2 +

𝑥𝑗+1𝑥𝑗 + 𝑥𝑗
2 + 12 − 12𝑥𝑗 − 12𝑥𝑗+1)) 

(14) 

𝑓𝐴𝐵
′ =∑ ((∏ 𝐸𝐼𝑖 −𝑚

𝑖=1
𝑖≠𝑗+1

∏ 𝐸𝐼𝑖
𝑚
𝑖=1
𝑖≠𝑗

)(4𝑥𝑖+1
2 −𝑚−1

𝑗=1

2𝑥𝑖+1𝑥𝑖 − 2𝑥𝑖
2 − 3𝑥𝑖+1

3 + 𝑥𝑖+1𝑥𝑖
2 + 5𝑥𝑖𝑥𝑖+1

2 − 3𝑥𝑖
3) +

∏ 𝐸𝐼𝑖
𝑚
𝑖=1
𝑖≠𝑗

(𝑥𝑖+1 − 𝑥𝑖)(6𝑥𝑖+1
2 − 6𝑥𝑖

2 − 4𝑥𝑖+1
3 + 4𝑥𝑖

3)) 

(15) 

𝑓𝐵𝐵
′ =∑ ((∏ 𝐸𝐼𝑖 −𝑚

𝑖=1
𝑖≠𝑗+1

∏ 𝐸𝐼𝑖
𝑚
𝑖=1
𝑖≠𝑗

)(3𝑥𝑗+1
3 −𝑚−1

𝑗=1

𝑥𝑗+1𝑥𝑗
2 − 𝑥𝑗𝑥𝑗+1

2 − 𝑥𝑗
3) + ∏ 4𝐸𝐼𝑖

𝑚
𝑖=1
𝑖≠𝑗

(𝑥𝑗+1 −

 𝑥𝑗)(𝑥𝑗+1
2 + 𝑥𝑗+1𝑥𝑗 + 𝑥𝑗

2)) 

(16) 

In Eqs. (8) to (16), EIi is the i
th 

stiffness component of 

the collection “S” and xi is i
th

 component of the collection 

“X”. Collections “X” and “S” will be explained more  

 

Fig. 4 The vertex oriented hysteric model 

 

 

Fig. 5 The element and three considered points 

 

 

in section 2.2.2. The inverse of the flexibility matrix given 

by Eq. (1) is the stiffness matrix relating moments and 

rotations at the ends of the element. Such relation is shown 

below 

[
𝑀𝐴

′

𝑀𝐵
′ ]=[

𝐾𝐴𝐴 𝐾𝐴𝐵

𝐾𝐵𝐴 𝐾𝐵𝐵
] [

𝜃𝐴
′

𝜃𝐵
′ ] (17) 

where KAA, KAB, KBA and KBB computed by Eqs. (18) to (21) 

are the components of the element stiffness matrix 

including moment and shear deformations. 

𝐾𝐴𝐴=
12 ∏ 𝐸𝐼𝑖

𝑚
𝑖=1

𝐿′𝐷𝑒𝑡
(𝐿′2

𝐺𝐴𝑧𝑓𝐵𝐵
′ + 12 ∏ 𝐸𝐼𝑖

𝑚
𝑖=1 ) (18) 

-𝐾𝐴𝐵=- 𝐾𝐵𝐴 =
12 ∏ 𝐸𝐼𝑖

𝑚
𝑖=1

𝐿′𝐷𝑒𝑡
(𝐿′2

𝐺𝐴𝑧𝑓𝐴𝐵
′ − 12 ∏ 𝐸𝐼𝑖

𝑚
𝑖=1 ) (19) 

𝐾𝐵𝐵=
12 ∏ 𝐸𝐼𝑖

𝑚
𝑖=1

𝐿′𝐷𝑒𝑡
(𝐿′2

𝐺𝐴𝑧𝑓𝐴𝐴
′ + 12 ∏ 𝐸𝐼𝑖

𝑚
𝑖=1 ) (20) 

𝐷𝑒𝑡=𝐿′2
𝐺𝐴𝑧(𝑓𝐴𝐴

′ 𝑓𝐵𝐵
′ − 𝑓𝐴𝐵

′ 2
)+12 ∏ 𝐸𝐼𝑖

𝑚
𝑖=1 (𝑓𝐴𝐴

′ +

𝑓𝐵𝐵
′ + 2𝑓𝐴𝐵

′ ) 
(21) 

It is worth emphasizing, since the proposed equations in 

this section prepared a general formulation to figure out the 

stiffness matrix of each element with various flexibility 

throughout the length of it, the stiffness matrix of linear 

flexibility model can be derived adjusting the 

transformation points of LFM from end „„A‟‟ and replacing 

into the mentioned relations. 

  

2.2.2 Determination of the transformation points and 

flexibility of each part 
As mentioned, in this study, the tangent stiffness matrix 

is obtained using one element for each member. To 

determine the transformation points and flexibility of each 

part, the assigned hysteric model (Fig. 4) (in this study, the 

vertex oriented is considered) is evaluated in the three 

points (ends „„A‟‟ and „„B‟‟ and middle point „„C‟‟ shown in 

Fig. 5). 

It should be noted, the moment of middle point (C) is 

calculated from statically equilibrium equation (without  

14



 

Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads 

 
Fig. 6 The proposed plasticity model (a) the linear 

moment diagram (b) the flexibility distribution for the 

first half of beam element 

 

 
subdividing member). For example, the bellow equation can 

be used to calculate the moment of point „„C‟‟ when the 

uniform gravity load is applied 

𝑀𝐶= VA
𝐿′

2
+MA- 

WL′2

8
 (22) 

where MC and MA are the moments of points „„C‟‟ and „„A‟‟, 

respectively. VA is the shear of point „„A‟‟ and „„W‟‟ is 

uniform gravity load. 

As it is evident in Fig. 4, the considered hysteric model 

is contained three states: (a) Loading (depicted „„1‟‟) (b) 

Unloading and reloading (depicted „„2‟‟) (c) Transition to 

vertex ((depicted „„3‟‟)). Therefore, based on the state of 

points „„A‟‟, „„B‟‟ and „„C‟‟, the transformation points and 

stiffness of each part are figured out. To do so, the moment 

diagram is assumed linear between „„A‟‟ and „„C‟‟ and also 

„„C‟‟ and „„B‟‟. The circumstances for the first half of 

element (between „„A‟‟ and „„C‟‟) is illustrated and the 

methodology will be same for the second half. The 

proposed model for the first half of beam is presented in 

Fig. 6. 

As shown in Fig. 6, the cracked and the yielded lengths 

(αL‟ and βL‟) are calculated based on linear moment 

diagram assumed between points „„A‟‟ and „„C‟‟. The 

parameters α and β are calculated from corresponding end 

as follows 

  𝛼𝐴=
(𝑀𝑐𝑟𝐴−𝑀𝐴)

(𝑀𝐶−𝑀𝐴)
0.5  for  |MA| > |McrA|    (23) 

 𝛽𝐴=
(𝑀𝑦𝐴−𝑀𝐴)

(𝑀𝐶−𝑀𝐴)
0.5  for  |MA| > |MyA| (24) 

In the above equations, McrA, McrC are the cracking 

moments in the ends „„A‟‟ and „„C‟‟, respectively. MyA, MyC 

are the yielding moments in the ends „„A‟‟ and „„C‟‟, 

respectively. It is worth emphasizing that all coefficients (α 

and β) should be between 0 and 0.5.  

Note: if MA is positive, the values of My and Mcr for 

calculating α and β will be positive (in Eqs. (23) and (24)) 

and vice versa. Coefficients α and β for each end cannot be 

lower than the maximum of them (αMax, βMax) in previous 

steps regardless the values of current moments. All 

calculated transformation points coefficients and 

corresponding stiffness are collected in collections “X” and 

“S”, respectively. The methodology to generate the 

collections “X” and “S” for end “A” is illustrated (for other 

points is the same):  

a. If the state of end “A” is loading (in hysteric model): 

In this state, two cases are considered for the moment 

diagram: single curvature and double curvature moment 

diagrams. 

a-1 Single curvature 𝑀𝐴𝑀𝐶>0 

a-1-1  |𝑀𝐴| ≤ |McrA| 

𝛼𝐴=0, 𝛽𝐴 = 0 

𝑋𝐴=*𝛽𝐴, 𝛼𝐴+,  𝑆𝐴 = {𝐸𝐼𝑦 , 𝐸𝐼𝑐𝑟} 
(25) 

EIy, EIcr are the stiffness of yielding and cracking 

branches in hysteric model.  

a-1-2  |McrA|<|𝑀𝐴| ≤ |MyA| 

a-1-2-1 |𝑀𝐶| ≤ |McrC| 

𝛼𝐴=
(𝑀𝑐𝑟𝐴−𝑀𝐴)

(𝑀𝐶−𝑀𝐴)
0.5, 𝛽𝐴 = 0 

𝑋𝐴=*𝛽𝐴, 𝛼𝐴+,  𝑆𝐴 = {𝐸𝐼𝑦 , 𝐸𝐼𝑐𝑟} 

(26) 

a-1-2-2  |McrC| <|𝑀𝐶| 

𝛼𝐴=0.25 ,  𝛽𝐴 = 0 

𝑋𝐴=*𝛽𝐴, 𝛼𝐴+,  𝑆𝐴 = {𝐸𝐼𝑦 , 𝐸𝐼𝑐𝑟} 
(27) 

a-1-3   |MyA|<|𝑀𝐴| 

a-1-3-1  |MyC| ≥ |𝑀𝐶| 

𝛼𝐴=
(𝑀𝑐𝑟𝐴−𝑀𝐴)

(𝑀𝐶−𝑀𝐴)
0.5   , 𝛽𝐴=

(𝑀𝑦𝐴−𝑀𝐴)

(𝑀𝐶−𝑀𝐴)
0.5 

𝑋𝐴=*𝛽𝐴, 𝛼𝐴+,  𝑆𝐴 = {𝐸𝐼𝑦 , 𝐸𝐼𝑐𝑟} 

(28) 

a-1-3-2 |MyC|<|𝑀𝐶| 

𝛼𝐴 = 0 ,   𝛽𝐴 = 0.25  

   𝑋𝐴=*𝛽𝐴, 𝛼𝐴+,  𝑆𝐴 = {𝐸𝐼𝑦 , 𝐸𝐼𝑐𝑟} 
(29) 

a-2 Double curvature MAMC<0 

In this case, the situations are completely similar to 

single curvature but in step a-1-2 and a-1-3, α and β are 

obtained by Eqs. (26) and (28) regardless the value of „„C‟‟ 

moment. 

Note: In all steps, when αA or βA is zero means that this 

transportation point and the corresponding stiffness (𝐸𝐼) of 

it will be eliminated from collections „„X‟‟ and „„S‟‟.  

b. If the state of end „„A‟‟ is unloading or reloading:  

In this situation, the current line of moment diagram is 

compared with the previous one (the index of previous 

moment diagram is „„P‟‟) to determine the junction point 

(xjunA) of two lines.  

𝑥𝑗𝑢𝑛𝐴 =
1

2

Δ𝑀𝐴

Δ𝑀𝐴−Δ𝑀𝐶
 (Δ𝑀𝐴=𝑀𝐴-𝑀𝐴𝑃, Δ𝑀𝐶=𝑀𝐶-𝑀𝐶𝑃) (30) 
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Fig. 7 The flowchart for determining the transformation 

points 

 

 

The moment in junction point (MjunA) will be 

𝑀𝑗𝑢𝑛𝐴=2(𝑀𝐶 − 𝑀𝐴)𝑥𝑗𝑢𝑛𝐴+𝑀𝐴 (31) 

if      𝑀𝑗𝑢𝑛𝐴𝑀𝐴 ≥ 0 →       𝛼𝑈𝐴={𝑥𝑗𝑢𝑛𝐴} (32) 

if 𝑀𝑗𝑢𝑛𝐴𝑀𝐴 < 0 → 𝛼𝑈𝐴=*min(𝑥0𝐴, 𝑥0𝐴𝑃)+ (33) 

where 𝑥0𝐴=
1

2

(−𝑀𝐴)

(𝑀𝐶−𝑀𝐴)
,  𝑥0𝐴𝑃=

1

2

(−𝑀𝐴𝑝)

(𝑀𝐶𝑝−𝑀𝐴𝑝)
 

After calculating αUA, the collections „„X‟‟ and „„S‟‟ are 

calculated as follows 

b.1 MAφA<0  

b.1.1 𝛼𝑈𝐴≥𝛼𝐴𝑚𝑎𝑥  → 𝑋𝐴=*𝛼𝐴𝑚𝑎𝑥+, 𝑆𝐴 = *𝐸𝐼𝐴+ (34) 

b.1.2 
𝛼𝑈𝐴<𝛼𝐴𝑚𝑎𝑥  → 𝑋𝐴=*𝛼𝑈𝐴, 𝛼𝐴𝑚𝑎𝑥+, 𝑆𝐴 = 

*𝐸𝐼𝐴 , 𝐸𝐼𝑇𝐴+ 
(35) 

b.2     𝑀𝐴 𝜑𝐴>0 

b.2.1 𝛼𝑈𝐴≥𝛼𝐴𝑚𝑎𝑥  → 𝑋𝐴=*𝛼𝐴𝑚𝑎𝑥+, 𝑆𝐴 = *𝐸𝐼𝐴+ (36) 

b.2.2 
𝛽𝐴𝑚𝑎𝑥 ≤ 𝛼𝑈𝐴<𝛼𝐴𝑚𝑎𝑥  → 𝑋𝐴=*𝛼𝑈𝐴, 𝛼𝐴𝑚𝑎𝑥+ 

,𝑆𝐴 = *𝐸𝐼𝐴 , 𝐸𝐼𝑐𝑟𝐴+ 
(37) 

b.2.3 
 𝛼𝑈𝐴<𝛽𝐴𝑀𝑎𝑥 → 𝑋𝐴=*𝛼𝑈𝐴, 𝛽𝐴𝑀𝑎𝑥 , 𝛼𝐴𝑀𝑎𝑥+, 

𝑆𝐴 = {𝐸𝐼𝐴, 𝐸𝐼𝑦𝐴 , 𝐸𝐼𝑐𝑟𝐴} 
(38) 

where EIA means the current stiffness of end „„A‟‟ based on 

hysteric model in unloading and reloading and EITA is the 

transition stiffness defined in step c. 

c. If the state of end „„A‟‟ is transition to vertex:  

In this situation, collections „„X‟‟ and „„S‟‟ are 

𝑋𝐴=*𝛼𝐴𝑀𝑎𝑥+ , 𝑆𝐴 = *𝐸𝐼𝑇𝐴+ (39) 

EITA is the current stiffness of point „„A‟‟ in passing to 

vertex. It is worth mentioning, for end „„C‟‟ in the first half 

and also points „„C‟‟ and “B” in the second half, the a-c 

steps are same (index “A” in equations are substituted by 

„„C‟‟ or „„B‟‟). The mentioned steps are summarized in Fig. 

7. 

Note: As manifested, in steps a-c, the transformation 

points coefficients are figured out from the corresponding 

end („„A‟‟, „„C‟‟ and „„B‟‟) regarded as an origin but in the 

final collection, all the coefficients α and β (collection „„X‟‟) 

should be calculated from end “A”. So in the first half, the 

values of α and β for end „„C‟‟ will modify (0.5-α) and (0.5- 

β). In the second half the values for end „„C‟‟ will change 

(0.5+α) and (0.5+β). The coefficients for end „„B‟‟ will 

remold (1-α) and (1-β). After adjusting coefficients α and β, 

collection „„S‟‟ is rearranged according to altered 

coefficients α and β. 

Note: it should be emphasized that αA+αC (for the 

second half αC+αB) should be lower than 0.5. When the 

whole of first half (or the second half) experienced inelastic 

deformation. The values of αA and αC (for the second half αC 

and αB) should be altered to capture the actual flexibility. To 

do so, the junction point of the flexibility lines “a’A” and the 

modified flexibility „„
1

𝐸𝐼0
′‟‟ are calculated from Eqs. (40) and 

(41). 

α𝐴
′ =

𝑓0−𝑓𝑐𝑟𝐴
𝛼𝐴−𝛽𝐴

𝛽𝐴+(𝑓0−𝑓𝑐𝑟𝐶)(
𝛽𝐶
𝛼𝐶

−1)+𝑓0−𝑓𝑐𝑟𝐴

𝑓0−𝑓𝑐𝑟𝐴
𝛼𝐴−𝛽𝐴

+
𝑓0−𝑓𝑐𝑟𝐶

𝛼𝐶

 
(40) 

1

𝐸𝐼0
′=𝑓0

′=
𝑓0−𝑓𝑐𝑟𝐴

𝛼𝐴−𝛽𝐴
(𝛼𝐴

′ − 𝛽𝐴)𝐿+𝑓𝑐𝑟𝐴 
(41) 

Where f’0, f0, fcrA, fcrC are the modified elastic flexibility, 

elastic flexibility, cracking flexibility of end „„A‟‟ and 

cracking flexibility of end „„C‟‟, respectively.  

After doing the steps a-c for „„A‟‟, „„C‟‟ and „„C‟‟, „„B‟‟, 

the transformation points coefficients collection and the 

stiffness collection for the first and the second half is as 

follows 

(a) αA+αC<0.5 

𝑋𝑓ℎ=*0, 𝑋𝐴, 𝑋𝑐, 0.5+ 𝑆𝑓ℎ=*𝑆𝐴 , 𝐸𝐼0, 𝐸𝐼0, 𝑆𝐶+ (42) 

(b) αA+αC=0.5 

𝑋𝑓ℎ=*0, 𝑋𝐴, 𝑋𝑐, 0.5+ 𝑆𝑓ℎ=*𝑆𝐴 , 𝐸𝐼0, 𝑆𝐶+ (43) 

And for the second half: 

(a) αC+αB<0.5 

𝑋𝑠ℎ=*𝑋𝐶 , 𝑋𝐵 , 1+ 𝑆𝑓ℎ=*𝑆𝐶 , 𝐸𝐼0, 𝐸𝐼0, 𝑆𝐵+ (44) 

(b) αC+αB=0.5 

𝑋𝑠ℎ=*𝑋𝐶 , 𝑋𝐵 , 1+ 𝑆𝑓ℎ=*𝑆𝐶 , 𝐸𝐼0, 𝑆𝐵+ (45) 

In sum, the first and the second half will be assembled 

one to generate the final collection (Eq. (46)) 

𝑋={𝑋𝑓ℎ , 𝑋𝑠ℎ}, 𝑆={𝑆𝑓ℎ , 𝑆𝑠ℎ} (46) 

The aforementioned methodology has some advantages: 

• The stiffness matrix is obtained based on one element 

for each beam. 

• The effect of gravity load is considered taking point 

„„C‟‟ in middle length.  

• The aforementioned methodology expands the 

plasticity along the length of member, although hysteric 

model is merely evaluated in three points. 

• In this formulation, unlike some other spread plasticity 

models, yielded and cracked portions are separated.  
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Fig. 8 Tri-linear moment curvature curve. 

 

 

Fig. 9 Comparing the flexibility distribution of LFM 

and ILFM 

 

 

To explain the last advantage more, consider the three 

linear moment-curvature as depicted in Fig. 8, for a RC 

member. If the current moment of end „„A‟‟ (M‟A) is more 

than the yielded moment (My), the changes of flexibility for 

end „„A‟‟ in LFM and ILFM will be according to what is 

demonstrated in Fig. 9.  

In Fig. 9, the actual flexibility distribution (dashed black 

lines) is compared with LFM (dotted red lines) and ILFM 

(black lines). As it is clear, although both LFM and ILFM 

take the flexibility distribution into consideration with 

approximation, the ILFM presents more compatible 

flexibility distribution with precise one.  

The methodology for column members is similar to 

beam elements. For these members, the hysteric model is 

only evaluated in two ends of element because of the 

absence of perpendicular gravity load to the axis of them. 

 
2.2.3 Modifying the effects of applied gravity load on 

end moments and shears 
When structural elements encounter non-uniform 

stiffness, the effects of applied gravity load on end moments 

and shear forces should be altered. To figure out these 

effects for a member that is subdivided by „„m‟‟ 

transformation points, the least work method is utilized in 

this study. In this section, to derive the simple and practical 

formulations, the stiffness of each part (between two 

successive transformation points) is considered uniform and 

equal to the average of two successive stiffness (for 

example, the stiffness of the part between (i)
th

 and (i+1)
th

 

transformation points is 
𝐸𝐼𝑖+𝐸𝐼𝑖+1

2
 ). In the least work 

method, first the internal strain energy is obtained. After 

that, the first partial derivative of the mentioned energy with 

respect to the applied force (here left end moment (MA) and 

shear force (VA) of end „„A‟‟ according to Fig. 4) is equal to 

deflection here zero at the point of considered force (Eqs. 

(47)-(48)). Finally, these equations are simultaneously 

solved to gain the MA and VA. The outcomes are expressed 

in the Eqs. (49)-(50).  

 

Fig. 10 Configuration of full scale bridge (Reinhorn et al. 

2009) 

 

 

∂U

∂MA
= MA𝑃1+VA𝑃2 - 

𝑊

2
𝑃3=0 (47) 

∂U

∂VA
= MA𝑃2+VA𝑃3+

VAL′

GAz
 - 

𝑊

2
𝑃4- 

wL′2

2GAz
=0 (48) 

VA=
WP3−2MAP1

2P2
 (49) 

MA =
WGAz𝑃2𝑃4 − 𝑃2WL′2

− GAzW𝑃3(𝑃3 +
L′

GAz
 )

2GAz(𝑃2
2 − 𝑃1(𝑃3 +

L′

GAz
 ))

 (50) 

Where 

𝑃1 = L′(∑ .(
1

EIi
−

1

EIi+1
) × xi

1/m−1
i=1  + 

1

EIm
xm

1 ) (51) 

𝑃2 =
L′2

2
(∑ .(

1

EIi
−

1

EIi+1
) × xi

2/m−1
i=1  + 

1

EIm
xm

2 ) (52) 

𝑃3 =
L′3

3
(∑ .(

1

EIi
−

1

EIi+1
) × xi

3/m−1
i=1 + 

1

EIm
xm

3 ) (53) 

𝑃4 =
L′4

4
(∑ .(

1

EIi
−

1

EIi+1
) × xi

4/m−1
i=1  + 

1

EIm
xm

4 ) (54) 

In Eqs. (47)-(48), U is the internal strain energy. After 

computing the MA and VA, MB and VB are figured out using 

the statically equilibrium equations 

VB=WL-VA (55) 

MB=VA × L + MA- 
WL2

2
 (56) 

It should be pointed out that in the present study, Eqs. 

(47)-(56) are extracted for beam elements merely subjected 

to uniform gravity load that is the most probable kind of 

gravity loads in the building frames but the aforementioned 

equations can be altered and extended using explained 

method to any arbitrary gravity loads.  

 

 

3. Nonlinear analysis 
 

The actual behavior of a building frame can be varied 

between fully elastic and collapse. The moment-curvature 

relation of every RC structural element has a definitive 
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effect on the behavior of structure. In this research, the tri-

linear moment-curvature relation, as shown in Fig. 8, is 

used for expressing the nonlinear behavior of reinforced 

concrete sections. 

The moment-curvature characters are computed based 

on limitations and relations presented in (Park and Paulay 

1975, Park and Ang 1985).  

In present study, the effect of rigid length zone is 

considered to simulate the increase of stiffness in joints 

using following transformations (Habibi and Moharrami 

2010) 

[
𝑀𝐴

𝑀𝐵
]=,�̃�- [

𝑀𝐴
′

𝑀𝐵
′ ],  [

𝜃𝐴
′

𝜃𝐵
′ ]=,�̃�-𝑡 [

𝜃𝐴

𝜃𝐵
] ; 

,�̃�- =
1

1 − 𝜆𝐴−𝜆𝐵

[
1 − 𝜆𝐵 𝜆𝐴

𝜆𝐵 1 − 𝜆𝐴
] 

(57) 

where λA and λB are the proportions of rigid zone at the 

element ends. Taking all the forces perpendicular to the axis 

of the element into account, the element stiffness matrix 

relating displacements and forces, is obtained as follows 

(Habibi and Moharrami 2010) 

K=𝑅𝐸𝐾𝑆𝑅𝐸
𝑇 (58) 

where 

𝑅𝐸
𝑇=[

−
1

𝐿
1

1

𝐿

−
1

𝐿
0

1

𝐿

0
1

 ];  𝐾𝑆=�̃�𝐾𝑠
′ �̃�−1 (59) 

The axial and geometric stiffness matrices are added to 

element stiffness matrix as it is considered by Habibi and 

Mohharami (Habibi and Moharrami 2010).   

In present research, it is assumed that the effects of 

applied gravity loads are altered in each step of incremental 

nonlinear analysis because of changing the flexibility 

properties of members along the analysis; therefore, the 

gravity load effects are updated on the structural elements 

in each step of analysis and lateral loads are algebraically 

added to it. The Newton-Raphson method is applied to 

nonlinear analysis of structures. 

 

 
4. Numerical examples 

 
4.1 Example 1 

 
The first example is a circular column that has been 

tested at the laboratories of the National Institute of 
Standards and Technology (Stone and Cheok 1989). This 
column represents typical bridge pier deigned in accordance 
with Caltrans specifications (Caltrans 1988). The column is 
tested by applying both axial and lateral loads. The 
characters of this column are depicted in Fig. 10. The 
concrete has a compressive strength of 35.85 MPa (5.2 ksi) 
and a modulus of elasticity of 28.34 GPa (4110 ksi). The 
steel used for longitudinal reinforcement has a yield 
strength of 475.05 MPa (68.9 ksi) and modulus of elasticity 
of 189.18 GPa (27,438 ksi). The axial load applied to the 
specimen is 4450 kN (1000 kips). More details have been 
presented by Reinhorn et al. (2009).  

The vertex-oriented hysteric model is considered for the 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 The pier outcomes (a) experimental (Reinhorn et 

al. 2009) (b) improved and linear spread plasticity model 

with moderate stiffness and strength degradation (c) 

Power and linear plasticity model (Roh et al. 2012) 

 

 

column and this pier is tested using the displacement 

control quasi-static loading history. The experimental 

outcomes are shown in Fig. 11(a). This column is analyzed 

applying the proposed spread plasticity model in this study 

and results are compared with the linear plasticity model of 

IDARC in Fig. 11(b). It is worth pointing out that the 

mentioned pier has been also evaluated by Roh et al. (2012) 

using power spread plasticity model. The outcomes of 

power and linear plasticity model have been compared by 

Roh et al. (2012), as shown in Fig. 11(c). 

As it is clear in Fig. 11, the result of ILFM has good 

agreement with experimental outcomes. The consequence 

for Power Spread Plasticity Model (PSPM) (Fig. 11(c)) is 

analogous. It seems, by increasing displacement, the gap 

between ILFM as well as PSPM and LFM will be higher. 

The strength reductions in ILFM and PSPM rather than  
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Fig. 12 One-story RC frame (Habibi 2007) 

 

Table 1 Cross-sectional characteristics of beam and 

columns 

Element type 
Dimension (mm) Reinforcement (mm2) 

Width Height Bottom Top 

Beam 254 635 2040 1020 

Both 

columns 
254 635 2040 2040 

 

 

Fig. 13 Comparing the results of ILFM with LFM-1P, 

LFM-2P and LFM-5P 

 

 

LFM are estimated more compatible with experimental 

results. It should be noted, although for column element, 

there are not distributed perpendicular forces along the 

member; not separating the yielded and cracked lengths 

causes some errors in LFM analysis. In the ILFM, these 

lengths have been separated completely. The power spread 

plasticity model almost has obviated this problem too; 

therefore, as depicted in Fig. 9, the outcomes of ILFM and 

PSPM have good agreement. 

 

4.2 Example 2 
 
The second example is an one-story, one-bye planner 

moment resistant reinforced concrete frame as described in 

Fig. 12 (Habibi 2007). The concrete is assumed to have a 

cylinder strength of 20.7 Mpa, a modulus of rupture of 2.83 

Mpa, a modulus of elasticity of 22070 Mpa, a strain of 

0.002 at maximum strength and an ultimate strain of 0.004. 

The steel has a yield strength of 276 Mpa and a modulus of 

elasticity of 200,000 Mpa. A uniformly distributed gravity 

load of 78.48 KN/m is applied on the beam. Reinforcements 

have the cover to the steel centroid of 51 mm. It is assumed  

 

Fig. 14 Results of previous analyzes on one-story, one-

bye frame (Habibi 2007) 

 

  

Fig. 15 The one-story, one-bye frame and imposed loads 

 

 

that columns and beams have rectangular cross sections 

detailed in Table 1. Two analyses are carried out on this 

frame separately. First, the pushover analysis is done on the 

frame to assess the proposed methodology from elastic to 

collapse. This analysis is carried out on this frame using 

ILFM and increasing lateral loads considering power 

distribution from FEMA273 (1997) along with constant 

gravity loads. Then linear flexibility model in IDARC2D 

(Reinhorn et al. 2009) is utilized to accomplish pushover 

analysis on the mentioned frame. Analyses in IDARC2D 

are performed several times by considering the different 

number of beam elements taken one, two and five (named 

afterward LFM-1P, LFM-2P and LFM-5P, respectively). 

The outcomes are described in Fig. 13. The capacity curve 

of the structure has been achieved by applying the LFM by 

Habibi (2007), as shown in Fig. 14. 

As shown in Fig. 13, the gap between the results of 

ILFM and LFM-1P is not negligible. It seems, the 

significant gravity load in this example is the main reason 

for the mentioned gap. The difference between LFM-2P and 

LFM-5P with ILFM is low because, as mentioned (for 

linear flexibility model), in the cases of significant gravity 

load, structural elements should be subdivided to capture 

this effect (Reinhorn et al. 2009). Comparing the LFM 

results with those of ILFM exhibits that by increasing 

number of elements from 1 to 5 results of LFM converge to 

ILFM results. This matter verifies the ILFM results. 

Contrasting the outcomes of LFM-1P (Fig. 13) and IDARC 

(Fig. 14) confirms the modeling of the frame in this study.  
The nonlinear dynamic analysis is also performed on the 

frame subjected to the half-cycle sine pulse force presented 
in Fig. 15. To evaluate the accuracy of the suggested model, 
the nonlinear analysis is accomplished once using ILFM 
and again with SeismoStruct (2016). In SeismoStruct, to  
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Fig. 16 Comparing the results of ILFM with 4-ISB, 5-

ISB and 10-ISB 
 

 

Fig. 17 Ten-story RC frame (Habibi and Moharrami 2010) 
 
 

model structural elements, the inelastic force-based frame 
element type-infrmFB is applied. This model is the most 
accurate among the four frame element types of 
SeismoStruct, since it is capable of capturing the inelastic 
behavior along the entire length of a structural member, 
even when employing a single element per member 
(SeismoStruct 2016), is used to model the beam and 
columns. The number of element's integration sections is 
considered four, five and ten (named afterward 4-ISB, 5-
ISB and 10-ISB). The number of used section fibers in 
equilibrium computations carried out at each of the 
element's integration sections is taken 150 fibers into 
account. The Lobatto quadrature is employed for the 
considered integration sections. The outcomes of analyzes 
are shown in Fig. 16.  

Comparing consequences describes the number of 

element‟s integration sections has glaring effect on results. 

By increasing the number of element‟s integration sections, 

the plasticity distribution along the member will be modeled 

closer to actual behavior of structure. As exhibited in Fig. 

16, the outcomes of ILFM and SeismoStruct (2016) with 

ten element‟s integration sections are compatible. The peak 

of roof displacement is 4.3 cm and 2.7 cm for 4-ISB and 10-

ISB, respectively. The roof displacement is dwindled 

increasing the number of element‟s integration sections. The 

gap between the curve of 4-ISB and 10-ISB demonstrates 

the effect of selecting element‟s integration sections on 

results. Contrasting the ILFM and 10-ISB clarifies 

acceptable approximation of the proposed methodology.   

 

4.3 Example 3 
 

The last example is a ten-story, two-bye planner moment  

 

Fig. 18 The results of ILFM with LFM-1P and LFM-10P 

 

 

Fig. 19 The outcomes of ILFM with LFM-1P, LFM-5P 

and LFM-10P 

 

 

Fig. 20 The story displacements of ILFM with LFM-

1Pand LFM-10P in overall drift 1.5% 

 

 

resistant reinforced concrete frame shown in Fig. 17 

(Habibi and Moharrami 2010). The concrete is assumed to 

have a cylinder strength of 30 MPa, a modulus of rupture of 

3.45 MPa, a modulus of elasticity of 27,400 MPa, a strain 

of 0.002 at maximum strength and an ultimate strain of 

0.004. The steel has a yield strength of 300 MPa and a 

modulus of elasticity of 200,000 MPa.  

Pushover analysis is performed on this frame two times 

with different gravity loads. In the former, a uniformly 

distributed gravity load applied on all beams is 20 KN/m. 

To analyze this example, ILFM and LFM are utilized. In the 

linear flexibility, once each member considered one (LFM-
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1P) and then each member is subdivided ten elements 

(LFM-10P). The results of these analyzes are depicted in 

Fig. 18. 

Contrasting the outcomes of ILFM and LFM-10P shows 

that these models are great compatible. The maximum 

overall drift for ILFM is almost 1.8% and for LFM-10P is 

about 1.3%. Although there is a difference between the 

results of LFM-1P and ILFM for overall drift 0.4 to 1 

percent, in other ranges, consequences are close to each 

other. It seems, for the mentioned gravity loads, the effect 

of lateral load is dominated.  

In the latter, the distributed gravity load imposed on 

beams is considered 35 KN/m to assess the presented model 

for significant gravity loads. In this case too, linear 

flexibility model is used to analyze several times. In the 

first one, each element considered one. In the second and 

third analyze, elements are subdivided five and ten parts 

(LFM-5P and LFM-10P). After the aforementioned 

analyses, the present formulation is utilized to perform 

pushover analysis. The results of these analyses are 

indicated in Fig. 19. The floor displacements for overall 

drift 1.5 percent are displayed in Fig. 20.  

As shown in Fig. 19, applying more subdivided part for 

each element decreases the differences between the results 

of linear flexibility model and ILFM. Comparing the 

consequences of LFM-1P and ILFM illustrates that the gap 

between two curves increases with augmentation of 

inelastic deformation. The result of LFM-5P is closer to 

ILFM rather than LFM-1P. The LFM-10P has the most 

compatibility with ILFM between all models. As 

demonstrated in Fig. 20, the result of LFM-1P has 

noticeable difference with ILFM and LFM-10P. This 

contrast refers to the shortcomings of this model in taking 

gravity load effect into account. 
 

  

5. Conclusions 
 

In this study, the linear flexibility model is improved for 

taking both the effects of lateral and gravity loads into 

account. Against to other spread plasticity models, in the 

proposed model, there is no need to subdivide members into 

several elements for considering the gravity load effects. 

Using merely one element for each member can dwindle 

computational time of analysis. Three examples from 

previous studies are selected to evaluate the accuracy of the 

suggested model. Comparing the results of the proposed 

model with experimental, the linear flexibility and power 

plasticity models confirms the accuracy of the improved 

model. It is demonstrated that linear flexibility model 

considering the member as one element produces 

cumulative errors and leads to incorrect results. It is 

described that proposed plasticity model can simultaneously 

account for gravity and lateral load effects by using only 

one element for each reinforced concrete member without 

subdividing the member. By comparing the LFM and ILFM 

outcomes, it is observed that by increasing the number of 

elements, the consequences of the linear flexibility model 

converge to proposed flexibility model. The outcomes 

illustrate an increase gap between ILFM and LFM when the 

gravity load is developed.  
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