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1. Introduction 
 

Axial compressive behavior of confined concrete has 

received significant attention over the last decades as 

confinement enhances the load carrying capacity of 

concrete and improves its ductility, features of crucial 

importance especially for structural members subjected to 

severe loads. Depending on how confining stresses are 

provided and applied to specimens, concrete failure studies 

are categorized as being active or passive. Confinement 

exerted by fluid applying hydrostatic pressure on a concrete 

core is of active type. On the other hand, fiber-reinforced 

polymer (FRP) jackets and lateral reinforcements such as 

spirals or ties provide passive confinement activated by the 

expansion of concrete. Recently, shape memory alloys 

(SMA) have also been used as confining materials which 

can provide a combination of active and passive 

confinements. 

Actively confined concrete studies are of great 

significance as their importance is multifold: first, the 

results of such research can directly provide grounds for 

more realistic modeling of actively confined structural 

members (e.g., pressure vessels), second, they indirectly 

play an essential role in the accuracy of the existing 

analysis-oriented models for passively confined concrete as, 

in almost all of these models, each point on the stress-strain 

curve of passively confined concrete corresponds to a point 

on an actively confined curve with the same confining 

stress as exerted by the confining material (see e.g. , 

Spoelstra and Monti 1999, Harries and Kharel 2002, 

Marques et al. 2004, Albanesi et al. 2007, Jiang and Teng 

2007, Teng et al. 2007, Xiao et al. 2010, and Ghorbi et al.  
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2013 for FRP confined cylinders, the work of Shin and 

Andrawes 2010 on SMA confined concrete, and the review 

article of Ozbakkaloglu et al. (2013) for complementary 

information), and third, the accuracy of the numerical 

simulations employing directly or indirectly these analysis-

oriented models (see e.g., Montuori et al. 2013, Ding et al. 

2017, and Sadeghi and Nouban 2017) depends on the extent 

the underlying actively confined models are loyal to the real 

response of concrete.     

The first actively confined model may be attributed to 

Mander et al. (1988). Improved versions of this model were 

employed in Samdani and Sheikh (2005), Marques et al. 

(2004), Teng et al. (2007), Jiang and Teng (2007), and Xiao 

et al. (2010). Moreover, other actively confined models 

were suggested by Attard and Setunge (1996), Harries and 

Kharel (2002), Binici (2005), and Samani and Attard (2012) 

whose structures differ from that of Mander et al. (1988). 

These existing models and especially the ones proposed in 

recent years were shown to be rather successful in the 

prediction of stress-strain curves of actively confined 

concrete, however, as will be shown and discussed in this 

study, situations arise in which physically incorrect 

predictions are obtained. The reason behind these kinds of 

inadequateness is that most of the existing models have 

been phenomenologically developed without enough 

attention to the loading path travelled in an actual fluid 

confined test. 

Motivated by the observed inconsistencies and 

inaccuracies, the current study proposes a new stress-strain 

model for actively confined concrete which is closely loyal 

to the process of loading in fluid confined concrete tests. 

Accordingly, the stress path is divided into two phases 

initiated by a hydrostatic part up to the predefined confining 

stress provided by the fluid, fl, and, continued by a triaxial 

part in which the confining pressure is kept constant and 

equal to fl. Alongside, existing relations for the peak stress, 

peak strain, and post-peak region of actively confined 

normal-strength concrete (NSC) are carefully re-evaluated 

 
 
 

A physically consistent stress-strain model for actively confined concrete 
 

Sharif Shahbeyk

, Mahshid Z. Moghaddama and Mohammad Safarnejadb 

 
Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box 14115-143, Tehran, Iran 

 

(Received June 21, 2016, Revised March 22, 2017, Accepted March 23, 2017) 

 
Abstract.  With a special attention to the different stages of a typical loading path travelled in a fluid confined concrete test, 

this paper introduces a physically consistent model for the stress-strain curve of actively confined normal-strength concrete in 

the axial direction. The model comprises of the five elements of: (1) a criterion for the peak or failure strength, (2) an equation 

for the peak strain, (3) a backbone hydrostatic curve, (4) a transient hardening curve linking the point of departure from the 

hydrostatic curve to the failure point, and finally (5) a set of formulas for the post-peak region. Alongside, relevant details and 

shortcomings of existing models will be discussed in each part. Finally, the accuracy and efficiency of the proposed model have 

been verified in a set of simulations which compare well with the experimental results from the literature. 
 

Keywords:  active confinement; concrete; failure strength; stress-strain model; hydrostatic response; numerical modeling 

 



 

Sharif Shahbeyk, Mahshid Z. Moghaddam and Mohammad Safarnejad 

 

Fig. 1 Stress-strain curves of hydrostatically loaded and 

actively confined concrete samples 

 

 

against experimental results from the literature and a set of 

more conforming formulas have been suggested. An 

equation for the transient hardening part of the stress-strain 

curve is also proposed which links the point of departure 

from the hydrostatic curve to the failure point. Finally, 

comparisons are made between the predictions of proposed 

model and available test results. 

 

 

2. Actively confined concrete 
 

2.1 Introductory remarks 
 

The stress-strain curve of a hydrostatically loaded 

concrete sample and that of a typical actively confined 

concrete specimen are shown in Fig. 1. The hydrostatic 

stress-strain curve of normal concrete consists of the three 

elastic, pore collapse, and densification phases. On the other 

hand, an actively confined test begins with a gradual 

increase of triaxial hydrostatic pressure up to a predefined 

value (first phase of loading) and then, keeping constant the 

applied confining pressure, is followed with an extra 

uniaxial load (second phase of loading). As illustrated in 

Fig. 1, in contrary to a pure hydrostatic test, the stress-strain 

curve of actively confined concrete experiences a global 

maximum known as its peak point and thus can be divided 

into two distinct hardening and softening (post-peak) parts. 

Up to now, many researchers have tried to propose 

appropriate models for the prediction of stress-strain curve 

of actively confined concrete (see, e.g., Mander et al. 1988, 

Attard and Setunge 1996, Harries and Kharel 2002, 

Marques et al. 2004, Binici 2005, Samdani and Sheikh 

2005, Jiang and Teng 2007, Teng et al. 2007, and Samani 

and Attard 2012). It needs to note that the main importance 

of such models should be sought elsewhere, first in their 

applications in the development of analysis-oriented models 

for passively confined concrete in which each point on the 

stress-strain curve corresponds to a point on an actively 

confined curve with the same confining stress as exerted by 

the confining material (Fig. 2), and second when they play 

the role of constitutive laws for finite element integration 

points, in fiber-type beam-column models, or in other 

computational frameworks. Accordingly, if incorrect  

 

Fig. 2 Simulation of a stress-strain curve of passively 

confined concrete using an analysis-oriented model 

 

 

hypotheses are postulated in an actively confined concrete 

model, inaccurate or even physically irrelevant results may 

be immediately appeared in the predictions of the 

corresponding analysis-oriented or numerical model.  

 

2.2 An overview of the existing actively confined 
concrete models 
 

The introduction of first actively confined model can be 

attributed to Mander et al. (1988) who proposed a stress-

strain relationship of the following form 

𝑓𝑐𝑐 =
𝑥𝑟

𝑟 − 1 + 𝑥𝑟
𝑓𝑐𝑐
′  

𝑥 =
𝜀𝑐𝑐
𝜀𝑐𝑐
′
, 𝑟 =

𝐸𝑐
𝐸𝑐 − 𝐸𝑠𝑒𝑐

, 𝐸𝑠𝑒𝑐 =
𝑓𝑐𝑐
′

𝜀𝑐𝑐
′

 

(1) 

𝑓𝑐𝑐
′  and 𝜀𝑐𝑐

′  are the peak strength and peak strain of 

confined concrete, respectively, and 𝐸𝑐  is the concrete 

elastic modulus. Following their work, Spoelstra and Monti 

(1999), Fam and Rizkalla (2001), and Albanesi et al. (2007) 

used the very same formulas of Mander et al. (1988) and 

put forward their models for passively confined concrete. 

Moreover, there exist some other analysis-oriented models 

such as those of Marques et al. (2004), Samdani and Sheikh 

(2005), Jiang and Teng (2007), Teng et al. (2007), and Xiao 

et al. (2010) in which Eq. (1) was used for their stress-strain 

curves yet with modified peak strain/peak strength 

formulas. Besides, Attard and Setunge (1996), Harries and 

Kharel (2002), Binici (2005), and Samani and Attard (2012) 

incorporated their own equations and proposed alternative 

actively confined concrete models. Details of all these 

models are provided in Table 1. In this table and hereinafter, 

𝜙, 𝜓, and 𝜒 are the confinement ratio (confining strength 

divided by concrete uniaxial compressive strength, 𝑓𝑐
′), the 

peak strength ratio, (compressive strength of confined 

concrete divided by 𝑓𝑐
′), and the peak strain ratio, (peak 

compressive strain of confined concrete divided by that of 

uniaxial compression, 𝜀𝑐
′), respectively. 

 

2.3 Elastic response of the models 
 

Before proceeding to the structure of our proposed 
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model in the next section, it is worth noting that all of the 
existing actively confined concrete models ignored this fact 
that the stress-strain curve should match the hydrostatic 
response in the initial phase of loading. To check one of the 
consequence of this simplification, let’s examine the initial 
elastic response predicted by the models of Table 1 for the 
hydrostatic loading case. From the mechanics of materials, 
the slope of elastic part of a hydrostatic curve, Ecc, is equal 
to 

𝐸𝑐𝑐 =
d𝑓𝑐𝑐
d𝜀𝑐𝑐

|
𝜀𝑐𝑐<0

=
1

1 − 2𝜈
𝐸𝑐 (2) 

where v is the elastic Poisson’s ratio of concrete. However, 
as presented in Table 2, all of the elastic slopes predicted by 
the models for the hydrostatic loading case are mistakenly 
equal to the Young modulus, Ec. This shortcoming exists for  

 

 
 
other triaxial loading cases and directly affects the accuracy 
of emanating analysis-oriented models for passively 
confined concrete. Now, one can interpret why Montuori et 
al. (2012) identified cases for which the constitutive laws of 
FRP confined concrete provided initial slopes less than 
those obtained for the same sections with reference to the 
model of unconfined concrete. This fact may be 
downplayed by some of the researchers focusing on the 
ultimate strength of confined concrete, however, when it 
comes to the application of such analysis-oriented models in 
a numerical frameworks (e.g., in the finite or applied 
element methods), the very early requirement is that their 
macro and micro elastic predictions should be correct, the 
fact cannot be granted by the existing actively confined 
concrete models. 
 

Table 1 Some of the formulas for the stress-strain curve of actively confined concrete 

Model Stress-Strain Formula (𝑓𝑐𝑐 − 𝜀𝑐𝑐) Peak Strength Ratio (𝜓) Peak Strain Ratio (𝜒) 

Mander et al. 

(1988) 
𝑓𝑐𝑐 =

𝑥𝑟

𝑟 − 1 + 𝑥𝑟
𝑓𝑐𝑐
′  2.254√1 + 7.94𝜙 − 2𝜙 − 1.254 5𝜓 − 4 

Attard and Setunge 

(1996) 

𝑓𝑐𝑐 =
𝐴𝑥 + 𝐵𝑥2

1 + (𝐴 − 2)𝑥 + (𝐵 + 1)𝑥2
𝑓𝑐𝑐
′ , 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑓𝑐𝑐 ≤ 𝑓𝑐𝑐

′  

𝐴 =
𝐸𝑐𝜀𝑐𝑐

′

𝑓𝑐𝑐
′
                𝐵 =

(𝐴 − 1)2

0.55
− 1 

(
𝑓𝑙
𝑓𝑡
+ 1)

𝑘

 

𝑘 = 1.25(1 + 0.062𝜙)𝑓𝑐
′;0.21 

1 + (17 − 0.06𝑓𝑐
′)𝜙 

Harries and Kharel 

(2002) 
𝑓𝑐𝑐 =

𝑥𝑟

𝑟 − 1 + 𝑥𝑘𝑟
𝑓𝑐𝑐
′ , {

𝑘 = 1                                   𝑥 ≤ 1

𝑘 = (0.67 +
𝑓𝑐
′

62
)
𝑓𝑐
′

𝑓𝑐𝑐
′
≥ 1 𝑥 > 1

 2.254√1 + 7.94𝜙 − 2𝜙 − 1.254 5𝜓 − 4 

Marques et al. 

(2004) 
𝑓𝑐𝑐 =

𝑥𝑟

𝑟 − 1 + 𝑥𝑟
𝑓𝑐𝑐
′  

1 + 𝑘1𝜙 

𝑘1 = 6.7𝑓𝑙
;0.17 

1 + 5𝑘1𝑘3𝜙, {

𝑘1 = 6.7𝑓𝑙
;0.17

𝑘3 =
40

𝑓𝑐
′
≤ 1   

 

Binici (2005) 

𝑓𝑐𝑐

=

{
  
 

  
 

𝐸𝑐𝜀𝑐𝑐                                                                            𝜀𝑐𝑐 ≤ 𝜀𝑐𝑒               

𝑓𝑐𝑒 + (𝑓𝑐𝑐
′ − 𝑓𝑐𝑒) (

𝜀𝑐𝑐 − 𝜀𝑐𝑒
𝜀𝑐𝑐
′ − 𝜀𝑐𝑒

)
𝑟

𝑟 − 1 + (
𝜀𝑐𝑐 − 𝜀𝑐𝑒
𝜀𝑐𝑐
′ − 𝜀𝑐𝑒

)
𝑟 𝜀𝑐𝑒 < 𝜀𝑐𝑐 ≤ 𝜀𝑐𝑐

′    

𝑓𝑐𝑟 + (𝑓𝑐𝑐
′ − 𝑓𝑐𝑟)exp [−(

𝜀𝑐𝑐 − 𝜀𝑐𝑐
′

𝛼
)

2

]                  𝜀𝑐𝑐 > 𝜀𝑐𝑐
′               

 

𝑟 =
𝐸𝑐

𝐸𝑐 −
𝑓𝑐𝑐
′ − 𝑓𝑐𝑒

𝜀𝑐𝑐
′ − 𝜀𝑐𝑒

, 𝛼 =
1

√𝜋(𝑓𝑐𝑐
′ − 𝑓𝑐𝑟)

(
2𝐺𝑓𝑐

𝑙𝑐
−
(𝑓𝑐𝑐

′ − 𝑓𝑐𝑟)
2

𝐸𝑐
) 

𝜓 = 𝜙 +√1 + 9.9𝜙 5𝜓 − 4 

Samdani and 

Sheikh (2005) 
𝑓𝑐𝑐 =

𝑥𝑟

𝑟 − 1 + 𝑥𝑟
𝑓𝑐𝑐
′  1 + 6.42

𝑓𝑙
0.9

𝑓𝑐
′  5𝜓 − 4 

Teng et al. (2007) 𝑓𝑐𝑐 =
𝑥𝑟

𝑟 − 1 + 𝑥𝑟
𝑓𝑐𝑐
′  1 + 3.5𝜙 1 + 17.5𝜙 

Jiang and Teng 

(2007) 
𝑓𝑐𝑐 =

𝑥𝑟

𝑟 − 1 + 𝑥𝑟
𝑓𝑐𝑐
′  1 + 3.5𝜙 1 + 17.5𝜙1.2 

Xiao et al. (2010) 𝑓𝑐𝑐 =
𝑥𝑟

𝑟 − 1 + 𝑥𝑟
𝑓𝑐𝑐
′  {

1 + 3.34𝜙0.79 HSC

1 + 3.24𝜙0.80 HSC and NSC
 {

1 + 18.8𝜙1.10 HSC

1 + 17.4𝜙1.06 HSC and NSC
 

Samani and Attard 

(2012) 

𝑓𝑐𝑐 =
𝐴𝑥 + 𝐵𝑥2

1 + (𝐴 − 2)𝑥 + (𝐵 + 1)𝑥2
𝑓𝑐𝑐
′ , 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑓𝑐𝑐 ≤ 𝑓𝑐𝑐

′  

𝐴 =
𝐸𝑐𝜀𝑐𝑐

′

𝑓𝑐𝑐
′
                𝐵 =

(𝐴 − 1)2

0.55
− 1 

(
𝑓𝑙
𝑓𝑡
+ 1)

𝑘

 

𝑘 = 1.25(1 + 0.062𝜙)𝑓𝑐
′;0.21 

exp (𝑘) 
𝑘
= (2.9224

− 0.00367𝑓𝑐
′)𝜙0.3124:0.002𝑓𝑐

′
 

Table 2 Initial elastic slopes predicted by the existing actively confined stress-strain models 

Model 
d𝑓𝑐𝑐
d𝜀𝑐𝑐

 𝐸𝑐𝑐 =
d𝑓𝑐𝑐
d𝜀𝑐𝑐

|
𝜀𝑐𝑐<0

 

Attard and Setunge (1996), 

Samani and Attard (2012) 
,

2𝐵𝑥 + 𝐴

1 + (𝐴 − 2)𝑥 + (𝐵 + 1)𝑥2
 −
(𝐵𝑥2 + 𝐴𝑥)[𝐴 − 2 + 2(𝐵 + 1)𝑥]

[1 + (𝐴 − 2)𝑥 + (𝐵 + 1)𝑥2]2
-
𝑓𝑐𝑐
′

𝜀𝑐𝑐
′

 𝐸𝑐 

Mander et al. (1988), Spoelstra and Monti 
(1999), Fam and Rizkalla (2001), Harries and 

Kharel (2002), Marques et al. (2004), Binici 

(2005), Samdani and Sheikh (2005), Albanesi 
et al. (2007), Jiang and Teng (2007), Teng et 

al. (2007), Xiao et al. (2010) 

*
𝑟

𝑟 − 1 + 𝑥𝑟
−

𝑟2𝑥𝑟

(𝑟 − 1 + 𝑥𝑟)2
+
𝑓𝑐𝑐
′

𝜀𝑐𝑐
′

 𝐸𝑐 
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(a) 

 
(b) 

Fig. 3 Predictions of the models for the strength ratio. (a) 

Low-confinement ratios and (b) all confinement ratios 

 

 

3. Elements of the proposed model 

 
In analogy to the typical form of actively confined 

concrete stress-strain curve shown in Fig. 1, the model 

proposed in this study is made up of: (1) a criterion defining 

peak strength, (2) an equation for the failure strain, (3) a 

backbone hydrostatic curve to define the initial loading 

phase, (4) a transient hardening part linking the point of 

departure from the hydrostatic curve to the failure point, 

and finally (5) a set of formulas for the post-peak region. 

These five elements of the model would be separately 

discussed in the following subsections. Alongside, relevant 

weaknesses and strengths of the existing models would be 

discussed in each part.   

 
3.1 Peak strength criterion  

 
Numerous experiments have been carried out on fluid-

confined NSC. The first well-known study of this type was 
conducted by Richart et al. (1928). Since then, Chinn and 
Zimmerman (1965), Kotsovos and Newman (1978), Smith 
et al. (1989), Lahlou et al. (1992), Hansen (1995), Imran 
and Pantazopoulou (1996), Ansari and Li (1998), Candappa 
et al. (2001), Sfer et al. (2002), Laine (2004), Tan (2005), 
Gabet et al. (2008), Dupray et al. (2009), and Vu et al. 
(2009) have performed comprehensive experiments on NSC 
with confinement ratios up to 3.9, 17.1, 1.5, 0.4, 0.5, 0.15, 
1, 0.9, 0.3, 1.8, 0.4, 1.2, 16.7, 22.7, 21.7, and 5, 
respectively. For ease of discussion, the confinement ratios 
are classified in this study into two ranges of: (1) low-
confinement ratios corresponding to ϕ≤1 and (2) high-
confinement ratios defined by ϕ>1. 

A database containing the results of axial compressive 

tests on actively confined NSC cylinders is employed herein 

to assess the performance of the existing strength criteria. It 

contains the test results of more than 160 actively confined 

concrete specimens gathered from the literature which 

includes 108 and 56 concrete specimens tested under low 

and high-confinement ratios, respectively. Figs. 3(a)-3(b) 

show the peak compressive strength ratio versus ϕ for the 

samples tested under low-confinement ratios and the whole 

database, respectively. 

Many researchers looked at the behavior of confined 

concrete under compression and proposed different strength 

criteria which took account of various parameters such as 

the uniaxial compressive strength and the level of 

confinement. One of the earliest equations is the one 

proposed by Richart et al. (1928). The triaxial compression 

tests performed by the authors showed that an increase of 

the confinement ratio would increase the peak strength ratio 

of the specimen an amount 4.1 times the magnitude of the 

confinement ratio, i.e.,  

𝜓 = 1 + 4.1𝜙 (3) 

Eq. (3) is a specialization of Mohr-Coulomb failure 

criterion which may be formulated as below  

𝜓 = 1 + 𝑘𝜙 (4) 

Here, k is model parameter. This formula has been further 

used in other studies to estimate the strength ratio of 

actively confined concrete. Balmer (1949) found that 𝑘 

varied between 4.5 and 7 with an average value of 5.6 

(higher values correspond to lower confinement pressures). 

For confinement ratios up to 1, Ansari and Li (1998) 

reported that the value of k is closer to 2.6 for high-strength 

concrete (HSC). Candappa et al. (2001), studied HSC under 

confinement ratios of less than 0.2 and recommended the 

value of 5 for this parameter. Furthermore, in a separate 

study, 𝑘 = 4 was suggested by Lu and Hsu (2006).   

The Leon failure criterion (1935) is also one of the 

equations used for the prediction of concrete failure surface. 

It was originally formulated in terms of major and minor 

principal stresses, σ1 and σ3, as below 

𝐹(𝜍1, 𝜍3) = (
𝜍1 − 𝜍3
𝑓𝑐
′

)
2

+𝑚(
𝜍1 − 𝜍3
𝑓𝑐
′

) − 𝑐 = 0 (5) 

m and c are material constants to be determined. Calibrating 

the criterion with the experimental data of Hurlbut (1985), 

Caggiano (2007) suggested the values of 0.857 and 0.143 

for the two unknown parameters of m and c, respectively. 

Considering c=1, a series of simplified Leon criteria of 

the form below was suggested. 

𝜓 = 𝜙 + √1 + 𝑚𝜙 (6) 

Caggiano (2007) calibrated this formula, attributed to 

Hoek and brown (1980), against the experimental data of 

Hurlburt (1985) and showed that m=6.844. Binici (2005) 

suggested that m=9.9 for concrete. Girgin et al. (2007) 

employed the results of triaxial tests performed by Xie et al. 

(1995) and Attard and Setunge (1996) to verify the 
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Girgin et al. (2007) - Modeified Hoek & Brown Girgin et al. (2007) Singh et al. (2011) - Modified Hoek & Brown

Test Results Proposed Formula
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applicability of Eq. (6) to HSC. As a result, they found the 

best value of m to be 13. Also, the value of 5.16 was 

suggested for m by Singh et al. (2011).   
Willam and Warnke (1995) introduced a five-parameter 

failure surface whose compressive meridian was a parabolic 
function of the form below 

𝜍𝑚 = 𝑏0 + 𝑏1𝜌𝑐 + 𝑏2𝜌𝑐
2 (7) 

Here, σm and ρc are the mean stress and the deviatoric 

stress invariant in the Haigh-Westergaard coordinate 

system, respectively. bi (i=0,1,2) are material constants. 

They calibrated the model for NSC and showed that 

b0=0.1025, b1=−0.4507, and b2=−0.1028. Hence, their 

criterion can be written as 

𝜓 = 𝜙 + 7.3674√0.0290 + 0.2715𝜙 − 0.2554 (8) 

Tan (2005) performed three sets of experiments on NSC 
and HSC, then employed Willam-Warnke’s criterion, and 
finally proposed their relation in the following form 

𝜓 = −2𝜙 + 10.338√1 + 1.368𝜙 − 9.338 (9) 

In a separate study on NSC, Hsieh et al. (1982) 
proposed the following four-parameter failure function 

𝑎𝐽2 + 𝑏√𝐽2 + 𝑐𝜍1 + 𝑑𝐼1 − 1 = 0 (10) 

where, σ1, I1, and J2 are the maximum principal stress, the  

 

 

first invariant of the stress tensor, and the second invariant 

of the deviatoric stress tensor, respectively. Calibration of 

the model showed that a=2.0108, b=0.9714, c=9.1412, and 

d=0.2312.  

Using the mathematical form of Eq. (10) and the 

experimental background of 130 triaxial tests performed on 

cylindrical specimens, Imran and Pantazopoulou (1996) 

proposed the equation below for the strength of confined 

concrete 

𝜓 = 𝜙 + √1.043 + 10.571𝜙 − 0.021 (11) 

Setunge et al. (1993) suggested the following relations 

for NSC and HSC. 

𝜓 = (1 + 13.07𝜙)0.63    for    NSC (12) 

𝜓 = (1 + 18.67𝜙)0.45    for    HSC with silica fume (13) 

𝜓 = (1 + 14.67𝜙)0.45    for    HSC without silica fume (14) 

In 1996, the following criterion for the strength of 

confined concrete subjected to low confining pressure was 

proposed by Attard and Setunge (1996) and shown to be 

applicable to the wide range of concrete strengths between 

20 and 130 MPa. 

Table 3 Accuracy of existing and proposed strength criteria 

Reference 𝜓 

Average Absolute Error  -  Rank 

Low-confinement ratio High-confinement ratio 

0 ≤ 𝜙 < 0.25 0.25 ≤ 𝜙 < 0.5 0.5 ≤ 𝜙 < 0.75 0.75 ≤ 𝜙 < 1 1 ≤ 𝜙 < 5 5 ≤ 𝜙 < 10 𝜙 ≥ 10 

Richart et al. (1928) 1 + 4.1𝜙 0.085 1 0.074 3 0.238 12 0.184 15 0.333 15 0.459 14 0.538 12 

Caggiano (Leon) (2007) 𝜙 + 0.5√1.306 + 6.856𝜙 + 0.429 0.144 19 0.289 21 0.313 19 0.313 20 0.420 20 0.453 13 0.494 10 

Willam and Warnke (1995) 𝜙 + 7.367√0.029 + 0.272𝜙 − 0.255 0.125 15 0.105 10 0.250 16 0.155 11 0.200 1 0.169 2 0.269 2 

Caggiano (Hoek and Brown 2007) 𝜙 +√1 + 6.844𝜙 0.090 3 0.129 16 0.203 4 0.129 5 0.284 12 0.296 8 0.380 8 

sHsieh et al. (1982) 𝜙 + 0.746√2.790+ 25.748𝜙 − 0.246 0.122 14 0.099 9 0.241 13 0.150 9 0.201 2 0.173 3 0.274 3 

Binici (2005) 𝜙 +√1 + 9.9𝜙 0.096 6 0.071 1 0.198 2 0.112 1 0.231 8 0.225 7 0.329 7 

Setunge et al. (1993) 

NSC (1 + 13.07𝜙)0.63 0.175 20 0.199 20 0.368 20 0.266 19 0.222 6 0.156 1 0.313 5 

HSC 

with SF 
(1 + 18.67𝜙)0.45 0.128 16 0.075 4 0.194 1 0.121 3 0.370 16 0.534 17 0.688 16 

HSC 

without SF 
(1 + 14.67𝜙)0.45 0.093 5 0.115 13 0.207 5 0.178 13 0.419 19 0.581 18 0.720 17 

Xie et al. (1995) √1 + (21.2 − 0.05𝑓𝑐′)𝜙 0.180 21 0.135 17 0.247 14 0.125 4 0.268 10 0.385 10 0.576 14 

Attard and Setunge (1996) 

HSC 

with SF (1 + 𝑓𝑙 0.558√𝑓𝑐′⁄ )
1.25(1:0.062𝜙)(𝑓𝑐

′)
−0.21

 0.100 9 0.080 7 0.217 7 0.131 6 0.208 4 0.716 19 14.646 20 

HSC 

without SF (1 + 𝑓𝑙 0.288𝑓𝑐
′0.67⁄ )

1.25(1:0.062𝜙)(𝑓𝑐
′)
−0.21

 0.114 12 0.087 8 0.268 17 0.144 8 0.276 11 0.771 21 16.639 21 

Ansari and Li (1998) 1 + 2.45𝜙0.703 0.097 7 0.138 18 0.218 9 0.184 15 0.371 17 0.460 15 0.571 13 

Li and Ansari (2000) 1 + 2.43𝜙0.6376 0.119 13 0.120 14 0.211 6 0.183 14 0.397 18 0.518 16 0.639 15 

Candappa et al. (2001) 1 + 5𝜙 0.097 7 0.126 15 0.404 21 0.386 21 0.576 21 0.768 20 0.870 19 

Imran and Pantazopoulou (1996) 𝜙 + √1.043 + 10.571𝜙 − 0.021 0.102 10 0.072 2 0.202 3 0.118 2 0.223 7 0.213 6 0.320 6 

Tan (2005) −2𝜙 + 10.338√1 + 1.368𝜙 − 9.338 0.090 3 0.076 5 0.217 7 0.132 7 0.255 9 0.451 12 0.788 18 

Lu and Hsu (2006) 1 + 4𝜙 0.086 2 0.076 5 0.227 10 0.168 12 0.307 13 0.425 11 0.501 11 

Girgin et al. (2007) 

1 + 4.08𝜙0.83 0.133 17 0.111 12 0.286 18 0.202 18 0.208 4 0.164 4 0.084 1 

𝜙 +√1 + 13𝜙 0.136 18 0.110 11 0.248 15 0.152 10 0.204 3 0.181 5 0.286 4 

Singh et al. (2011) 𝜙 +√1 + 5.16𝜙 0.106 11 0.180 19 0.232 11 0.185 17 0.323 14 0.343 9 0.413 9 

Proposed Model 𝜙 + √1 + 9.3𝜙exp (0.089𝜙) 0.091 0.074 0.198 0.113 0.204 0.157 0.069 
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𝜓 = (1 +
𝑓𝑙
𝑓𝑡
)
𝑘

, 𝑘 = 1.25(1 + 0.062𝜙)(𝑓𝑐
′);0.21 (15) 

ft is the tensile strength of concrete. They also suggested 

that depending on whether silica fume is used in concrete 

mixture or not, one of the following equations should be 

employed for ft.  

𝑓𝑡 = 0.288(𝑓𝑐
′)0.67     without silica fume (16) 

𝑓𝑡 = 0.558√𝑓𝑐
′     with silica fume (17) 

Ansari and Li (1998) and Li and Ansari (2000) also 

proposed the following two equations as the best fits of 

HSC data using nonlinear regression analysis 

𝜓 = 1 + 2.45𝜙0.703 (18) 

𝜓 = 1 + 2.4305𝜙0.6376 (19) 

Now, let’s focus on the accuracy of these existing 

strength criteria. For this reason, the average absolute error 

(AAE) defined below is used.  

AAE =
1

𝑁
∑|

𝜓𝑖
M − 𝜓𝑖

E

𝜓𝑖
E |

𝑁

𝑖<1

 (20) 

Superscripts M and E stand for the model predicted and 

experimentally obtained values, respectively. N is the total 

number of datasets. Using Eq. (20), the errors of 

abovementioned criteria and their ranks are calculated and 

tabulated in Table 3. It has to be noted that, to get more 

insight from our comparison, the AAE has been reported at 

seven separate ranges of confinement ratios. Moreover, in 

this table, the three best and worst criteria of each 

confinement interval are highlighted in blue and red, 

respectively. Alongside, Fig. 3 compares the analytical 

curves with the experimental data. 

The data of Table 3 show that the existing criteria yield 

comparatively different predictions. Although some 

equations do make reasonable predictions within specific 

ranges of confinement ratios, they lose their accuracy in 

other ranges. In particular, using existing criteria except one 

proposed by Girgin et al. (2007) for HSC, strength under 

high confinement pressures are poorly predicted (see Fig. 

3(b)).  

According to Table 3, among the existing models, the 

criteria proposed by Imran and Pantazopoulou (1996) and 

Binici (2005) showed promising results at low-confinement 

ratios. As already discussed, the Binici criterion belongs to 

the family of Leon criteria with the simple mathematical 

form of Eq. (6). Thus, assuming that 𝑚 in Eq. (6) is an 

independent variable, one can rewrite this equation as 

below  

𝑚 =
(𝜓 − 𝜙)2 − 1

𝜙
 (21) 

The values of this parameter have been calculated for all 
the experimental ψ-ϕ pairs of the database and displayed in 
Fig. 4. As can be seen, for low-confinement ratios, the 
computed values of 𝑚 are dispersed around 10, however, 
as ϕ increases, higher values are obtained. As a result, a  

 
(a) 

 
(b) 

Fig. 4 Parameter m calculated from the test results. (a) Low-

confinement ratios and (b) all confinement ratios 
 
 

criterion in the form of Eq. (6) with a constant m would be 
an inefficient solution for the accurate estimation of 
experimental results within the whole range of confinement 
ratios. Motivated by this observation, the following simple 
yet flexible two-parameter function of ϕ is suggested for 
𝑚. 

𝑚 = 𝑀exp (𝑁𝜙) (22) 

The two constants of Eq. (22), M and N, adjusted in 

accord with the database of experimental results are 9.3 and 

0.089, respectively. Back-substitution of these calibrated 

values in Eq. (6), the final form of our unified strength 

criterion for NSC could be presented as below 

𝜓 = 𝜙 + √1 + 9.3𝜙exp (0.089𝜙) (23) 

The prediction of this criterion is also provided in Fig. 3 

and the corresponding errors are presented in the last row of 

Table 3. These results confirm that, in contrary to the 

existing strength criteria, the suggested unified model 

provides sufficient accuracy for the whole range of ϕ. It has 

to be noted that, as physically expected, the form of 

proposed model for ϕ is similar to that of a hydrostatically 

loaded concrete, the fact that was ignored in previous 

models.  

 

3.2 Peak strain criterion  
 

A representative peak strain criterion is one of the key  
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(a) 

 
(b) 

Fig. 5 Predictions of the models for the peak strain ratio. (a) 

Low-confinement ratios (𝜙 ≤ 1) and (b) all confinement 

ratios 

 

 

elements in the modeling of stress-strain curves of actively 

confined concrete. One of the mathematical forms 

frequently used for the peak strain ratio is the following 

linear function of the confinement ratio 

𝜒 = 1 + 𝛼𝜙 (24) 

Here, 𝛼 is model parameter to be estimated. Depending on 

the experimental database used in the calibration of this 

equation, several values have already been suggested for α. 

Some examples of this kind are listed below. 

𝜒 = 1 + 20.5𝜙, Richart et al. (1928) (25) 

𝜒 = 1 + 15.5𝜙, Ansari and Li (1996) (26) 

𝜒 = 1 + 20𝜙, Candappa et al. (2001) (27) 

𝜒 = 1 + 19.2𝜙, Lu and Hsu (2006) (28) 

𝜒 = 1 + 17𝜙, Papanikolaou and Kappos (2007) (29) 

Alongside, the following nonlinear formulas are 

available in the literature.  

𝜒 = 1 + (17 − 0.06𝑓𝑐
′)𝜙, 

Attard and Setunge (1996) 
(30) 

𝜒 = 6(𝜙 + √1.043 + 10.571𝜙 − 0.851), 
Imran and Pantazopoulou (1996) 

(31) 

 

 
(a) 

 
(b) 

Fig. 6 Predictions of existing models for the stress-strain 

curves of two actively confined samples tested in Gabet et 

al. (2006) (𝑓𝑐
′=28.6, fl1=100, and fl2=500MPa). Strain ranges 

of (a) (0,0.01) and (b) (0,0.06) 

 

 

𝜒 = 𝑒[(2.9224;0.00367𝑓𝑐
′)𝜙(0.3124+0.002𝜙)], 

Samani and Attard (2012) 
(32) 

As can be seen, some of these equations depend not only 

on the confinement ratio but also consider the effect of 

uniaxial compressive strength as an extra independent 

variable.  

Now, let’s compare the predictions of these formulas 

with the experimentally measured values gathered from 

different studies. It should be noted that the scatter observed 

in the values of measured peak strains is not surprising as, 

in contrary to failure strength, accurate measuring/recording 

of peak strains in actual confined concrete tests is a tedious 

task. Fig. 5(a)-5(b) present the comparisons for low-

confinement ratios and whole range of ϕ values, 

respectively.  
Fig. 5(a) confirms that, when ϕ≤1, all the mentioned 

peak strain formulas make relatively good estimations and 
move within the experimental values, but, as revealed in 
Fig. 5(b), they fail to predict the trend of experimental 
results at higher confinement ratios. This finding has the 
potential to motivate new systematic experimental studies at 
higher 𝜙 values, however, for the time being, we have 
used the existing test results and tried different 
mathematical forms from which the following equations are 
found flexible enough for the prediction of measured values 
in the whole range of confinement ratios. 
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Fig. 7 Examples of hydrostatic stress-strain curves for NSC 
 
 

𝜒 = 𝑎 (𝜙 + √𝑏 + 𝑐𝜙 +
1

𝑎
− √𝑏) (33) 

𝜒 = 1 + 𝑎 {1 − exp [−𝑏𝜙 (
𝑐𝜙 + 𝑑

𝜙 + 𝑑
)]} (34) 

a, b, c, and d are model parameters. Calibrating these two 

equations against the experimental results, the following 

forms are finally suggested.  

𝜒 = 0.063(𝜙 + 100√3.035 + 13.99𝜙 − 158.33) (35) 

𝜒 = 1 + 200 ,1 − exp *−
0.01𝜙2 + 0.5𝜙

𝜙 + 5
+- (36) 

The efficiency of above formulas are shown in Fig. 5.  

 
3.3 Backbone hydrostatic curve 

 

To the best of our knowledge, the backbone hydrostatic 

curve is a new element brought to the modelling of actively 

confined concrete in this study. This new element ensures 

that a stress-strain curve is physically representative in its 

first phase of loading (see Fig. 1). 

To shed more light on the importance of this element, 

let’s compare the predictions of existing models with the 

test results of Gabet et al. (2006) on two highly confined 

samples as shown in Fig. 6 (𝑓𝑐
′=28.6, fl1=100, and fl2=500 

MPa). This figure reveals that, most of existing criteria are 

impotent to trace the experimental curves especially for the 

confining stress of 500 MPa. It should be noted that some of 

the models yield improper values (negative or complex 

numbers) and are not shown in Fig. 6. 

Experimentally measured hydrostatic stress-strain 

curves of concrete are quite limited in the literature (see 

e.g., Green and Swanson 1973, Gabet et al. 2006, and Vu et 

al. 2009). Some of these curves for NSC are shown in Fig. 

7. As observed, one can find concrete samples with 

comparable uniaxial strengths but completely different 

hydrostatic responses (see also Malecot et al. 2009). This 

fact can be attributed to the differences in mesostructures 

and specifically the void content of samples which controls 

the slope of pore collapse phase and also the densification 

strain (Fig. 1). Hence, for the proposed model to be accurate 

enough in both low and high-confinement ratios, the 

hydrostatic stress-strain curve should be separately 

provided. However, in light of future research, it may be 

possible to propose representative models for the 

hydrostatic curve of concrete. Such models should 

undoubtedly depend on more parameters rather than just 

unconfined compressive strength. 

 
3.4 Transient hardening curve 

 
The transient hardening curve links the point of 

departure from the hydrostatic curve to the peak point of the 

actively confined stress-strain curve. Giving the uniaxial 

compressive strength of concrete and the confining stress, 

one can easily calculate the coordinates of both departure 

and peak points using the hydrostatic curve and the 

formulas suggested in Sections 3.1 and 3.2 for the peak 

stress and peak strain, respectively. Moreover, we know that 

the slope of transient curve vanishes at the peak point. 

Accordingly, in this section first we introduce our 

assumptions for the slope of actively confined stress-strain 

curve at the point of departure, and next, a conforming 

mathematical equation will be suggested for the transient 

curve. 

The first issue regarding the initial slope of the transient 

curve is when an actively confined concrete leaves the 

elastic region and experiences permanent deformations. The 

assumption we made here is that, regardless of the level of 

confinement, the strain corresponding to the end of elastic 

region is constant and equal to 𝜀𝑐
𝑒. This includes the two 

extreme cases of uniaxial (ϕ=0) and hydrostatic loading 

conditions (ϕ→∞). This assumption has been graphically 

illustrated in Fig. 8. Based on this hypothesis, for confining 

stresses less than fl
e
=Ec 𝜀𝑐

𝑒 /(1−2v), the initial slope of 

transient hardening curve would be equal to the Young’s 

modulus, Ec, which is ξ=1−2v times that of the elastic part 

of hydrostatic curve. It is further assumed that, for 

confining stresses higher than fl
e
, the initial slope of 

transient curve is ξ times the tangent slope of hydrostatic 

curve at the point of departure (see Fig. 8). 

The next step is to introduce an appropriate equation for 

the transient part. Before proceeding further, it should be 

noted that, for confining stresses less then fl
e
, the transient 

hardening curve is made up of a linear elastic segment in its 

initial part with the slope of Ec (see Fig. 8) and a nonlinear 

curve for the strain range of (𝜀𝑐
𝑒 , ε

’
cc). Hence, in what 

follows, we will look for a representing mathematical 

formula for the nonlinear part of transient curves.      

Let’s first examine the following equations previously 

used in Binici (2005) and Samani and Attard (2012) for the 

ascending part of actively confined stress-strain curves.  

𝜍 = 𝜍𝑛 +
𝐸̅𝑥̅

𝐸̅;1:𝑥̅𝐸̅
(𝑓𝑐𝑐

′ − 𝜍𝑛) , 

𝐸̅ =
𝐸𝑛

𝐸𝑛 −
𝑓𝑐𝑐
′ − 𝜍𝑛
𝜀𝑐𝑐
′ − 𝜀𝑛

 , 𝑥̅ = (
𝜀 − 𝜀𝑛
𝜀𝑐𝑐
′ − 𝜀𝑛

) (37) 

𝜍 = 𝜍𝑛 +
𝐴𝑥̅:𝐵𝑥̅2

1:(𝐴;2)𝑥̅:(𝐵:1)𝑥̅2
(𝑓𝑐𝑐

′ − 𝜍𝑛), 

𝐴 =
𝜀𝑐𝑐
′ − 𝜀𝑛
𝑓𝑐𝑐
′ − 𝜍𝑛

𝐸𝑛 ,         𝐵 =
(𝐴 − 1)2

0.55
− 1 

(38) 
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Fig. 8 Initial slope of transient hardening curves in the 

proposed model 

 

 
(a) 

 
(b) 

Fig. 9 Comparison of predicted ascending stress-strain 

curves with the experimental results of Lahlou et al. (1992) 

(𝑓𝑐
′ = 46 MPa). (a) 𝑓𝑙 = 7.6 MPa and (b) 𝑓𝑙 = 22 MPa 

 
 
𝜍𝑛, 𝜀𝑛, and 𝐸𝑛 are the initial stress, strain, and slope of 

the nonlinear part of transient curve, respectively.  Since 

the efficiency of formulas would be examined in this 

section, the peak strains and stresses are directly taken from 

the corresponding test results. The value of 𝜀𝑐
𝑒  is 

reasonably assumed to be 0.3𝑓𝑐
′/𝐸𝑐  (Chen and Han 1988). 

Moreover, uniaxial elastic moduli, 𝐸𝑐 , and uniaxial peak 

strains, 𝜀𝑐
′ , are calculated form the following equations 

borrowed from ACI 318 (2011) and Binici (2005), 

respectively.    

𝐸𝑐 = 4700√𝑓𝑐
′ (39) 

𝜀𝑐
′ = 10;6(−0.067𝑓𝑐

′2 + 29.9𝑓𝑐
′ + 1053) (40) 

Figs. 9-10 compare predicted curves with the 

experimental results of Lahlou et al. (1992) and Smith et al. 

(1989), respectively. They show that Eqs. (37)-(38) perform 

well at low-confinement ratios, but, lose their accuracy at 

higher confinements. Unsurprisingly, this weak point also 

exists in the predictions of actively confined models 

proposed in Binici (2005) and Samani and Attard (2012) 

(see e.g., Figs. 4 and 7 of Binici 2005 and Figs. 30 and 34 

of Samani and Attard 2012). Accordingly, the mathematical 

form of Eq. (37) has been systematically upgraded to the 

form below which can adequately simulate transient 

hardening curves at all confinement ratios (see Figs. 9-10). 

 
(41) 

 

3.5 Post-peak softening curve 
 

The post-peak softening curve of confined concrete 
determines the pace at which stress decreases beyond the 
peak point and reaches its final residual strength, fres. Many 
formulas have been already proposed for the post-peak 
region of actively confined concrete from which the one 
suggested by Samani and Attard (2012) may be considered 
one of the most recent and physically-based models (see a 
complete discussion regarding this issue in Section 5 of 
Samani and Attard 2012). The model considers the effect of 
confining stress on concrete post-peak compression fracture 
energy and also takes account of sample size. Samani and 
Attard (2012) formulated their model for the normal-weight 
concrete in the following mathematical form  

𝜍 = 𝑓𝑟𝑒𝑠  + (𝑓𝑐𝑐
′ − 𝑓𝑟𝑒𝑠) [

𝑓𝑖𝑐
𝑓𝑐
′
]
(
𝜀;𝜀𝑐𝑐

′

𝜀𝑖;𝜀𝑐𝑐
′ )

2

, 𝜀 ≥ 𝜀𝑐𝑐
′  

(42) 

where 

𝑓𝑖𝑐 = (1.41 − 0.17 ln 𝑓𝑐
′)𝑓𝑐

′, 𝑓𝑐
′ ≥ 20 MPa, (43) 

𝜀𝑖
𝜀𝑐𝑐
′
= (1.26 +

2.89

√𝑓𝑐
′
)
𝑓𝑟𝑒𝑠
𝑓𝑐𝑐
′
+ (1 −

𝑓𝑟𝑒𝑠
𝑓𝑐𝑐
′
)
𝜀𝑖𝑐
𝜀𝑐
′
 , 

  𝜀𝑖𝑐

=

{
 
 

 
 (2.76 − 0.35 ln 𝑓𝑐

′)
𝑓𝑐
′

𝐸𝑐

4.26

√𝑓𝑐
′4
Crushed Aggregates

(2.76 − 0.35 ln 𝑓𝑐
′)
𝑓𝑐
′

𝐸𝑐

3.78

√𝑓𝑐
′4

Gravel Aggregates

 

(44) 

𝑓𝑟𝑒𝑠

= ,1 −
1

[795.7 − 3.291𝑓𝑐
′]𝜙(5.79𝜙

0.694:1.301) + 1
-𝑓𝑐𝑐

′  (45) 

fic and εic are the stress and strain of inflexion point of 
uniaxial softening curve, respectively, and εi is the strain of 
inflexion point of confined condition. 

Next, considering the empirical results of Vonk (1992) 
and the Compression Damage Zone (CDZ) model proposed 
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Fig. 11 Comparison of NSC experimental results with the 

predictions of formula proposed by Samani and Attard 

(2012) and Eq. (48) proposed in this study for inflexion 

point strain ratio 

 

 

by Markeset and Hillerborg (1995) which indicate that for 

the uniaxial case, the compressive fracture energy per unit 

area for specimens of the same aspect ratio greater than or 

equal to 2 but of different heights, is not the same, Samani 

and Attard (2012) proposed the following equations to 

adjust total strain, εh, for a specimen of height h. 

 

(46) 

 

 

Fig. 12 Predictions of proposed model for the stress-strain 

curves of Smith et al. (1989) (𝑓𝑐
′ = 34.5 MPa) 

 

 

𝜀𝑑 =
6

5

𝐺𝑓𝑡

𝑓𝑐𝑐
′
(
𝑓𝑐𝑐
′ − 𝜍

𝑓𝑐𝑐
′ − 𝑓𝑟𝑒𝑠

)

0.8

,          𝐺𝑓𝑡

= 0.00097𝑓𝑐
′ + 0.0418 

(47) 

hd is the damage zone height taken as two times the width 
or diameter of the specimen. hr is a characteristic length of 
200 mm representing the most typical specimen height used 
in the compressive testing. It needs to note that, when such 
a model is applied for structural analysis of beams and 
columns, h and hd should be taken as the length and width 
of the compressed region, respectively. 
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Fig. 10 Comparison of predicted ascending stress-strain curves with the experimental results of Smith et al. (1989) 

(𝑓𝑐
′ = 34.5 MPa). (a) 𝑓𝑙 = 0.69 MPa, (b) 𝑓𝑙 = 3.45 MPa, (c) 𝑓𝑙 = 13.45 MPa, and (d) 𝑓𝑙 = 20.7 MPa 
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Fig. 13 Predictions of proposed model for the stress-strain 

curves of Candappa et al. (2001) (𝑓𝑐
′=41.9 MPa) 

 

 

Fig. 14 Predictions of proposed model for the stress-strain 

curves of Lahlou et al. (1992) (𝑓𝑐
′=46 MPa) 

 

 

Fig. 15 Predictions of proposed model for the stress-strain 

curves of Vu et al. (2009) (𝑓𝑐
′=42 MPa) 

 

 

Samani and Attard (2012) suggested Eq. (44) for the 

dependency of 𝜀𝑖  on confinement ratio and uniaxial 

compressive strength, however, they mainly used the results 

of HSC in their development. Hence, in this part, more 

experimental data would be incorporated to assess the 

accuracy of Eq. (44) for NSC. 
Fig. 11 presents the inflexion point strains of tested NSC 

samples and compares them with the predictions of Eq. 
(44). As can be seen, the calculated values of εi/ε’cc 
(inflexion point strain ratio) vary within the interval of 1.1 
to 1.7 without any clear dependency on 𝑓𝑐

′ while Eq. (44) 
predicts larger values for weaker concrete samples. On the 
other hand, this figure shows that the value of εi/ 𝜀𝑐𝑐

′  
decreases as confinement ratio grows. Hence, in this study, 
the following function of ϕ has been fitted to the data and 
suggested for the inflexion point strain ratio of NSC. 

𝜀𝑖
𝜀𝑐𝑐
′
= 1.1 + 0.6exp (−5𝜙) (48) 

 

 

4. Model verification 
 

Although different elements of the proposed model are 

separately verified in previous parts, Figs. 12-15 compare 

the predictions of model with the experimental stress-strain 

curves of Smith et al. (1989), Candappa et al. (2001), 

Lahlou et al. (1992), and Vu et al. (2009), respectively. 

These figures confirm that the predictions of proposed 

model are satisfactorily conforming to the test results for 

both low and high-confinement ratios.  

 

 

5. Conclusions 
 

The current study proposes a new stress-strain model for 

actively confined normal-strength concrete in the axial 

direction whose main elements are inspired by the loading 

path traveled in a typical fluid confined test. The first part 

of the paper examines the initial elastic response of existing 

analysis-oriented models. It is clarified that all of the 

models mistakenly yield values equal to the Young’s 

modulus. Next, using a database containing more than 160 

experimental datasets from the literature with a broad range 

of confinement ratios, new formulas are introduced for the 

peak stress and peak strain of normal strength confined 

concrete. A backbone hydrostatic curve is incorporated to 

make it possible to correctly simulate the initial loading 

phase of the tests. A transient hardening curve linking the 

point of departure from the hydrostatic curve to the 

peak/failure point of confined concrete is also introduced in 

a separate part. The post-peak equations of the model are 

the last components formulated in accord to the existing 

experimental evidences. Finally, in a separate verification 

section, comparisons are made between the predictions of 

proposed model and different test results from the literature. 
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