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Nonlinear finite element analysis of reinforced concrete 
structures subjected to transient thermal loads
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Abstract. This paper describes a 2D nonlinear finite element analysis (NLFEA) platform that combines
heat flow analysis with realistic analysis of cracked reinforced concrete structures. The behavior models
included in the structural analysis are mainly based on the Modified Compression Field Theory and the
Distributed Stress Field Model. The heat flow analysis takes into account time-varying thermal loads and
temperature-dependent material properties. The capability of 2D nonlinear transient thermal analysis is
then implemented into a nonlinear finite element analysis program VecTor2© for 2D reinforced concrete
membranes. Analyses of four numerical examples are performed using VecTor2, and results obtained
indicate that the suggested nonlinear finite element analysis procedure is capable of modeling the
complete response of a concrete structure to thermal and mechanical loads.

Keywords: nonlinear finite element analysis; structural analysis; heat flow analysis; transient thermal loads;
closed-form element stiffness.

1. Introduction

The need to incorporate fire loading into structural design has long been recognized, and is

becoming a greater concern because of security-related issues. The investigation of the World Trade

Centre disaster by the Building Performance Assessment Team, for example, indicated that the fire

issues were crucial in the collapse of the twin towers. Reinforced concrete structures are also

commonly exposed to thermal loads as the result of the design function of the structure, ambient

conditions, heat of hydration, or exposure to fire. Therefore, there has been a growing interest in

research on the advanced analysis and design of reinforced concrete structures subjected to thermal

loads. Note that currently, transient thermal analyses are typically not employed in the design of

reinforced concrete structures for thermal (fire) conditions. Rather, code provisions are typically

based on detailing and cover requirements that, drawing on empirical data, provide an acceptable

fire-rating in terms of the length of time that the structure must sustain its mechanical loads in the

presence of fire without collapsing (e.g. three hours).

To understand the response of structures to thermal loads, one must isolate and consider various

analysis stages. First, the thermal actions, which originate from increases in temperature and can be

time varying, have to be differentiated from mechanical loads. Next, the temperature distribution has
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to be calculated according to these thermal actions. Here, one must consider the time effect in the

transient heat analysis. Once the temperature distribution throughout the structure is known, one can

evaluate the mechanical behaviour of the heated structure. Notably, some mechanical and thermal

properties are highly temperature dependent, and some effects, like spalling and thermal creep, can

be of significant importance in the analysis. Finally, one can predict the response by using the fire

resistance factors or fire safety indices.

This paper attempts to implement the capability of 2D nonlinear transient thermal analysis into a

nonlinear finite element analysis program for 2D reinforced concrete membranes. The time-varying

thermal loads and temperature-dependent material properties are considered in this thermal analysis

procedure. Taking advantage of realistic constitutive models, mainly based on the Modified

Compression Field Theory (MCFT) (Vecchio and Collins 1986) and Distributed Stress Field Model

(DSFM) (Vecchio 2000), one can obtain the complete response of all members within the structure,

including external restraint forces, internal stresses, cracking development, and deflections.

The following discussion will provide descriptions on material properties’ temperature dependency,

thermal computational scheme, structural analysis procedure, case studies, and conclusions.

2. Temperature-dependent material properties

While concrete is generally a non-homogeneous, anisotropic medium composed of particles of

aggregate held together by hydrated cement paste, it can be treated as a homogeneous isotropic

material in heat analysis for simplicity. However, the temperature dependence of concrete’s thermal

properties has an important effect on heat transfer analysis. Moreover, the temperature-dependence

of the mechanical properties will significantly affect the subsequent structural (stress and

deformation) analysis.

2.1. Thermal-analysis-related properties

Temperature-dependent thermal properties (conductivity k and specific heat c) and physical

properties (density ρ) make heat analysis nonlinear since the coefficient matrices in the final

resultant equation are not constant but dependent on the temperature, which in turn is the unknown

to be solved. The difficulties with the associated complexity in equation solution can be reasonably

bypassed by assigning an average value of each property within every finite element at the current

iteration step to simplify the formulations.

 Since thermal properties at high temperature are quite difficult to obtain, only few data available

in the literature (e.g. Shin, et al. 2002, Zhu and Chao 2002), their variation with temperature

employed in this proposed implementation scheme are based on the Eurocode. They are briefly

described as follows:
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where ρ(T) is the density at temperature T(oC); and

(2)

where c(T) is the specific heat at temperature T(oC).

Regarding the conductivity k, the initial value at a reference temperature (20oC) can be used in the

interpolation between the upper and lower limits given by Eurocode:

 
kupper = 2.0 − 0.2451(T/100) + 0.0107(T/100)2 (W/mK) (3)

klower = 1.36 − 0.136(T/100) + 0.0057(T/100)2 (W/mK) (4)

With the reference at 20oC, modification factors for above properties are plotted in Fig. 1.

2.2. Structural-analysis-related properties

 

The material mechanical properties dominate in the subsequent structural analysis. However, both

strength and stiffness deteriorate significantly under evaluated temperatures. In addition, continuity

thermal stresses, induced in indeterminate structures due to thermal expansion, are heavily

dependent on structural stiffness (Vecchio 1987).
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Fig. 1 Modification factors: thermal-analysis-related properties
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The mechanisms governing the chemical reactions and physical changes inside concrete and

reinforcing steel, and how they affect the mechanical properties, are complex. Little experimental

data is available (e.g. Castillo and Durrani 1990, Lie and Kodur 1996) and, surprisingly, they can

differ significantly. Therefore, the values for normal-weight concrete and hot-rolled steel in

Eurocode are employed. Some characteristics of concrete and reinforcing steel are shown in Table

1, where the property modification factors are directly given. If the tensile strength of concrete is to

be taken into account, Eurocode calculates this reduction factor according to:

(5)

As thermal elongation is believed to develop progressively, instead of giving explicit thermal

expansion coefficients, the Eurocode provides thermal strains as follows.
● Concrete with siliceous aggregate:

(6)

● Concrete with carbonate aggregate:

(7)
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Table 1 Some characteristic properties of concrete and steel at evaluated temperatures

Temperature
(oC)

Concrete Steel

Siliceous aggregates Carbonate aggregates

20 1.00 0.0025 1.00 0.0025 1.0 1.0 1.0

100 1.00 0.0040 1.00 0.0040 1.0 1.0 1.0

200 0.95 0.0055 0.97 0.0055 1.0 0.81 0.90

300 0.85 0.0070 0.91 0.0070 1.0 0.61 0.80

400 0.75 0.0100 0.85 0.0100 1.0 0.42 0.70

500 0.60 0.0150 0.74 0.0150 0.78 0.36 0.60

600 0.45 0.0250 0.60 0.0250 0.47 0.18 0.21

700 0.30 0.0250 0.43 0.0250 0.23 0.07 0.13

800 0.15 0.0250 0.27 0.0250 0.11 0.05 0.09

900 0.08 0.0250 0.15 0.0250 0.06 0.04 0.07

1000 0.04 0.0250 0.06 0.0250 0.04 0.02 0.04

1100 0.01 0.0250 0.02 0.0250 0.02 0.01 0.02

1200 0.00 - 0.00 - 0.00 0.00 0.00

Note:   are net concrete strain values, with thermal strains excluded.
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Fig. 2 Modification factors: concrete’s structural-analysis-related properties

Fig. 3 Modification factors: steel’s structural-analysis-related properties
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● Reinforcing steel:

(8)

Note that the above thermal strains are relative to the length at 20oC. Thus, with a reference at 20oC

the modification (increasing in this case) factor for thermal expansion coefficient α can be

calculated as:

(9)

Variation of these aforementioned modification factors (reduction or enhancement) are plotted in

Fig. 2 and Fig. 3 for various concrete and steel, respectively.

3. Thermal computational scheme

Numerical techniques mainly used in the thermal analyses include Finite Difference Method and

Finite Element Method, as detailed in the monograph by Ozisik (1994) and Zienkiewicz (2000),

respectively. The current thermal computational scheme uses finite element spatial approximation and

finite difference temporal discretization, as detailed hereunder.

The governing equation in terms of Cartesian coordinates for an isotropic material in a transient

conduction problem is of the form:

(10)

One can see that even under the assumption of constant thermal properties, the transient problems

possess a parabolic nature with respect to its time dependence and an elliptic behavior with respect

to the spatial coordinates.

The essential and natural boundary conditions are normally of the forms:

(11)

(12)

where T and q are the prescribed values of temperature and heat flux on the corresponding

boundaries  and .

In a standard Galerkin procedure, one first discretizes the physical domain into elements. In

VecTor2, linear triangular, standard rectangular, and the 4-node quadrilateral elements are employed.

Within the element, shape function constructed then postulates a spatial form for the dependent

variable T as follows:

(13)
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so-called partial discretization is adopted:

(14)

Clearly, the derivatives of a with respect to time t will remain in the final approximation, and one

can expect that the resultant equation system will be a set of ordinary differential equations with

respect to the independent variable time t.

The Galerkin-weighted residual method readily leads to the so-called weak form statement as follows:

(15)

where a lower order of continuity is required in the choice of the trial function T, at the price of a

higher continuity for test function ν.

If the choice of T is restricted as satisfying the essential boundary condition along ΓT, the last term

in the left-hand-side of Eq. (15) can be omitted. That is,

(16)

One can now notice that the natural boundary condition along Γq is satisfied since no variable T

appears in the integrals taken along the boundary Γq in Eq. (16). With the above Galerkin procedure,

the initial and essential boundary conditions do not appear explicitly in the formulations. Thus, the

spatial interpolation functions must be chosen so as to satisfy the essential boundary conditions, and

a temporal stepping scheme must be started from the initial condition – initial state of the temperature

field.

Substituting the shape functions into the integration and prescribing the test functions as trial

function will lead Eq. (16) to:

(17)

Eq. (17) can be rewritten in a matrix system of ordinary differential equations as follows:

(18)

In heat analysis, K is the conductance matrix which is symmetric and diagonally dominant; C is the

capacitance matrix; f is the forcing term due to internal heat resources (e.g. heat of hydration) and

natural boundary conditions; and a is the nodal vector containing the nodal values of dependent

variable T.

The entries of matrices can be evaluated by:
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It is worthy noticing that in the current procedure, the element matrices in closed-form are

derived for all employed element types. Contributions from each element are then sequentially

added to the contents of the global system matrices. After removing the nodal equations

corresponding to the boundary nodes with essential boundary conditions, the remaining equations

are ready for solution.

Unlike a set of algebraic equations in steady-state problems, the system forms a set of first-order

differential equations in time t for transient problems. Thus, the solutions have to proceed with

increasing time until the results are obtained over a prescribed time level or until the steady state is

attained. The most common time stepping procedure, a two-point finite difference in time, is as

follows:

(22)

During each time step, regarding at what time level to evaluate the temperature in the calculation

of coefficient terms in Eq. (18), the most popular scheme is to use the trapezoidal rule which uses a

linear interpolation between steps n and n+1:

(23)

Substituting Eq. (22) and Eq. (23) into Eq. (18) leads to the so-called generalized mid-point method

(Belytschko and Hughes 1983):

(24)

where tn+r = tn+rΔt with subscript n representing the nth time step.

Eq. (24) can be rearranged as follows:
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the choice of r = 1/2 (Crank-Nicholsn method) for accuracy considerations (Heinrich and Pepper

1999) and r = 2/3(Galerkin method) for stability purposes (Lewis, et al. 1996) are recommended,

with the former being the default choice in VecTor2.

Due to the implicit nature, an iteration loop over each time step is required to maintain accuracy

in the solution process. That is, the coefficient matrices’ evaluation, assembly and solution have to

be performed in an iterative manner within each time step, which makes nonlinear transient

analyses computationally intensive. An example equation corresponding to iteration step i+1 at time

level n+1 is given below.
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4. Structural analysis procedure

The structural analyses in program VecTor2 are based on the concept that nonlinear analyses of

reinforced concrete membranes can be achieved by incorporating the nonlinear element formulations

into an iterative linear elastic analysis procedure.

Representation of the structure is accomplished with smeared reinforced concrete elements

(triangles or quadrilaterals) and discrete steel reinforcing truss bars. To reflect the nonlinear

behavior, the material stiffness matrix is defined by using realistic constitutive relationships, mainly

based on the MCFT and DSFM. In an iterative manner, the secant stiffness approach is then applied

to form the element stiffness matrix, which enables analyses to consider various types of strain-

offset effects. The above analysis platform, with details available in reference (Vecchio 1990),

allows predicting the response of reinforced concrete elements subject to in-plane normal and shear

stresses with the second-order accuracy.

Similarly as in the thermal analysis, the closed-form stiffness matrix (Zhou and Vecchio 2005) for

the four-node quadrilateral element with a fully-populated material stiffness is again adopted in the

structural analysis.

5. Case studies

The four numerical examples investigated carry different objectives. The purpose of Problem 1 is

to verify the temperature profile throughout the depth of a cross section. Problem 2 is proposed to

Fig. 4 Default material constitutive options in VecTor2
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compare the accuracy of the results obtained from VecTor2 with those from ANSYS. Unlike

Problems 1 and 2, Problem 3 requires a structural analysis be performed after the thermal analysis.

The final problem is modeled after a specimen tested by Vecchio and Sato (1990) at the facilities of

Ontario Hydro. Material constitutive laws, common to both Problem 3 and Problem 4, follow

default options given by VecTor2 and are listed in Fig. 4.

5.1. Problem 1: Temperature profile

Consider the cross section of a long square bar (Fig. 5), initially at 0oC temperature everywhere.

A constant temperature T=100oC is instantaneously imposed on the upper surface, while temperatures on

the remaining surfaces are held at T=0oC. The purpose of this problem is to verify the temperature

profile throughout the depth of a cross section. The model, a 11 × 11 uniform grid, is analyzed

Fig. 5 Numerical Problem 1

Fig. 6 Temperature profile through the depth of the cross section in Problem 1
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through 100 time steps of 50s duration. The time stepping factor of 0.5 corresponds to the Crank-

Nicholson scheme.

The temperature profiles for both steady-state and transient analyses are plotted in Fig. 6. It is

observed that the transient thermal gradients are exceedingly nonlinear shortly after the thermal load

is applied, while the steady-state analysis produces a fairly linear one. Also, the transient

temperature profiles gradually approach the steady-state one as time advances. Thus, it can be

expected that as time continues to proceed, there is one ending stage of transient thermal analyses

when all transient effects have diminished and the corresponding temperature profile will be

consistent with the one obtained from the steady-state analysis.

5.2. Problem 2: Accuracy comparison

This problem involves a simplified (phase change in the solidification process is ignored) casting

process, detailed in the ANSYS Thermal Analysis Guide No. 858. The task is to track the

temperature distribution in the steel casting and the L-shape sand mold as shown in Fig. 7.

A 2D analysis of a one unit thick slice is preformed. Due to symmetry, the lower half of the

casting is modeled, with the finite element mesh given in Fig. 8. The conclusion time in this

analysis is set at 3 hours, with the interval equal to 0.01 hour. The time stepping factor equals to 2/

Fig. 7 Numerical Problem 2

Fig. 8 The finite element model in Problem 2
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Fig. 9 Temperature contour plots in Problem 2
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3, corresponding to the Galerkin method.

For comparison purposes, the identical mesh system and time interval are used in both VecTor2

and ANSYS analyses. The results described below correspond to time steps at 0.25h, 0.5h, 1.0h,

2.0h and 3.0h. Contour plots of the temperature distribution for both analyses are shown in Fig. 9.

Note that the temperature scale is lightly different in each plot. Also, the interpolation technique for

contour plots in the ANSYS may not necessarily be bilinear, which is the case in the VecTor2’s

plots. Despite all that, one can readily see their similarity in capturing the heat conduction trend. In

order to examine more precisely the difference between the two analyses, a statistical comparison of

representative nodal (circled in Fig. 8) temperatures is given in Table 2. From both overall and

specific comparisons, closeness in accuracy is observed.

5.3. Problem 3: Various thermal loads

Unlike Problems 1 and 2, this problem requires that a subsequent structural analysis be preformed

after the heat analysis. The structure involved is a simply supported reinforced concrete beam as in

Fig. 10, with material properties given in Table 3.

In this example, two reinforced concrete material types are used. One type models the plain

concrete comprising the flange, while the other represents the web region of the beam with one

Table 2 Statistical comparisons in Problem 2

Rep.
Node Number

T(VecTor2)/T(ANSYS)

0.25 h 0.5 h 1.0 h 2.0 h 3.0 h

214 2652.5/2512.2
=1.056

2469.6/2429.0
=1.017

2222.5/2189.7
=1.015

1924.8/1901.1
=1.012

1740.4/1721.7
=1.011

93 201.42/202.38
=0.995

388.92/456.30
=0.852

674.45/736.84
=0.915

954.07/985.18
=0.969

1086.7/1109.2
=0.980

124 187.52/178.31
=1.052

355.19/410.29
=0.866

613.98/669.21
=0.918

863.65/889.17
=0.971

979.65/995.42
=0.984

112 181.69/161.43
=1.125

349.68/396.52
=0.882

635.30/697.88
=0.910

966.71/1007.2
=0.960

1146.1/1176.3
=0.975

Mean 1.058 0.904 0.940 0.978 0.988

Mean of COVP#P(%) (4.356+7.296+4.647+2.051+1.411)/5=3.95

COVP#: coefficient of the variation defined as percentage of ratio (standard deviation/mean).

Fig. 10 Numerical Problem 3
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smeared reinforcement component representing the stirrups. Also, two ductile steel reinforcement

material types are utilized to model the longitudinal steel bars. The beam is subjected to gravity

load in addition to thermal loads which simulate fire underneath. The analyses are expected to

determine both the internal (e.g. stress) and external (e.g. deflection) responses of the beam at

intermediate stages and at the conclusion of thermal loading.

As both the structural and loading conditions are symmetrical about the mid-span, only one half

of the beam needs to be modeled, shown in Fig. 11. Nodes along the symmetrical line are restrained

from displacements in the longitudinal direction, and the node at the support is restrained in the

transverse direction. While the concrete is modeled by rectangular elements, truss bar elements are

used for longitudinal reinforcing bars. The various thermal loads tested are plotted in Fig. 12. Note

that the different load types provided are not intended to accurately simulate the fire in reality, but

rather to illustrate some possible temperature loads.

Some typical results are discussed below, in terms of response of the structure.
● Reaction force at support:

Since the beam is statically determinate, no restraint force will result from thermal gradients,

regardless of the fire load type. As a result, the reaction force at support remains constant at 8.25

kN, corresponding to the gravity load.
● Deflection at the beam’s mid-span:

For the deflection at the steady-state condition, due to a linear thermal gradient, the curvature of

the beam is constant along the length of the beam and equal to:

Table 3 Material details in Problem 3

Material properties of concrete

(MPa) (MPa) (×10−3)
Ec

(MPa)
αc 

(×10−6/oC)

24.1 1.88 2.00 24100 9.0

Material properties of reinforcement

Type φ
(mm)

As

mm2

fy
(MPa)

fu
(MPa)

Es

(MPa)
Esh

(MPa)
εsh

(×10−3)
αs

(×10−6/oC)

1 13 253 345 700 200000 2000 5 11.5

2 7.5 ρ = 0.099% 325 600 200000 2000 5 -

3 29 1282 555 900 200000 2000 5 11.5

f
c

′ f
t

′ ε 

c

′
 

Fig. 11 The finite element model in Problem 3
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(27)

where α
c
 = f × α

c,20 = 2.035118 × 9.0 × 1.0−6 and thermal gradient is equal to 1000oC.

One can then use the first moment area theorem to calculate the deflection from the curvature as

follows:

(28)

The deflection caused by the gravity load can be calculated as:

(29)

It is observed that the values calculated above (totally 69.2 mm) are similar to the results obtained

from VecTor2 (67.9 mm), shown in Fig. 12 (load type 1) below. The difference is partially due to

α
s
<α

c
, causing some internal restraint.

For the deflection-time curve under transient fire load, the three-key-node linear model is selected

and given in Fig. 13 (load type 2). Compared to the thermal gradient imposed, the deflection-time

curve presents a similar overall trend. Note that there is a lag in time, between the turning points in

plots of the imposed thermal gradient (at 4 hours) and the deflection curve (at 5 hours). This lag is

thought to be due to that the high thermal gradient after its turning point still contributes to the
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8h
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9 10
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8 650×
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Fig. 12 Various thermal loads tested in Problem 3
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increase of the deflection until a lower stage is reached. This phenomenon is understandable if one

considers the case where the imposed transient temperature load is constant but the resultant

deflection is increasing as time proceeds.
● Stress and crack:

During the test of load types 4 and 5 (which are quite close to each other due to the similarity of

the imposed thermal gradients), the structure failed at about 3.7 hours when the thermal load is

extremely high (over 1100oC). In fact, the stiffness of the steel bars is completely lost in the bottom

cracked concrete region due to high temperatures developed there (close to 1200oC), which

produces a structural failure mechanism. The crack width (Fig. 14) at this moment is around 10 mm

and the stress (Fig. 15) in the stirrups is well beyond the yield stress.

5.4. Problem 4: Thermal loaded portal frame

This problem is modeled after a specimen tested by Vecchio and Sato (1990). The specimen is,

overall, a reinforced concrete portal frame consisting of two columns and one beam. Two side

panels span the interior of the frame to form a tank-like structure, with a flexible silicone water-stop

Fig. 13 Deflection-time curves in Problem 3

Fig. 14 Crack pattern in load 5 test in Problem 3
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in the gaps between the panels and the frame allowing the frame to be structurally independent of

the panels. The schematic representation of the test model is shown in Fig. 16, with specimen

details and material properties given in Table 4 and 5, respectively. By means of an immersed

Fig. 15 Average stress in stirrups in load 4 test in Problem 3

Fig. 15 Average stress in stirrups in load 4 test in Problem 3
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heater, water placed in the tank, originally at the temperature 15oC, was used to apply the thermal

loads which increased at a rate of approximately 40oC/hr up to the test temperature 95oC.

Three distinct types of tests will be considered. The Type I test (Fig. 17(a)) was conducted with

the test model in an unrestrained mode. The temperature load was maintained for a sufficiently long

period so that both transient and final steady-state conditions could be observed. In the Type II test

(Fig. 17(b)), the tie-rod was engaged to render the structure one-degree statically indeterminate.

Thus, with the columns restrained from outward deflection by the tie-rod, restraint forces were

induced in the tie-rod and hence in the frame. The temperature load was applied for about 8 hours,

sufficient for the internal cracking and external restraint forces to fully develop. In the Type III test

(Fig. 17(c)), the model was in the unrestrained configuration while a simultaneously acting

mechanical load was applied laterally to the column at a location 680 mm above the centerline of

the beam. The temperature load was applied until the ultimate capacity of the structure was attained

under the monotonically increasing mechanical load. The computational model is shown in Fig. 17

(d), in which only half of the structure is modeled due to symmetry.

The results obtained from analyses are discussed below, in terms of the test type.
● Type I test:

During Type I testing, highly nonlinear transient thermal gradients are produced within the

members in the beginning. In time, they approach a steady-state condition, characterized by a fairly

linear gradient through the depth of the section. The imposed thermal loads result in an upward

deflection of the beam relative to its ends and outward deflections of the column relative to its base.

The vertical deflection occurring at the mid-span of the beam and the lateral deflection at the top of

the column are shown in Fig. 18 (a and b). Both of them are thought to match the trend of the

Table 4 Specimen details in Problem 4

Specimen details* Beam B1 Column C1 Column C2

b
h

ABs
d
Av

s

(mm)
(mm)
(−)
(mm)
(−)
(mm)
(−)
(mm)

800 800 800

300 300 300

3#20M 3#20M/2#25M 3#20M/2#25M

50 50 50

3#20M 3#20M/2#25M 3#20M/2#25M

250 250 250

#10M #10M #10M

150 150 150

*: Area of #10M is 100 mm2; #20M is 300 mm2; #25M is 500 mm2.

Table 5 Material properties in Problem 4

Material properties

Concrete Reinforcement*

(MPa) 30.1 fy (MPa) 450/445

fBcr (MPa) 3.10 fu (MPa) 710/720

Ec (MPa) 30,000 Ec (MPa) 200,000

αc (/oC) 12.1×10−6 αs (/oC) 12.0×10−6

*: fBy and fBu are given for both 20M and 25M bars.

A
s

′

d ′

f
c

′
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thermal load applied, increasing rapidly in the beginning and becoming constant in the end. During

the time range of 12-24 hours, the deflection at beam’s mid-span increases from 2.73 mm to 2.75

mm and the one at the column’s top increases from 16.97 mm to 17.08 mm. That indicates the heat

flow approaches the steady-state condition under which the deflection will theoretically stay

unchanged.

Primary thermal stresses are induced in the test model, mainly due to nonlinearity in the thermal

gradients shortly after the thermal loads are applied (also from differences in thermal expansion

coefficients between concrete and reinforcement). However, these stresses diminish as the thermal

Fig. 17 Computational models in Problem 4
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gradients approach the linear steady-state condition. This expected phenomenon is well presented by

Fig. 19, in which concrete’s shear stress, within the element on the centerline of the column,

approaches zero at conclusion of the test.

Compared to results from the laboratory work (Case PF3-B), the outward deflection of the column

is quite close (17.1 mm vs 17.9 mm), while the upward deflection of the beam is quite different

Fig. 18 Deflections in Type I test in Problem 4
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(2.75 mm vs 1.65 mm). This overestimation is believed to be caused by the neglect of warming of

the outside surface, which leads to a drop-off in thermal gradient applied. The computational results

given above are, however, on the premise that temperature of outside surfaces remains unchanged.

Without that assumption, one can expect that the conduction will never achieve the steady-state, as

long as the water-supplied thermal load is present. A simulation under this circumstance is also

conducted until 24hr, and the beam’s corresponding deflections are given in Fig. 18(c). As seen, the

beam’s deflections are closer (1.50 mm vs 1.65 mm). This remaining underestimation is believed to

be mainly caused by the so-called skin effect. This is because the exterior surface temperature is

significantly higher than the surrounding air temperature. In practice, at conclusion of the test

(24hr), the thermal gradient between two side-surfaces are going down to 55.1oC (59.6oC measured

from laboratory work) from originally-imposed 78.4oC.
● Type II test:

In Type II testing, two tests are performed on the model. Case 1 represents the standard

temperature load (80oC at 40oC/hr) with the 4.0 kN preload in the tie-rods, while there is no preload

in tie-rods in Case 2. Shown in Fig. 20 are the restraint forces induced in the model under the

above defined two conditions.

Generally, the time when the peak restraint forces occur do not correspond to the time of the peak

thermal gradients. For instance, in Case 1, the restraint force peaks at 3.33 hr while thermal load

attains the peak value at 2.0 hr. After peaking, the force decreases gradually. Some responses of the

model at time of peak restraint force are compared in Table 6, between Case 1 in the present test

Fig. 19 Typical primary concrete stress in Type I test in Problem 4
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and Case PF3-K from the laboratory test. Part of the discrepancies is related to the fact that the test

model was extensively cracked from previous testing. Here, it is modeled as initially uncracked.

Also, playing a major part in the lower measured restraint forces is the influence of thermal creep.

In addition, the analysis makes no attempt to model the complex physics relating to thermal skin

effects, which result in a gradual increase in the outside surface temperatures and hence a decrease

in the thermal gradient and restraint forces; rather, the boundary condition used in the modelling is

based on the common assumption that the outside surface temperature remains equal to the ambient

air temperature.

Similar to the case of thermal loading in a sense that the damage sustained shortly after the

application of load will alter the member’s long-term response, the cracking of concrete and/or

yielding of reinforcement sustained by a structural member under previous loading will influence

that member’s response to newly applied loads (Vecchio 1987). To examine the effects of preload in

the engaged tie-rods, Case 2 where there is no preload is tested. From Fig. 20, it is found that Case

2 develops much higher thermal-induced forces than does Case 1. Therefore, the preload in the tie-

rods is seen to significantly influence the thermal-restraint forces induced. It is believed that thermal

loads coupled with these mechanical loads expediate the cracking that renders the structure less stiff.

Fig. 20 Restraint force induced at engaged tie-rods in Type II test in Problem 4

Table 6 Comparison of results during Type II test

Test t δb δc εsbt εsbb εsct εscb

(kN) (hr) (mm) (mm) (με) (με) (με) (με)

PF3-K 21.41 3.34 0.811 0.013 -356 701 -180 57

Case 1 36.30 3.33 1.306 0.007 -373 144 49 15

F
r

′
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● Type III test:

In this test, in addition to the temperature loading, a lateral applied load was monotonically

increased until the ultimate capacity of the model was exceeded. A standard, faster, and higher

temperature load are tested and specified as Case 1, 3, and 4 respectively. Case 2 then represents the

test without temperature loads. As shown in Fig. 21, the load-deformation curves of the structure

are linear in both un-cracked and cracked periods. The change of stiffness after cracking results in a

less steep slope of the curve, which is clearly shown in Fig. 21. Thereafter, the bottom

reinforcement in the beam yields, and in turn response becomes essential plastic with a limited

increase in the load capacity, mainly due to strain hardening. The ultimate load capacity is

approximately equal to predicted values obtained by using standard cracked-section analyses.

From comparisons, the presence of a thermal load in the case of test model does not appear to

change the ultimate capacity of the structure very much. Notably, in this particular case, thermal

loads are advantageous since they cause the deflection in the opposite direction to those caused by

the applied mechanical load. However, if the thermal load is sufficiently high it can cause cracking

of the structure when the mechanical load is still at a low level. In some cases, the presence of the

thermal load may yield the structure much earlier than the case without thermal loads. A highly

nonlinear thermal gradient will also induce primary stresses within the structure and reduce the

stiffness and strength of the structure to a significant degree.

Fig. 21 Load-deformation curves in Type III test in Problem 4
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6. Conclusions

In this work, a 2D transient nonlinear thermal analysis capability is developed and implemented

into a nonlinear finite element analysis procedure for reinforced concrete structures (program

VecTor2). The nonlinear thermal analysis formulations are then coupled with a smeared rotating

crack model for nonlinear mechanical analysis of cracked reinforced concrete structures. The

smeared rotating crack approach, based on the Modified Compression Field Theory, provides a

more accurate platform for analysis of concrete structures, particular those that are shear-critical,

than that typically utilized by general purpose analysis programs (e.g. ANSYS). The implementation

of nonlinear time-dependent thermal analysis capability with the domain of a smeared rotating crack

model has not been previously reported and, hence, this work represents a new, and potentially

improved, alternative to the analysis of concrete structures under transient thermal load conditions.
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Notation

f(T) = Property modification factor at temperature T;

ft = Concrete tensile strength;

 = Concrete compressive strength;

 = Concrete strain corresponding to ;

fy = Yield strength of the reinforcing steel;

fu = Ultimate strength of the reinforcing steel;

Es = Modulus of elasticity of the reinforcing steel;

ABs = Cross-sectional area of bottom longitudinal reinforcement;

 = Cross-sectional area of top longitudinal reinforcement;

ABv = Cross-sectional area of shear reinforcement;

b = Width of member cross section;

h = Depth of member cross section;

d = Position of bottom longitudinal reinforcement;

dP

' = Position of top longitudinal reinforcement;

s = Spacing of shear reinforcement;

 = Peak restraint force in tie-rods;

δb = Deflection of beam at mid-span (downward positive);

δc = Relative deflection of columns at tie-rods (outward positive);

εsbt = Strain in beam bottom reinforcing bar at mid-span;

εsbb = Strain in beam top reinforcing bar at mid-span;

εsct = Strain in column outside reinforcing bar at base;

εscb = Strain in column inside reinforcing bar at base.
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′ ε
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