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Optimal proportioning of concrete aggregates using a 
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Abstract. A linear programming problem of the optimal proportioning of concrete aggregates is
discussed; and a self-adaptive genetic algorithm is developed to solve this problem. The proposed method
is based on changing a range of variables for capturing the feasible region of the optimum solution. A
computational verification of this method is compared with the results of the linear programming.
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1. Introduction

The behavior of particulate composite materials, such as portland cement and asphalt concrete

mixtures, depends to a large extent on the properties of their main constituent – the aggregates

(Neville 2000, Goltermann, et al. 1997, Vorobiev, et al. 1977, Sobolev 2004, Fuller and Thompson,

1907, Oger 1987, Anderson and Johansen 1995, Kessler 1994, Kwan and Mora 2001). Among the

most important parameters affecting the performance of concrete are the packing density and

corresponding particle size distribution of aggregates. Better packing of aggregates improves the

main engineering properties of concrete: strength, modulus of elasticity, creep, and shrinkage.

Further, it brings major savings due to a reduction in the volume of binder. Very early reports on

concrete technology have already emphasized the important effect of aggregate grading on the

properties of concrete (Fuller and Thompson 1907). Since that time the problem of the best possible

proportioning of aggregates and their contribution to optimal proportioning for the concrete mixture

has been the subject of many experimental and theoretical investigations (Goltermann, et al. 1997,

Vorobiev 1977, Sobolev 2004, Fuller and Thompson 1907, Oger 1987, Andersen and Johansen

1995, Kessler 1994, Kwan and Mora 2001, Sobolev and Amirjanov 2004). 

The first attempts to provide the “best” particle distribution for spheres of different diameters were

based on trials with balls and geometrical calculations (Vorobiev 1977, Andersen and Johansen
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1995, Kessler 1994, Kwan and Mora 2001, Sobolev and Amirjanov 2004, Visscher and Bolsterli

1972, Scott and Kovacs 1973). These experiments resulted in recommendations on sizes and the

proportioning of balls or optimal distribution curves. Some of these findings are currently accepted

as standards (Kessler 1994). One early example is presented by Fuller (Neville 2000, Fuller and

Thompson 1907) in a series of curves which are currently used for the optimization of concrete and

asphalt aggregates:

where:

P total percent of particles passing through (or finer than) sieve; 

D maximum size of aggregate;

d diameter of the current sieve; and

n exponent of the equation (n = 0.45 – 0.7).

Using a few (or at least two) sets of aggregates it is possible to achieve the “target” distribution of

particles with a reasonable deviation (Sobolev and Amirjanov 2004), and this approach is currently

used in concrete technology. In general, aggregates proportioning is a resource optimization

problem, which can be solved by Linear Programming (LP). However, this problem might be

complicated when there is an availability of a relatively large number of potential aggregates’ types

and supplies. So not only proportioning, but also the selection of the most competitive supply is

required. 

In spite of the apparent simplicity of the problem of aggregates proportioning, it is evident that a

new approach is needed to deal with the relatively large number of potential aggregate supplies. As

in any decision-making procedure, imitating the processes of natural selection can overcome the

restraints of conventional methods. Therefore, it is proposed that the application of a genetic

algorithm can result in a very effective solution. 

2. Description of the proposed approach 

Genetic Algorithms (GAs) are robust and adaptive methods that are used to solve a number of

optimization problems (Goldberg 1989). A GA works with a population of individuals, representing

a broad range of possible solutions to the problem. Each individual has an assigned fitness value

according to the quality of the solution. When a GA is executed, the population using randomized

processes of selection, crossover, and mutation evolves towards better solutions.

To start the GA, the first generation is usually randomly initialized. During the reproduction of a

new population, the mechanism of selection favors differential reproduction: better fitting

individuals reproduce more often than poorly fitting ones. Crossovers provide the mixing of parental

information which is transferred to their descendants. The result of the crossover is a randomized

exchange of genetic material between individuals where good solutions can reproduce even better

ones.

Mutation modifies the genetic material of the individual with a specified small probability. The

mutation is important because it introduces lost or unexplored genetic material into a new

population. It also helps to prevent the premature convergence of the GA onto suboptimal solutions
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(Goldberg 1989).

A GA, which learns, does not need to specify in advance the structural complexity of the solution:

it produces an optimal solution that satisfies all the constraints. GAs have been successfully applied

to many problems of Linear Programming (LP) containing integer variables of the search space

(Merz and Freisleben 1997, Kobayashi, et al. 1995). In general, the total number of extreme

solutions that LP needs to investigate is at most (Beghtler, et al. 1979): 

where s - amount of demands (limits set);

n - amount of facilities (types of aggregates)

Consequently, the solution of a relatively large LP problem requires a significant period of time.

Kratica, et al. (2001) applied a GA to solve the “simple plant location problem”, - a classical LP

problem. It was demonstrated that for large-scale problems (where s and n are greater than 100) the

GA obtains the optimal solutions from 5 to 80 times faster than the Branch-and-Bound techniques

(Kratica 2001).

Although there have been successful examples of the application of GA to pure integer

programming problems, a solution of the LP problem with continuous variables is more

complicated. For an optimization problem with continuous variables in the search space, the

precision of GA in searching for the optimum is very low; and so usually a hybrid genetic

algorithm (HGA) is used. An HGA combines two processes: (1) the GA and (2) a local search

algorithm (LSA). An HGA has been applied to a variety of problems in different fields, such as

optical network design (Sinclair 1999) and signal analysis (Sabatini 2000). In these applications, the

LSA was problem-dependent and based on trial-and-error experimentation. Silva, et al. applied a

GA to pipeline network optimization and pump scheduling (when the problem with integer

variables is considered); and they used a Linear Programming (LP) technique to determine the flow

rate of each selected pump (a problem dealing with continuous variables) (Silva, et al 2000). Luo,

et al. in addition to using a GA to solve a LP problem with integer variables, introduced the LP

method as a second component to locate the precise values of the continuous variables in a linear

mixed-integer programming (MIP) problem. This hybrid method was applied to solve the problem

of production planning and batch-scheduling (Luo, et al. 2001).

In order to solve an LP problem faster with useful accuracy in reaching the global optimum, it is

important to develop the capability of the GA to work with continuous variables in the search

space. Davidor used special representations and operators to solve complex, real-world problems

(Davidor 1990). The method of varying-length genetic algorithm generated the trajectories of a

robot. A special crossover operator (analogous crossover) was defined to use phenotypic similarities

to identify the crossover points in the parent strings. The use of special representations and

operators is problem-specific and such an approach cannot be further generalized. Michalewicz

applied real numbers directly to the gene in order to express continuous variables with special

mutation and crossover operators (Michalewicz 1996). Consequently, more complex calculations

were required to realize the crossover and mutation. Koziel and Michalewicz (1999) proposed a

method of solving the numerical optimization problems especially with continuous variables. In this

case, a chromosome “gives the instructions” for building a feasible solution. This method provides

quality results in obtaining the global optimum; but there are some disadvantages. First, this
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approach requires additional computational efforts to evaluate the problem-dependent parameter

experimentally and to find all the intersection points of a line with the boundaries of the feasible

region by using a binary search (which represents the core of the technique). Second, this approach

needs a high resolution for the scheme of a binary representation for continuous variables in order

to spot the space of a feasible search; this is essential when the global optimum is located on the

boundaries.

The present research introduces a Self-Adaptive Genetic Algorithm (SAGA) with continuous

variables in the search space to improve the performance of the GA (Amirjanov 2004). This method

improves the global search by affecting the environment according to the value of the fitness

function: better individuals are produced from existing ones. The SAGA sets up a feedback between

the environment and the current population; this helps to determine a global optimum. The SAGA

approach assumes that the environment and the population form a unique system; it establishes a

dynamic balance and convergence towards an optimal solution. This optimal solution comes from

adaptively changing the search space to the feasible region after a given amount of generations. The

best individual is used as a point of attraction to change the range of design variables (Amirjanov

2004).

This study compares the application of the LP and SAGA methods to search for the optimum

solution of the conventional linear optimization problem which includes a linear objective function

and linear constraints. The problem of resources, such as selection and proportioning of concrete

aggregates to meet the standard target composition at minimum cost, was considered to be an

attractive application of the proposed approach. 

3. Formulation and implementation of the problem

3.1. LP implementation

Linear programming involves optimization that satisfies both a linear objective function and linear

constraints. The LP problem can be formulated as follows:

(1)

where ci is the cost unit of facility i, and xi is a quantity supplied from facility i which is restricted

to the lower and upper bounds that define the domains of the variables:

 (2)

This minimization problem is subject to the constraints:

(3)

where aij is the weight unit of facility i to satisfy the demand bj , dr.

The simplex algorithm is one of the most popular approaches to solve the LP problem (Beghtler,

et al. 1979). It can be described as a systematic procedure which progresses from an extreme

solution to another solution with a better objective value. The best solutions are located at the

min ci
i 1=

n

∑ *xi
⎝ ⎠
⎜ ⎟
⎛ ⎞

li xi ui            1 i n≤ ≤,≤ ≤

aij*xi bj 0  j≤–
i 1=

n

∑ 1 2 … m  and, , ,= dr air*xi 0             r 1 2 …q, ,=≤
i 1=

n

∑–



Optimal proportioning of concrete aggregates using a self-adaptive genetic algorithm 415

intersection of the search space and the constraints. Usually, if an optimal solution exists, the

simplex method is considered to be one of the most efficient tools for solving small and middle-

scale LP problems (Beghtler, et al. 1979).

3.2. SAGA implementation

The separation of constraints and objectives method is used to handle the optimization problem

(Coello 2002); and the fitness function is calculated for two groups: for individuals
● within the feasible region (i.e. satisfying constraints Eq. (3))
● outside the feasible region

where

The SAGA implementation uses a stochastic sampling remainder without replacing the selection

procedure (Koziel and Michalewicz 1999, Amirjanov 2004). A single-point crossover with probability ps
between the first and last position of a binary string and the simple mutation with rate (per bit) pm=

0.02 is used in SAGA implementation.

The outline for solving the LP problem with SAGA is schematically presented in Fig. 1 and
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Fig. 1 Outline of SAGA implementation.
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differs from the conventional GA (Goldberg 1989) only by implementing the changerange()

function.

The Input_Data() function establishes SAGA parameters and the input data of the LP problem.

The SAGA parameters include:
● the number of generation (Ngeneration), 
● the number of individuals in population (Nindividuals), 
● the FIXGEN that is a number of generations passed to activate the changerange() function.

The changerange() function was introduced in order to provide a self-adaptive mechanism of

SAGA. Fig. 2 illustrates the core of the changerange() function including the steps of self-adaptive

mechanism of SAGA, where every rectangle represents the range of the variables and the vertical

lines indicate the binary representation scheme with constant resolution (equal to 10). At the

beginning, the upper bound of the variables are defined by the expression, Eq. (2) then after every l

generations (representing one set) the upper bound of every variable are changed according to the

value of variable at a reference point. For example, the upper bounds of range of variables at the

beginning of the 2nd set are calculated and the new values are established (r1=k*x1, r3=k*x3,…

ri=k*xi, where x1, x3, … xi are the value of variables 1, 3,… i respectively at the reference point)

only if the new value of a upper bound is less than the maximum defined by Eq. (2), otherwise the

upper bound of range of variables is not changed (r2 max, rnmax). As generations are developed, the

upper bound of the variables is adjusted according to the best individual; but for useless facilities

the upper bound is directed to zero (see x3, xi in the Fig. 2). The changing range of the variables

can be considered as an additional mutation rate that explores more precisely the search space and

speeds up the convergence to the optimal solution (Amirjanov 2004). The right side of Fig. 2 shows

diagrammatically the convergence of the algorithm to an optimum with the progress of generations.

It is proposed that the fluctuation of the objective function can be significantly reduced by the

number of generations (Amirjanov 2004). 

Fig 2 Principles of the self-adaptive mechanism of SAGA
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4. Computational results 

The experiments were designed to solve the problem of selecting and proportioning the different

aggregates at a minimum cost which meet the standard requirements for the aggregates’ size

distribution (demands). Totally, 10 different aggregates were used in this work; their particle size

distributions and costs are summarized in Table 1. These aggregates were coded by three letters: the

first being the supplier’s designation letter (G, C or B) and the remaining two NS, CS, MA or CA

corresponding to the aggregates’ type: natural sand, crushed sand, middle-sized aggregate, and

coarse aggregate, respectively. The aggregates’ combined grading limits (demands) b and d

specifying the constraints are represented in the same table. 

The following SAGA parameters were experimentally established for the optimal performance of

the routine: Ngeneration= 1500, Npopulation = 100, length = 10 bits (the length of a binary string),

FIXGEN = 80, pc= 0.85, pm= 0.02. The coefficient k = 2.0 was experimentally verified to speed up

the convergence of GA when the changerange() procedure was used (Amirjanov 2004).

An effort has been made to compare the accuracy of the results obtained using the SAGA

algorithm (with and without self-adaptive mechanism) with the LP method using the same range of

variables. Since LP provides high precision in finding the global optimum there is no need to

compare SAGA with other GA methods for accuracy.

Based on the specified conditions, two different experiments were performed:
● Experiment #1: 10 runs were executed with implementing changerange() procedure;
● Experiment #2: The same as Experiment #1, but without implementation of changerange()

procedure (conventional GA);

 The following steps were executed for all the experiments:
● Step 1 The first 200 generations (an initial value of genchange variable in Fig. 1) were run to

determine the reference point in the feasible region of a global optimum (corresponding to

the best solution);
● Step 2 The changerange() procedure was conducted after every 80 generations (FIXGEN) and

Table 1 The characteristics of aggregates

Sieve Size, 
mm

Particle Size Distribution of Aggregates (Passing), % Limits, %

GNS GCS GMA GCA CNS CCS CMA CCA BNS BCA Upper b Lower d

31.5 100 100 100 100 100 100 100 100 100 100 100 99.99
16 100 100 100 58 100 100 100 52 100 85 80 62
8 100 100 43 4 100 100 46 0 100 21 62 38
4 96 99 4 1 97 81 1 0 98 1 47 23
2 90 68 1 1 92 50 0 0 88 0 37 14
1 79 37 0 0 84 34 0 0 68 0 28 8
0.5 53 19 0 0 60 25 0 0 48 0 20 5
0.25 15 9 0 0 10 19 0 0 26 0 8 2
0.125 5 5 0 0 1 13 0 0 8 0 5 1
Cost, $ 8.0 1.5 6.0 5.0 7.5 1.5 5.5 5.0 10.0 7.5 min
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a new reference point (corresponding to the best solution) was determined (this step

was implemented only for the Experiments #1);
● Step 3 Selection of the best solution among all the reference points.

As can be observed, the proposed approach generated satisfactory results in locating a global

optimum. The standard deviation of the fitness value (or cost) was less than 1.5% for the worst run

of Experiment #1. 

The comparison of results of the Experiment #1 and #2 shows that SAGA selected and evaluated

the facilities with an error of less than 1% when compared with LP. When the values of the

facilities are evaluated by the conventional GA (according to the Experiment #2) only an indication

of the preferable facilities is provided, but the evaluation error exceeds more than 500% in some

facilities. 

The comparison of LP, SAGA and GA methods are presented in Fig. 3 (with selected facilities)

and it is clear that SAGA selected and evaluated the facilities correctly with a very small error; the

conventional GA only indicated the preferable facilities. According to SAGA, the optimal

aggregates selection and proportioning is the following: CCA = 47%, CCS = 29%, GCS = 23%.

These results are very similar to that obtained with LP.

Based on the experiments conducted, it can be concluded that the application of the SAGA

method improves the performance of GA. The implementation of the proposed SAGA method for

solving the LP problem (Experiment #1) helps to focus the search on the feasible region, and

provides the convergence of the algorithm to the optimum solution. 

To support these results, Fig. 4 represents the performance of SAGA and conventional GA versus

the set of generations. It is clear that SAGA concentrates the complete search of optimal solution to

only the feasible region; but conventional GA examines the search space to obtain the optimum.

Fig. 3 Comparison of the selected facilities (types of aggregates) for LP, SAGA and GA (Optimal Selection/
Proportioning: CCA = 47%, CCS = 29%, GCS = 23%)
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Actually, the conventional GA (Fig. 3) cannot reach the optimum because the optimal solution

contains many useless facilities (i.e. their dosage must be equal to zero) and the mutation rate is not

sufficient to examine the whole search space. Actually, with the constant mutation rate the GA

population becomes homogenous and loses the population diversity needed to investigate the whole

search space. SAGA, because of the self-adaptive mechanism, changes the mutation rate dynamically

Fig. 4 Comparison of the performance of SAGA and conventional GA

Fig. 5 Particle size distribution of optimized aggregate mixture
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and concentrates the search on the feasible region. As shown in Fig. 4, a fluctuation rate of a fitness

value (cost) of the aggregate mix for the conventional GA is much greater than for SAGA, because

SAGA focuses the search for the optimal solution only within the feasible region. This feature of

SAGA can be very useful for rapid accommodation to environmental changes (represented by the

values of the variables). The resulting cost of the aggregate mixture was $3.1, when the

conventional GA was able to provide mixtures only with the cost exceeding $4. 

According to the results of Experiment #1, SAGA has some variables (aggregates types) whose

values are equal to zero (Fig. 3). This is provided by the application of the threshold implemented

in the changerange() procedure. It means that if xi < h * min(bj) the facility xi=0 (usually h ≈ 0.05-

0.1). But implementing a threshold to the changerange() procedure does not significantly distort the

values of cost and variables. Actually, increasing the number of generations (Ngeneration) significantly

decreases the values of “non-active” variables (useless facilities) and sets them closer to zero. 

The ultimate result of the aggregates optimization with SAGA is presented in Fig. 5. As it can be

observed, the resulting aggregate mixture, in addition to minimal cost, provides the perfect fit to the

limits set by the standard. The central location of the resulting particle size distribution curve

suggests that such aggregate proportioning would provide an excellent workability and pumpability

to concrete mixtures. 

5. Conclusions

A new approach to linear-constrained optimization related to the selection and proportioning of

concrete aggregates using a genetic algorithm was developed. This approach is based on changing

the range of the variables to focus on the feasible part of the search space. The proposed SAGA

method significantly improves the performance of conventional GA. Implementing a self-adaptive

mechanism dynamically changes the mutation rate and concentrates the search of optimal solution

on the feasible region; by contrast, in conventional GA with constant mutation rate, the GA

population becomes homogenous and loses the population diversity needed to investigate all the

search space. The results of the experiments demonstrate the ability of the proposed SAGA method

to deal with LP problems, such as proportioning of concrete aggregates.
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