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Complete moment-curvature relationship of reinforced
normal- and high-strength concrete beams
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Abstract. The moment-curvature relationship of reinforced concrete beams made of normal- and high-
strength concrete experiencing complex load history is studied using a numerical method that employs the
actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence
of the concrete and steel reinforcement. The load history considered includes loading, unloading and
reloading. From the results obtained, it is found that the complete moment-curvature relationship, which is
also path-dependent, is similar to the material stress-strain relationship with stress-path dependence.
However, the unloading part of the moment-curvature relationship of the beam section is elastic but not
perfectly linear, although the unloading of both concrete and steel is assumed to be linearly elastic. It is
also observed that when unloading happens, the variation of neutral axis depth has different trends for
under- and over-reinforced sections. Moreover, even when the section is fully unloaded, there are still
residual curvature and stress in the section in some circumstances. Various issues related to the post-peak
behavior of reinforced concrete beams are also discussed.

Keywords: high-strength concrete; moment-curvature relationship; normal-strength concrete; reinforced
concrete beams; stress-path dependence; unloading and reloading.

1. Introduction

In the design of structures, both strength and ductility are important for structural safety. Very

often the strength aspect is given much attention while it is simply assumed that the design code

used will provide a certain minimum level of ductility to avoid brittle failure. With the increasing

use of high-strength concrete (ACI Committee 363, 1992) that is inherently more brittle than

normal-strength concrete, engineers have started to pay more attention to the ductility and complete

flexural behavior of reinforced concrete (RC) beams made with such materials. To accurately assess

the safety of a structure, a full-range analysis to obtain the behavior of both the pre-peak and post-

peak stages is necessary. Carreira and Chu (1986) presents a general non-linear method to compute

the moment-curvature relationship of RC members. A numerical method for the full-range moment-

curvature analysis of RC beams under monotonic increase of curvature, which takes into account
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the non-linear stress-strain relationship and stress-path dependence of the constitutive materials, has

been developed and applied to rectangular beams (Pam, et al. 2001) and flanged beams (Au and

Kwan 2004, Kwan and Au 2004). Consider an RC beam on which the deformations at certain

sections are imposed monotonically. Normally a plastic hinge will sooner or later form at a loaded

section, where the curvature and deflection increase monotonically as well. The bending moment

there increases accordingly until it reaches the peak strength, after which it drops gradually until the

structure completely collapses. However the equilibrium of the beam requires that the other sections

not directly loaded will experience unloading and consequently curvature reversal without reaching

their respective peak moments. Therefore even in a structure that is loaded monotonically, some

parts of it may experience curvature reversal, not to mention the much more complex load history

imposed by earthquakes.

A few investigators have studied the behavior of reinforced concrete beams under complex

loading typical of seismic motions. Kent and Park (1971) investigated experimentally and

theoretically the inelastic behavior of reinforced concrete members under cyclic loading, which were

made of normal-strength concrete and mild steel reinforcement. In particular, they studied the

Bauschinger effect for cyclically stressed mild steel reinforcement and the influence of rectangular

steel hooping on the stress-strain behavior of concrete. Brown and Jirsa (1971) carried out

experiments on RC cantilever beams and investigated the effect of load history on the strength,

ductility, and mode of failure. They concluded that the behavior of the specimens under load

reversal was influenced primarily by shear.

This paper describes a new method of full-range moment-curvature analysis of RC beams

experiencing complex load history. It employs the actual stress-strain curves of the constitutive

materials and takes into account the stress-path dependence of the concrete and steel reinforcement.

The method is applied to the full-range analysis of RC beam sections to study their complete

moment-curvature relationship.

2. Stress-strain relationship of concrete with stress-path dependence

In the present study, the stress-strain curve of concrete developed by Attard and Setunge (1996),

which has been shown to be applicable to a broad range of in situ concrete strength from 20 to 130

MPa, is employed. In this model, the parameters used to establish the stress-strain curve are the

initial Young’s modulus Ec, the peak stress fco and the corresponding strain εco, and the stress fci and

strain εci at the inflection point on the descending branch of the curve. The stress of concrete σc is

related to the strain εc by 

(1)

where A and B are coefficients dependent on the concrete grade. Two sets of the coefficients A and

B are required, one for the ascending branch and another for the descending branch of the curve.

For the ascending branch where ,

(2)
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(3)

The parameters Ec, εco, fci and εci are related to the peak stress fco by

(4a)

(4b)

(4c)

(4d)

It should be noted that the peak stress fco is actually the in situ uniaxial compressive strength of

concrete, which may be determined from the standard cube or cylinder strengths using

appropriate correction factors. Fig. 1(a) shows the parameters used to define a stress-strain curve

using this model, while some typical stress-strain curves for in situ concrete strength from 40 to

100 MPa are shown in Fig. 1(b). To cope with the unloading and reloading in the material, the

stress-path dependence of the stress-strain relation is taken into account. The unloading is treated

as linearly elastic (Bangash 2001), as shown in Fig. 2(a). The point from which unloading starts

has to be stored for subsequent computations. For example, unloading from point 2 in Fig. 2(a)

follows the straight line 2-1 that is parallel to the tangent to the stress-strain curve at the origin.

Reloading from point 1 then follows the path 1-2-3, which comprises the straight line 1-2 and the

original curve 2-3. During unloading and reloading along path 1-2, the stress σc is related to the

strain εc by

(5)

where Ec is the initial tangent modulus and εpc is the residual strain of the path. 

A
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Fig. 1 Stress-strain curves of concrete according to the Attard-Setunge Model
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3. Stress-strain relationship of steel with stress-path dependence

A linearly elastic-perfectly plastic stress-strain model as shown in Fig. 2(b) is used for the steel

reinforcement. When the strain εs is increasing, the stress σs in the steel is given by

at elastic stage:  for (6a)

after yielding:  for (6b)

where Es is the Young’s modulus and fy is the yield stress. It is assumed that unloading from a

typical point 2 on the yielding plateau in Fig. 2(b) follows the straight line 2-1 following the initial

elastic slope. Reloading from point 1 then follows the path 1-2-3. The stress σs and the strain εs
along path 1-2 are related by

(7)

where εps is the residual strain of path 1-2.

4. Non-linear analysis method

The three basic assumptions made in the analysis are (a) plane sections before bending remain

plane after bending; (b) tensile stress in the concrete may be neglected; and (c) there is no bond-slip

between the reinforcement bars and the concrete. They imply that the longitudinal strains developed

at various points of a section are proportional to the distances from the neutral axis. They are

commonly accepted and are nearly exact except in deep beams or in the vicinity of cracks. Fig. 3

shows a beam section having a breadth b and total depth h, with the tension reinforcement area Ast

provided at a depth d and the compression reinforcement area Asc provided at a depth d1 from the

top. For convenience in analysis, the sign convention adopted is such that the strain and stress

quantities are normally positive as follows: (a) compressive strain and stress in concrete are

σs Esεs= εs fy Es⁄≤

σs fy= εs fy Es⁄>

σs Es εs εps–( )=

Fig. 2 Stress-strain curves of material constituents with stress path dependence
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positive; (b) compressive strain and stress in compression reinforcement are positive; and (c) tension

strain and stress in the tension reinforcement are positive. When the curvature of the beam section

is increased to f as shown in the strain distribution diagram in Fig. 3, the strain ε developed is given

by

(8)

where x is the distance above the neutral axis. Therefore, the compressive strain εce at the extreme

concrete compression fiber, the compressive strain εsc in the compression reinforcement and the

tensile strain εst in the tension reinforcement can be respectively written as

(9a)

(9b)

(9c)

in which dn is the neutral axis depth. The corresponding stresses σc, σsc and σst developed in the

concrete, compression reinforcement and tension reinforcement can then be evaluated from the

respective stress-strain curves of the materials taking into account stress path dependence. To cater

for the subsequent unloading and reloading, the latest residual strains εpc  of the concrete section, εpc
of the tension reinforcement and the compression reinforcement should be stored and updated. The

residual strains εpc of the concrete section at regular intervals along the depth are recorded so that

the values at intermediate positions can be obtained by linear interpolation.

The stresses developed in the beam section must satisfy the conditions of axial equilibrium and

moment equilibrium. The applied axial load P can be obtained from axial equilibrium as

(10)

where compressive force is taken as positive. Similarly, the resisting moment M can be obtained

from moment equilibrium as

ε φx=

εce φdn=

εsc φ dn d1–( )=

εst φ d dn–( )=

P σcb xd Ascσsc∑ Astσst 0=∑–+
 0

  d
n

∫=

Fig. 3 A beam section subjected to bending moment
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(11)

where sagging moment is taken as positive. In the evaluation of integrals in Eqs. (10) and (11),

Romberg integration (Gerald and Wheatley 1999), which can significantly improve the accuracy of

the simple trapezoidal rule when the integrand is known at equispaced intervals, has been adopted.

The axial equilibrium condition as shown in Eq. (10) can be used to determine the neutral axis

depth dn. Normally, given a specified curvature φ and a trial value of neutral axis depth dn, the

equilibrium condition is not immediately satisfied and there is an unbalanced axial force P. Since

the relation between the unbalanced axial force P and the neutral axis depth dn is nonlinear, an

iterative scheme is required to determine the value of dn which will give a zero value of P. The

scheme adopted here is the modified linear interpolation method (Gerald and Wheatley 1999).

The complete moment-curvature relationship including loading, unloading and reloading is then

obtained through a prescribed variation of curvature by a suitable step size. The curvature φ increases

gradually from zero to a certain curvature φ1, from which unloading takes place with the curvature φ

gradually decreases until the resisting moment of the section is close to zero. This is then followed by

reloading so that the curvature φ gradually increases until it reaches a curvature φ2 that is larger than

φ1, from which unloading takes place again. This is repeated until the maximum resisting moment

upon reloading has dropped to a small enough value compared with the overall peak resisting moment.

5. Results of analysis

5.1. Sections analyzed

The beam sections analyzed are rectangle in shape as shown in Fig. 3. A typical beam section has

a breadth b = 300 mm and total depth h = 600 mm, with the tension reinforcement provided at a

depth d = 550 mm and the compression reinforcement provided at a depth d1 = 50 mm from the top.

M σcbx xd Ascσsc dn d1–( )∑ Astσst∑+ + d dn–( )
 0

 d
n

∫=

Table 1 Cases investigated

fco (MPa) ρc (%) ρb (%) ρt (%) Remarks

30 0 3.19 1.60 Under-reinforced

0 3.19 4.79 Over-reinforced

1 4.19 2.10 Under-reinforced

1 4.19 6.29 Over-reinforced

60 0 5.39 2.70 Under-reinforced

0 5.39 8.09 Over-reinforced

1 6.39 3.20 Under-reinforced

1 6.39 9.59 Over-reinforced

90 0 7.30 3.65 Under-reinforced

0 7.30 10.95 Over-reinforced

1 8.30 4.15 Under-reinforced

1 8.30 12.45 Over-reinforced
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The steel reinforcement has a yield strength fy = 460 MPa and Young’s modulus Es = 200 GPa.

Altogether twelve cases have been investigated as shown in Table 1. The in situ concrete compressive

strength fco ranges from 30 to 90 MPa to cover both normal- and high-strength concrete. The beam

sections may be singly or doubly reinforced with the compression steel ratio ρc (ρc = Asc/bd) up to 1%.

The tension steel is provided with respect to the balanced steel ratio ρb so as to cover both under- and

over-reinforced cases. The tension steel ratio ρt (ρt = Ast/bd) varies from 0.5ρb to 1.5ρb.

5.2. Complete moment-curvature relationship of beam sections experiencing complex
load history

Fig. 4 shows the complete moment-curvature relationship of sections with in situ concrete

compressive strength fco of 30 MPa, while Fig. 5 shows those for 90 MPa. The solid lines represent

the response under monotonic loading (i.e. increase in curvature) whereas the dash lines denote the

response on unloading (i.e. decrease in curvature) and reloading. It is found that, under the present

Fig. 4 Complete moment-curvature relationship of some sections with in situ concrete strength 30 MPa
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assumptions, the complete moment-curvature relationship is moment-path dependent, which is

similar to the stress-path dependence of material stress-strain relationship. The envelope of moment-

curvature relationship of a beam section experiencing complex load history is the same as the

moment-curvature relationship under monotonic loading. The paths of unloading and reloading

within the moment-curvature envelope are the same but the paths are slightly curved in most cases.

As observed in Figs. 4 and 5, the moment-curvature envelopes in general reflect the ductility of the

section examined. In other words, under-reinforced sections are more ductile. The initial portion of

the moment-curvature curve is fairly linear followed by a flat plateau that depends on its degree of

being under-reinforced. Over-reinforced sections are characterized by sharp peaks in their moment-

curvature curves indicating their brittleness.

Fig. 6 summarizes the normal response of beam sections experiencing complex load history.

When the curvature increases from zero, the moment-curvature relationship follows path 0-1-3

initially. On unloading from point 3, it follows path 3-2. Upon reloading from point 2, it goes along

path 2-3-4-6. The response along path 2-3 is elastic but not perfectly linear. Unloading at small

Fig. 5 Complete moment-curvature relationship of some sections with in situ concrete strength 90 MPa
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curvatures before reaching the peak moment is normally along a path broadly parallel to the initial

tangent at the origin resulting in small residual curvatures. However unloading at large curvatures

after reaching the peak moment is along paths at reduced inclinations suggesting increasing

deterioration in stiffness. Such deterioration in stiffness is particularly noticeable in over-reinforced

sections without compression reinforcement as in Figs. 4(b) and 5(b).

5.3. Variation of neutral axis depth

The variations of the neutral axis depth dn for sections with in situ concrete compressive strength

fco of 60 MPa are plotted in Fig. 7, where the solid lines denote the loading curves and the dash

lines stand for the paths for unloading and reloading. The variations for under- and over-reinforced

Fig. 6 General view of complete moment-curvature relationship of a typical beam section experiencing
complex load history

Fig. 7 Variation of neutral axis depth of sections with in situ concrete strength 60 MPa
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sections are markedly different but the presence or not of compression reinforcement is immaterial.

For both under- and over-reinforced sections, the neutral axis depths remain nearly constant initially.

As the curvature increases more, for the under-reinforced sections, the neutral axis depth decreases

and then increases as the bending moment enters the post-peak stage. However, for the over-

reinforced sections, the neutral axis depth keeps on increasing with curvature.

The difference between under- and over-reinforced sections is again observed in the variation of neutral

axis depth upon unloading and reloading. When under-reinforced sections are unloaded, the neutral axis

depth keeps decreasing with the curvature. On the contrary, when over-reinforced sections are unloaded,

the neutral axis depth increases as the curvature decreases. Similar phenomena are also observed in the

sections with in situ concrete compressive strength fco of 30 and 90 MPa.

5.4. Residual curvature

It can be observed from Figs. 4 and 5 that there are residual curvatures in most cases when the

Fig. 8 Residual curvatures after unloading
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applied bending moment is removed. Notable exceptions are over-reinforced sections without

compression reinforcement, which result in very small residual curvatures even when unloaded from

very large curvatures, as shown in Figs. 4(b) and 5(b). Fig. 8 shows the relationship between residual

curvatures and the maximum curvatures from which unloading starts. The behavior of the sections is

essentially elastic when the applied curvature is small, and therefore there is effectively no residual

curvature. Beyond a certain applied curvature, the residual curvature roughly increases linearly with

the applied curvature. Moreover the residual curvature is not much affected by the concrete grade

used. The residual curvatures of over-reinforced sections without compression reinforcement are

virtually zero. It is noted that the residual curvatures are predominantly caused by plastic strains in the

steel reinforcement. For over-reinforced sections without compression reinforcement, the steel

reinforcement remains elastic throughout and that explains why the residual curvatures are very small.

5.5. Stress distribution in beam section

The concrete stress distributions of sections with in situ concrete compressive strength fco of 60

MPa are shown in Fig. 9. Around the curvature where the peak moment is developed, the concrete

Fig. 9 Concrete stress distributions of sections with in situ concrete strength 60 MPa at different curvatures
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stress distribution has roughly a parabolic shape. The major difference between under- and over-

reinforced sections is that, for over-reinforced sections, there is more rapid downward shift in the

position of the stress peaks accompanied by more drastic decrease in resisting moment. The

variations of steel stresses are plotted against the curvature together with the resisting moment in

Fig. 10. It is seen that for under-reinforced sections, the tension reinforcement yields around the

peak moment, while the tension reinforcement in over-reinforced sections never yields. Because of

the strains imposed, the compression reinforcement always yields if provided. At the post-peak

stage when the resisting moment decreases with increasing curvature, the stress in tension

reinforcement decreases indicating stress reversal clearly.

The changes in stress distribution on unloading are also investigated. Fig. 11 shows the stresses of

the doubly reinforced sections with in situ concrete compressive strength fco of 90 MPa at several

stages of unloading. It can be seen that although the peak concrete stress drops, the position of the

Fig. 10 Variation of steel stresses and moment with curvature for sections with in situ concrete strength 60 MPa
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peak does not vary much. The stress in tension reinforcement decreases with curvature resulting in

some residual tensile stress after complete unloading. The stress in compression reinforcement also

decreases with curvature but the residual stress after complete unloading becomes tensile. After the

complete unloading, concrete still carries some compressive stress while the top and bottom

reinforcing bars all carry tensile stresses. The residual stresses are not significant in sections made

of concrete of low strength, and they tend to increase with the concrete grade.

5.6. Strain energy density of beam section

When a beam is loaded, it will deform. The work done by the external load should be equal to

the strain energy stored in it. The strain energy density U0 of a beam section is defined here as the

strain energy per unit length of the beam. For convenience, the strain energy induced by shear and

axial forces is neglected. Therefore the strain energy density U0 can be written as

(12)

where the integral should be evaluated along the moment-path. Referring to Fig. 6, the strain energy

U0  
LoadingPath

∫ M φ( )dφ=

Fig. 11 Stress distributions of doubly doubly reinforced sections with in situ concrete strength 90 MPa during
unloading
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density U0 at point 6 is equal to the area bounded by 0-2-5-6'-6-4-3-1-0. The strain energy stored in

a section comprises the elastic and plastic components. While the elastic component can be released

with unloading, the plastic component still remains. If the section is unloaded from point 6 to point

5, the strain energy density U0 becomes equal to that at point 6 minus the elastic component that is

the area bounded by 5-6'-6-5. The strain energy densities of the doubly reinforced sections with in

situ concrete compressive strength fco of 30 MPa are plotted in Fig. 12. The solid lines denote the

results for loading while the dash lines denote those for unloading. It is noted that comparatively the

under-reinforced section dissipates energy in a more uniform manner because of the yielding of

tension reinforcement. Unloading only recovers a small part of the strain energy stored.

5.7. Post-peak behavior of structures considering moment-path dependence

Experiments to investigate the full-range behavior of RC beams upon monotonic imposition of

displacement have to be conducted in the displacement-control mode so that the post-peak

performance can be observed. For simplicity, a simply supported beam is taken as an example for

discussion. Before the peak strength of the beam is reached (i.e. at the pre-peak stage), the

curvatures of all sections increase although at different rates. When the peak strength of a beam is

reached, the critical section of the beam and its vicinity will reach their respective peak strength and

enter the post-peak stage. At the post-peak stage of the critical section when the resisting moment at

the critical section drops, equilibrium of the beam requires that the bending moments elsewhere

should decrease as well. The sections other than those in the vicinity of the critical section will

undergo unloading and release part of their strain energy stored as they are still at the pre-peak

stage. The strain energy released by the unloading sections will be absorbed by those in the vicinity

of the critical section forming a plastic hinge.

The numerical analysis of the full-range behavior of a beam is much more complicated than that of its

sections. Before the peak strength of the beam is reached, the resisting moment at a typical section

increases with its curvature and vice versa. After reaching the peak strength of the beam, the resisting

moment at the critical section or plastic hinge decreases while its curvature increases. In other words, it

follows the envelope curve of the moment-curvature diagram. Therefore the critical section has positive

tangent stiffness at the pre-peak stage, but negative tangent stiffness at the post-peak stage.

Fig. 12 Strain energy densities of doubly reinforced sections with in situ concrete strength 30 MPa under
complex load history
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At the post-peak stage of the critical section when its resisting moment drops, equilibrium of the

beam requires that the bending moments elsewhere should decrease as well. Sections carrying

moments much lower than the peak moment are clearly at the pre-peak stage and will start

unloading. However when the critical section reaches its peak moment, those in the vicinity also

carry moments close to the peak moment. As the critical section enters the post-peak stage, the drop

in bending moment in the vicinity may encounter some kind of bifurcation, as it may be associated

with further increase in curvature or reduction in curvature. The further increase in curvature will

follow the post-peak branch of the envelope and therefore has a negative tangent stiffness. On the

other hand, the reduction in curvature will follow an unloading path and has a positive tangent

stiffness. Apart from the equilibrium, compatibility and energy considerations will come into play in

deciding which path the section follows. More work in this direction is necessary to quantify the

post-peak behavior of RC beams.

6. Conclusions

The moment-curvature relationship of reinforced concrete beams made of normal- and high-

strength concrete experiencing complex load history is studied using a numerical method that

employs the actual stress-strain curves of the constitutive materials and takes into account the stress-

path dependence of the concrete and steel reinforcement. The effects of loading, unloading and

reloading have been studied. The reinforced concrete beam sections studied cover normal- and high-

strength concrete, singly and doubly reinforced sections, and under- and over-reinforced sections.

The results show that the complete moment-curvature relationship is also path-dependent, which is

similar to the material stress-strain relationship with stress-path dependence. However, the unloading

part of the moment-curvature relationship of the beam section is elastic but not perfectly linear,

although the unloading of both concrete and steel is assumed to be linearly elastic. Unloading from

large curvatures normally follows paths with reduced inclinations compared with the initial tangent

at origin, suggesting increasing deterioration in stiffness. It is also observed that when unloading

happens, the variation of neutral axis depth has different trends for under- and over-reinforced

sections. Moreover, even when the section is fully unloaded, there are still residual curvature and

stress in the section in some circumstances. It is noted that the residual curvatures are

predominantly caused by plastic strains in the steel reinforcement. For over-reinforced sections

without compression reinforcement, the steel reinforcement remains elastic throughout resulting in

very small residual curvatures. The strain energy densities of different sections are studied. Various

issues related to the post-peak behavior of reinforced concrete beams have also been discussed.
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Notation

Asc = area of compression reinforcement

Ast = area of tension reinforcement

b = breadth of rectangle beam section

d = depth to centroid of tension reinforcement

d1 = depth to centroid of compression reinforcement

dn = neutral axis depth

Ec = Young’s modulus of concrete

Es = Young’s modulus of steel reinforcement

fci = stress at inflection point on descending branch of stress-strain curve of concrete

fco = in situ uniaxial compressive strength of concrete

fy = yield strength of steel reinforcement

h = total depth of the beam section

x = distance above neutral axis

ε = strain in section

εc = strain in concrete

εce = compressive strain at extreme compression fibre of concrete

εci = strain at inflection point on descending branch of stress-strain curve of concrete

εco = strain in concrete at peak stress

εpc = residual plastic strain in concrete 

εps = residual plastic strain in steel reinforcement

εs = strain in steel reinforcement

εsc = compressive strain in compression reinforcement

εst = tensile strain in tension reinforcement

εy = yield strain of steel reinforcement

ρb = balanced steel ratio of beam section

ρc = compression steel ratio (= Asc /bd)

ρt = tension steel ratio (=Ast /bd)

σc = stress in concrete 

σs = stress in steel reinforcement

φ = curvature of beam section
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