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1. Introduction 
 

Concrete pipe has a rich history, spawning an industry 

that today produces an economical, high quality product for 

numerous applications. It’s been in use for over 5,000 years. 

Concrete pipes have a proven track record and are custom 

designed for user applications including drainage, sewerage, 

water supply and irrigation. Nowadays, the application of 

nano materials has received numerous attentions to enhance 

the conventional concrete properties. Eventually, the 

introduction of nano materials in concrete is to increase its 

strength and durability. Nano material is defined as material 

that contains particle size which less than 200 nm. 

There are many works in the concrete pipes in the 

literature. Seismic response of buried pipes in longitudinal 

direction was studied by Nedjar et al. (2007). The effect of 

the variation of geotechnical properties of the surrounding 

soil on the stiffness, mass and damping of the soil was 

considered. A comprehensive experimental and analytical 

study of pipe-pin hinges was completed by Zaghi and Saiidi 

(2010). Tests of large-scale models of the hinges were 

conducted and showed that lateral failure mechanism is 

typically controlled by concrete diagonal tensile cracking in 

combination with flexural hinging of the steel pipe as 

opposed to pure shear failure of the pipe. The temperature 

gradient properties of the concrete around a pipe were 

studied by Zhu et al. (2013). A new calculation method was 

developed based on these properties and an explicit iterative 

algorithm. Using a mesoscopic finite-element (FE) mesh,  
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three-phase composites of concrete namely aggregate, 

mortar matrix and interfacial transition zone (ITZ) were 

modeled by Zhang et al. (2015). An equivalent probabilistic 

model was presented for failure study of concrete by 

assuming that the material properties conform to the 

Weibull distribution law. Vibration and stability of concrete 

pipes reinforced with carbon nanotubes (CNTs) conveying 

fluid were presented by Zamani Nouri et al. (2016). Due to 

the existence of CNTs, the structure is subjected to 

magnetic field. Cheraghi and Zahrai (2016) presented a 

multi-level pipe in pipe passive control system and its 

cyclic behavior is evaluated with nonlinear static and 

dynamic analyses using finite element method by ABAQUS 

software. Then, hysteresis curves were studied representing 

a highly ductile behavior for the proposed damper. 

Mahjoubi and Maleki (2016) provided guidelines for 

implementing Dual-pipe damper (DPD) in actual steel 

buildings, evaluate and compare their performance against 

other metallic dampers. Failure analysis of a cracked 

concrete pipe in a 50 MW thermosolar power plant was 

investigated by González-Nicieza et al. (2017). Simulations 

show that failure was caused by additional overloads. Lai et 

al. (2017) developed and benchmarks detailed 3D finite 

element method (FEM) models for evaluating the seismic 

behavior of spirally welded pipes (SWP), Fully filled SWP, 

and partially filled SWP. The FEM models account for 

behavioral complexities such as steel yielding, pipe local 

buckling and fracture, concrete cracking and crushing, 

cyclic stiffness degradation and recovery, and effects of 

concrete confinement. 

None of the above paper has been work on the 

mathematical modeling of the concrete structures. The 

nonlinear buckling of straight concrete columns armed with 

single-walled carbon nanotubes (SWCNTs) and SiO2  
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Fig. 1 A schematic figure of nanocomposite pipe 

covered by piezoelectric layer conveying fluid under 

seismic load 

 

 

nanoparticles resting on foundation was investigated by 

Jafarian Arani et al. (2016) and Zamanian et al. (2016). the 

nonlinear buckling of straight concrete columns armed with 

single-walled carbon nanotubes (SWCNTs) resting on 

foundation was investigated by Safari Bilouei et al. (2016). 

Stress analysis of concrete pipes reinforced with AL2O3 

nanoparticles was presented by Heidarzadeh et al. (2016) 

considering agglomeration effects. 

To the best of author knowledge, no theoretical report 

has been found in the literature on seismic analysis of 

concrete pipes reinforced with SiO2 nanoparticles. 

Motivated by these considerations, we aim to present a 

mathematical model for seismic analysis of concrete pipe 

reinforced with SiO2 nanoparticles considering 

agglomeration effects based on Mori-Tanaka approach. 

Based on FSDT model, the motion equations are derived 

using energy method and Hamilton’s principal. Using 

HDQM and Newmark method, the dynamic deflection of 

the structure is calculated and the effects of different 

parameters such as volume percent of SiO2 nanoparticles, 

SiO2 agglomeration, geometrical parameters and boundary 

conditions on the dynamic deflection of the structure are 

shown. 

 

 

2. Formulation and modeling 
 

As shown in Fig. 1, a concrete pipe reinforced with SiO2 

nanoparticles subjected to earthquake load is presented 

where the geometrical parameters of length L, radius R and 

thickness h are shown.  

According to FSDT, the displacement field can be 

written as (Brush and Almorth 1975) 

     , , , , , , , ,xu x z t u x t z x t      (1) 

     , , , , , , , ,v x z t v x t z x t      (2) 

   , , , , , ,w x z t w x t   (3) 

In which ψx and ψθ are the angle of rotation around the x 

and θ axes, respectively. By substituting Eqs. (1)-(3) into 

the strain-displacement relations, we have 
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According to Hook’s law, the constitutive equation of 

the concrete pipe is expressed as follows 
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(8) 

where the effective material properties of the concrete pipe 

reinforced with SiO2 nanoparticles (Cij) can be calculated 

based on Mori-Tanaka approach (Appendix A). 

The strain energy of the structure is given by 
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(10) 

By substituting Eqs. (4)-(8) into Eq. (10) the strain 

energy can be expressed as follows 
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By introducing the stress resultants as below 
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we have 
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(15) 

where k’ is the shear correction factor. 

The kinetic energy of the structure is 
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where
 
ρ is the equivalent density of the nanocomposite 

pipe. Substituting Eqs. (1)-(3) into Eq. (16), we have 
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Eq. (17) can be rewritten as below 
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The external work due to the earthquake loads can be 

computed as below 
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where m and a(t) are the mass and the acceleration of the 

earth. 

The motion equations of the structure are derived using 

the Hamilton’s principle which is considered as follows 
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By integrating the stress-strain relations of the structure 

using Eqs. (12)-(14) we have 
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Now, by substituting Eqs. (27)-(34) into the equations of 

motion Eqs. (22)-(26) we have 
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Also, the boundary conditions are considered as below 

• Clamped-Clamped supported 

0, 0,xx L u v w        
 

(43) 

• Simply-Simply supported 

0, 0,xxx L u v w M      
 

(44) 

• Clamped-Simply supported 

0 0,

0.

x
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(45) 

3. HDQM 
 

HDQM is one of the numerical methods in which the 

governing differential equations turn into a set of first order 

algebraic equations by applying the weighting coefficients. 

In these methods, the one-dimensional and two-dimensional 

derivative of the function may be defined as follows 

(Kolahchi et al. 2015, 2016a, b) 
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(48) 

For choosing sampling grid points, the Chebyshev 

polynomials are used as follows 
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The weighting coefficients can be obtained by the 

following simple algebraic relations 
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in which 
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and for higher-order derivatives we have 
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Fig. 2 Acceleration history of bam earthquake 

 

 

Fig. 3 Convergence and accuracy of HDQM 

 

 

Fig. 4 Comparison of analytical and numerical results 

 

 

Based on HDQM, the motion equations can be written 

in matrix form 

 
 

 
 

 

 
 0

,
( )

bb

d d

dd
K M

d Ma td

               
          

 
(57) 

where [K] and [M] denote the stiffness matrix and the mass 

matrix, respectively. Also,  bd  and  dd  represent 

boundary and domain points, respectively. 

 

 

4. Newmark method 

In this section, Newmark method (Simsek 2010) is 

applied in the time domain to obtain the time response of 

the structure under the earthquake loads. Based on this 

method, Eq. (57) can be written in the general form as 

below 

,)( 11
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  ii QdK

 

(58) 

where subscript i+1 indicates the time t=ti+1, K
*
(di+1) and 

Qi+1 are the effective stiffness matrix and the effective load 

vector which can be considered as  
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where (Simsek 2010) 
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(61) 

in which γ=0.5 and χ=0.25. Based on the iteration method, 

Eq. (58) is solved at any time step and modified velocity 

and acceleration vectors are calculated as follows 

,)( 32101 iiiii ddddd    
 

(62) 

1 6 7 1.i i i id d d d    
 

(63) 

Then for the next time step, the modified velocity and 

acceleration vectors in Eqs. (62) and (63) are employed and 

all these procedures mentioned above are repeated. 

 

 

5. Numerical results and discussion 
 

In this section, the numerical results for the dynamic 

response of the concrete pipe which is reinforced by SiO2 

nanoparticles under the earthquake loads are examined. For 

this purpose, a concrete pipe of length to radius ratio of 

L/R=10 and thickness to radius ratio of h/R=0.1 is 

considered. The Yong modulus and Poison's ratio of 

concrete are Em=20 GPa and vm=0.3, respectively which is 

reinforced with agglomerated SiO2 nanoparticles with Yong 

modulus of Er=75 Gpa and Poison’s ratio of vr=0.3. The 

case study of this paper is Kobe with the acceleration shown 

in Fig. 2. 
Before, presenting the results of this work, studying the 

convergence of HDQM and validation of present model are 
two important issues. For convergence and accuracy of 
HDQM, Fig. 3 is plotted where the maximum dynamic 
deflection is changed with grid point numbers of HDQM. 
As shown, the maximum dynamic deflection decreases with 
increasing grid point numbers until in N=17, the results 
become converge. However, in this work, the grid point 
numbers for accurate results is chosen N=17. Fig. 4  
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Fig. 5 The effect of SiO2 nanoparticles volume percent 

on the dynamic deflection of the structure 
 

 

Fig. 6 The effect of SiO2 nanoparticles agglomeration 

on the dynamic deflection of the structure 
 

 

Fig. 7 The effect of boundary conditions on the 

dynamic deflection of the structure 
 
 

illustrates the comparison of present results obtained by 
HDQM with the exact solution of this work for simply 
supported boundary conditions. It can be seen that the 
present results are in good agreement with exact solution, 
indicating validation of this work. 

Figs. 5 and 6 show the effects of SiO2 nanoparticles 
volume fraction and agglomeration of them on the 
maximum dynamic deflection of the structure. It can be 
found that with increasing the SiO2 nanoparticles volume 
fraction, the maximum dynamic deflection decreases due to 
increase in the stiffness of the structure. In addition,  

 

Fig. 8 The effect of pipe thickness on the dynamic 

deflection of the structure 
 
 

according to Fig. 6, it is shown that considering 
agglomeration of SiO2 nanoparticles leads to increase in the 
maximum dynamic deflection of the concrete structure. It is 
due to the fact that considering agglomeration effects leads 
to lower rigidity of system.  

The effects of different boundary conditions on the 

maximum dynamic deflection are demonstrated in Fig. 7. 

Here, three types of boundary conditions are assumed as 

SS, CS and CC. As can be seen, the concrete pipe with CC 

boundary condition has lower maximum dynamic deflection 

with respect to other considered boundary conditions. It is 

because the concrete pipe with CC boundary condition has 

higher stiffness with respect to other considered boundary 

conditions. 

Fig. 8 shows the effect of concrete pipe thickness on the 

maximum dynamic deflection. It is obvious that as the 

concrete pipe thickness increases, the maximum dynamic 

deflection of the structure decreases. It is due to the fact that 

increasing the concrete pipe thickness makes the structure 

stiffer.  

 

 

6. Conclusions 
 

Seismic response of the concrete pipes reinforced with 

SiO2 nanoparticles based on a theoretical approach was the 

main contribution of this study. The concrete pipe was 

modeled with FSDT and the corresponding motion 

equations were derived by energy method and Hamilton’s 

principle. The Mori-Tanaka model was for estimating the 

equivalent material properties of composite structure 

considering agglomeration effects. HDQM and Newmark 

methods were used for solution and calculating the dynamic 

deflection of the structure. The effects of different 

parameters such as thickness of pipe, boundary conditions, 

SiO2 nanoparticles volume fraction and agglomeration were 

shown in the dynamic deflection of the structure. The 

results show that with increasing the SiO2 nanoparticles 

volume fraction, the maximum dynamic deflection 

decreases. In addition, considering agglomeration of SiO2 

nanoparticles leads to increase in the maximum dynamic 

deflection of the concrete structure. Furthermore, the 

concrete pipe with CC boundary condition has lower 

maximum dynamic deflection with respect to other 
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considered boundary conditions. It was obvious that as the 

concrete pipe thickness increases, the maximum dynamic 

deflection. 
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Appendix A 

 

In this section, the Mori-Tanaka model is developed to 

examine the elastic properties of the SiO2 nanoparticles-

reinforced polymeric composite considering agglomeration 

effects (Shi and Feng 2004). The experimental results reveal 

that the most of SiO2 nanoparticles dispersion irregularly 

and centralize in spherical shapes in the matrix (Shi and 

Feng 2004). These regions are called “inclusions” which 

have different elastic properties from the matrix material. Vr 

is the total volume of CNTs which given as below 

inclusion m

r r rV V V 
 

(A1) 

in which Vr
inclusion 

and Vr
m
 are the volumes of SiO2 

nanoparticles distributed in the spherical inclusions and in 

the matrix (concrete), respectively. Two following 

parameters are used to indicate the effect of agglomeration 

in the micromechanical model. 
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Cr is the average volume fraction of SiO2 nanoparticles 

in composite which is defined as follows 
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The volume fraction of the SiO2 nanoparticles in the 

inclusions and in the matrix (concrete) can be related to 

each other as follows 
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Assuming that the nanotubes are transversely isotropic 

and are distributed in the inclusions randomly, the 

inclusions are considered to be isotropic. Thereby, by 

applying Eshelby-Mori-Tanaka approach, the effective bulk 

modulus K and the effective shear modulus G of the 

isotropic materials can be written as below 
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where Kin and Kout are the effective bulk modulus of the 

inclusion and the matrix outside the inclusion, respectively. 

Also, Gin and Gout are the effective shear modulus of the 

inclusion and the matrix outside the inclusion, respectively 

and are considered as follows 
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in which χ,
 
βr, δr 

and ηr can be calculated as 
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Also, Km and Gm are the bulk and shear modulus of the 

matrix phase which are given as below 
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Furthermore, α and β which mentioned in Eqs. (A7) and 

(A8) are defined as follows 
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Eventually, the effective Young’s modulus E and 

Poisson’s ratio ν of the composite are given by 
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So with obtaining E and ν, stiffness matrix of the 

structure can be calculated. 
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