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Abstract.

Maximum deflection in a beam is a serviceability design criterion and occurs generally at or close to the mid-span.

This paper presents a methodology using neural networks for rapid prediction of mid-span deflections in reinforced concrete
beams subjected to service load. The closed form expressions are further obtained from the trained neural networks. The closed
form expressions take into account cracking in concrete at in-span and at near the interior supports and tension stiffening effect.
The expressions predict the inelastic deflections (incorporating the concrete cracking) from the elastic moments and the elastic
deflections (neglecting the concrete cracking). Five separate neural networks are trained since these have been postulated to
represent all beams having any number of spans. The training, validating, and testing data sets for the neural networks are
generated using an analytical-numerical procedure of analysis. The proposed expressions have been verified by comparison with
the experimental results reported elsewhere and also by comparison with the finite element method (FEM). The proposed
expressions, at minimal input data and minimal computation effort, yield results that are close to FEM results. The expressions
can be used in every day design since the errors are found to be small.
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1. Introduction

The reinforced concrete (RC) continuous beams are
subjected the hogging moment near the ends and sagging
moments in the middle portion of the members (Fig. 1).
When these moments are higher than the cracking
moments, cracking takes place near the interior supports
and in the middle portion of an intermediate span of a RC
continuous beam as shown in Fig. 1. This cracking may
result in considerable change in deflections of the
continuous beams due to much reduced stiffness of
members. The appropriate prediction of deflections after
moment redistribution owing to the concrete cracking is
important from serviceability considerations.

Different procedures are available in the literature for
taking into account the concrete cracking and other non-
linear effects in the analysis of RC beams. The procedures
may be categorised in two types: Type 1 and Type 2. In
Type 1 procedures (Wang and Hsu 2001, Yang and Chen
2005, Stramandinoli and Rovere 2008, 2012, Mohr et al.
2010, Casanova et al. 2012, Dai et al. 2012), members are
discretized into a number of elements along the length and
across the cross-section. In Type 2 procedures (Chan et al.
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2000a, b, Tanrikulu et al. 2000, Dundar and Kara 2007,
Kara and Dundar 2009, 2010), the average moment of
inertia along the member length is represented by the
effective moment of inertia of members and the transformed
section properties are considered. Both these types of
procedures are based either on an incremental or iterative
approach, and therefore, require a computational effort,
which is many times more than the required for the elastic
analysis (neglecting cracking).

In codes of practice (ACI 318 2008, CSA A23.3 2004),
for simply supported beams, a simplified expression based
on effective moment of inertia is available for estimation of
deflections. However, this expression is not appropriate
since under-estimation of deflections for lightly reinforced
members has been reported (Scanlon et al. 2001, Bischoff
2005, Kalkan 2010, Patel et al. 2015, 2016a). Some
researchers (Scanlon et al. 2001, Bischoff 2005) have
modified the expression for improvement in prediction of
results, however, an expression proposed by Bischoff
(2005) is found most accurate (Kalkan 2010). Furthermore,
this expression is also used to evaluate a weighted average
effective moment of inertia for continuous beams in
accordance with ACI 435 (2000) procedure. However, the
accuracy in defections resulting from the procedure needs to
be investigated. Also no simplified expressions are available
for rapid prediction of deflections in such beams. The
appropriate prediction of deflections in continuous beams
for entire practical range of reinforcements is therefore
desirable. The use of closed form expressions obtained from
the trained neural networks may be made in such cases to
rapidly estimate the quantities of design interest for use in
everyday design.
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Fig. 1 A typical intermediate span of a RC beam with
loads, bending moment, and possible cracked-
uncracked zones

Extensive literature is available on the use of neural
networks for prediction of behaviour of structures without
any rigorous analysis and experiments (Pala 2006,
Chaudhary et al. 2007, 2014, Pendharkar et al. 2007, 2010,
2011, 2015, 20164, b, Shahin and Elchalakani 2008, Caglar
et al. 2009, Kim et al. 2009, Dias and Silvestre 2011,
Saechai et al. 2011, 2012, Khan 2012, Tadesse et al. 2012,
Gupta et al. 2013, 2015, Mohammadhassani et al. 2013a, b,
Tohidi and Sharifi 2015). Closed form expressions have
been proposed by many researchers using the weight
matrices, biases and activated functions of the trained
networks. Such expressions are useful to estimate the
quantities of design interest for use in everyday design with
acceptable accuracy. Researchers have  proposed
expressions for distortional buckling stress in steel members
(Pala 2006, Dias and Silvestre 2011), inelastic distortional
buckling capacity in steel beams (Tohidi and Sharifi 2015),
ultimate pure bending of fabricated and cold-formed steel
circular tubes (Shahin and Elchalakani 2008), base shear of
steel frame structures (Caglar et al. 2009) and for
deflections in composite bridges (Tadesse et al. 2012, Gupta
et al. 2013, 2015). This demonstrates the strength of neural
networks in predicting the solutions of different structural
engineering problems.

In this paper, a methodology using neural networks has
been proposed for rapid prediction of inelastic deflections in
RC continuous beams subjected to service load. The closed
form expressions obtained from the trained neural networks
take into account concrete cracking, tension stiffening effect
and entire practical range of reinforcements. The
expressions predict the inelastic mid-span deflections, D"
(considering the concrete cracking) from the elastic
moments, M® and the elastic mid-span deflections, D
(neglecting the concrete cracking). M® and D, in turn, can
be obtained from any of the readily available software. The
expressions enable rapid estimation of inelastic deflections
and require a computational effort that is a fraction of that
required for Type 1 and Type 2 procedures available in the
literature. The proposed expressions are verified by
comparison with the experimental results reported
elsewhere and also by comparison with finite element
method (FEM) for a number of example beams. The errors
are shown to be small for practical purposes. The
methodology can be extended for large RC building frames
where a very significant saving in computational effort
would result.
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Fig. 2 A cracked span length beam element

2. Analytical-numerical procedure for analysis of RC
beams

For generalized and efficient neural networks, a huge
number of training, validating and testing data sets are
required for which a highly computationally efficient
method is desirable. Recently, Patel et al. (2014) have
developed an analytical-numerical procedure to take into
account concrete cracking within the spans and near the
interior supports and reinforcement variation along the span
in RC beams. The procedure is analytical at the element
level and numerical at the structural level. A cracked span
length beam element, consisting of five zones (three
cracked zones of lengths x,, xg at the ends A and B
respectively and x;, at an in-span position, and two
uncracked zones in between the cracked zones), (Fig. 2) has
been used in the procedure. The closed form expressions for
crack lengths, flexibility —matrix coefficients, end
displacements and mid-span deflection of the cracked span
length beam element are derived and used in the procedure.
Tension stiffening effect is also taken into account by
evaluating average interpolation coefficients for the cracked
zones. The analysis is carried out using an iterative method.

Consider, a typical iterative cycle. A displacement
analysis is carried out in the beginning of the cycle for the
out-of-balance force vector of the RC beam at the end of the
previous cycle. Revised force vector and displacement
vector are obtained by adding the force vector and
displacement vector obtained from this analysis to the force
vector and displacement vector at the end of previous cycle.
Crack lengths and interpolation coefficients are then
updated according to the revised force vector.

Changes in the cracking state of the sections (cracked or
uncracked) and thereby in the end rotations of the beam
elements lead to the difference between the displacement
vector of these elements obtained from the displacement
analysis and that obtained by the principle of virtual work
involving integration of curvature diagram of a member.
The out-of-balance force vector of beam element
corresponding to this error in displacement vector is
obtained using the revised flexibility matrix of the beam
element.

The out-of-balance force vector of the continuous RC
beam (obtained by assembling the out-of-balance force
vector of the beam elements) should be within permissible
limit (Bathe 2002) for the iterative process to terminate;
otherwise a new cycle is started. Required results are
obtained after the convergence is achieved.

The procedure has been validated by comparison with
the experimental and numerical results available in
literature along with FEM results (Patel et al. 2014). The
results have been found to be in good agreement. The
required computational time by the procedure has been
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Fig. 3(a) A typical span of a continuous beam and (b)
schematic representation of input and output
parameters
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found to be a small fraction of that required in the FEM.

3. Selection of probable structural parameters

In order to cover a wide range of practical cases, it is
required to define important parameters which could be
varied to cover all practical situations and can be used as
input parameters for generation of data sets.

As stated earlier, cracking in RC beams occurs near the
interior supports (where hogging moments occur) and at in-
span (where sagging moments occur) when elastic moments
are higher than the cracking moments. Owing to cracking,
the moment of inertia of sections reduces from that of
uncracked section, 1'" to that of the cracked section, 1,
thereby reducing the stiffness of the spans. The elastic
bending moment, M gets therefore redistributed and leads
to inelastic bending moment, M". The reduced stiffness and
redistributed moments may result in considerable change in
the deflections of the continuous beams.

It has been shown in earlier studies for a continuous
composite beam (Pendharkar et al. 2010, Chaudhary et al.
2014), that in order to establish change in the mid-span
deflection of any span with sufficient accuracy, cracking at
its supports and adjacent supports only needs to be
considered. It is therefore assumed that in order to establish
change in the mid-span deflection of a span i in RC
continuous beam with sufficient accuracy, cracking at the
supports (support i and support i+1), at the mid of a span i
and at the mid of adjacent spans (span i—1 and span i+1)
only needs to be considered (Fig. 3). The subscript, i and
superscript, i here and subsequently in other quantities
indicate that the quantities are evaluated at a mid of a span i
and at a support i respectively. Fig. 3(a) shows an
intermediate portion of a continuous beam with internal
span i and adjacent spans i—1 and i+1) of lengths L;, L;; and
Li+1 and with loadings w;, wi; and w;,; respectively. The
adjacent supports of the internal span i are support i and
support i+1.

Considering the above discussion, the parameters
affecting the mid-span deflection in a typical span i may be
listed as (Fig. 3)

1. Inertia ratio at the mid of the span, C;, where C=1°/I°

Table 1 Practical range and sampling point of probable
structural input parameters

Sampling point

Parameter Range
Numbers Values
cl,c,c* 0.10-200 10 0.1,0.2,03,05,0.7,0.9,1.2, 15,18, 2.0
R, R, R, R™, Riyy 0.25-400 7 0.25,0.33, 0.5, 1.0, 2.0, 3.0, 4.0
SiafSi, SifSws  0.25-400 7 0.25,0.33, 0.5, 1.0, 2.0, 3.0, 4.0
Wisa/Wi, WilWisy  0.25-4.00 7 0.25,0.33, 0.5, 1.0, 2.0, 3.0, 4.0

(1°=transformed moment of inertia of RC section about
neutral axis neglecting concrete in tension or cracked
moment of inertia of RC section about neutral axis, and
19=gross moment of inertia of RC section about neutral
axis). _ .

2. Inertia ratios at the supports, C'; and C'*.

3. Cracking moment ratios at the mid of the spans, Ri.;
R;; and Ri;;, where R=M“/M®', _ _

4. Cracking moment ratios at the supports, R'; and R"™*.

5. Stiffness ratios of adjacent spans, Si_4/S;; and Si/Si.;
(Si=EI%/L;, where E.= modulus of elasticity of concrete, and
Li=length of i" span).

6. Load ratios of adjacent spans, wi_i/w;; and Wi/Wi.1.

Inelastic deflection, Diin may be obtained from the

elastic deflection, D"

D" /D" and AD/D® would be the output parameter of

the neural networks for simply supported beams and
continuous beams with two and larger number of spans

respectively, where, and D™ =elastic mid-span deflection

(neglecting concrete cracking) of an equivalent simply
supported beam with the same span length and the loading
as that of the span under consideration. These twelve input
and one output parameters are schematically shown in Fig.
3(b). The practical ranges for the probable structural
parameters are given in Table 1.

and the output parameter. The ratio

4. Data sets generation for neural networks

A large data set is required to be generated for training,
validating and testing to achieve better performance of
neural network. The performance in terms of generalization
and prediction qualities depends significantly on data sets
and the domain this data sets covers.

It is expected that effect of cracking on defections of
simply supported beams, two span beams and multi span
beams would be different. Presently, a representative beam
having five spans is assumed to represent all beams having
three and larger number of spans. However, for continuous
beams having spans greater than three, nonlinear effects of
cracking in external, penultimate and internal spans are
different. It may, further, be assumed that the nonlinear
effects of cracking at all internal spans are similar in beams
having spans greater than three. Accordingly, three separate
data sets are generated for external, penultimate and internal
spans of continuous beams having spans greater than three.

The external and internal spans of three span beams are
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Table 2 Normalization factors for input and output
parameters

Parameters

Network Input Output

C G C*" Ry R R R"™ Ryt SufSi SifSiw1  Wiad/w, Wiwi, O

NET-SS - 20 - - - 40 - - - - - - 1.00

NET-TE - 20 20 - - 40 40 40 - 4.0 - 40 400

NET-ME 2.0 20 20 4.0 40 40 40 40 40 4.0 4.0 40 440

NET-MP 2.0 20 20 40 40 40 40 40 4.0 4.0 4.0 40 420

NET-MI - 20 20 - - 40 40 40 - 4.0 - 40  4.00

assumed to be represented by external and penultimate
spans of representative five span beam respectively. Further,
two data sets are separately generated, each for simply
supported and two span continuous beams. Hence, three
sets i.e., simply supported beams, two span beams and five
span beams are considered to represent beams with any
number of spans.

Only two parameters, C; and R; are considered for
simply supported beams since other parameters do not exist.
First, consider the left external span (i=1) of a two span
continuous beams. Since moment at support i is equal to
zero and the parameters Ri_;, Si_4/S;, wi—1/w; indicate a non-
existent parameter, only seven input parameters (C;, C* R,
R™ Ris1, Si/Siv1, WilWir1, Where i=1) need to be considered.
Similarly, for the right external span of a two span
continuous beam, only seven parameters (C', C;, Ri_1, R', R;,
Si-1/Si, wi_t/w;, where i=2) need to be considered. Next, for
left and right external spans of a beam with three and larger
numbers of spans, the seven input parameters as described
above for left and right external spans of a two span
continuous beams are considered. For penultimate and
internal spans, as discussed in Section 3, twelve input
parameters (C', Ci, C"**, Rit, R\, Ri, R™, Ris, Si-t/Si, SifSia1,
Wi_1/W;, Wi/w;.1) are considered.

The sampling points of each input parameter
(Chaudhary et al. 2014), considered for data generation, are
shown in Table 1. A combination of sampling points of the
input parameters and the corresponding resulting value of
the output parameter comprises a data set.

As stated earlier, an analytical-numerical procedure
(Patel et al. 2014) has been used for data generation. The
training data sets have been generated for the combinations
of the sampling points of input parameters shown in Table
1. The parameters C;_y, C', Ci1, Si_1/Si, Wi_1/w; can be varied
independently and assume values indicated in Table 1.
However, the parameters R, Ri;, R, R, R"™, are
interdependent and it is difficult to wvary these
independently, therefore one parameter is varied
independently and the other parameters are allowed to
assume values in the practical range 0.25-4.00. The training
sets in which the values of the other parameters fall outside
the practical range 0.25-4.00 is not considered.

Five neural networks, one for simply supported beams,
one for two span beams and three for multi span (having
three and larger number of spans, n) beams are trained. The
neural network for simply supported beams is designated as
NET-SS. The neural network for two span beams is for the

Hidden
neurons

Output

Input
neuron

neurons

Fig. 4 Configuration of a typical neural network

Table 3 Final architectures and statistical parameters of
neural networks

Network

(Architecture)
NET-SS NET-TE NET-ME NET-MP NET-MI
(2-4-1)  (7-10-1) (7-10-1) (12-16-1) (12-16-1)

Sets Parameters

MSE 0.00060 0.00020  0.00010  0.00010  0.00007

R? 0.99399  0.99025 0.99665 0.98918  0.99143

RMSE 0.02447  0.01414 0.00999 0.00991 0.00836

Training

MAPE 243761 2.44036 4.24471 2.17690 2.31241

AAD 2.16335 2.31421 3.03770  1.99001  2.16840

cov 3.46748 396892 4.67712 291781 3.31823

MSE 0.00060 0.00021  0.00014 0.00010  0.00007

R? 0.99410 0.98993 0.99515 0.98909  0.99153

RMSE 0.02436  0.01449 0.01177 0.00997  0.00841

Validating

MAPE 2.48549 2.76675 3.79801 2.20533  2.32431

AAD 2.20885 241796 3.29431 1.99915 2.18436

cov 3.49137 4.11041 5.47448 2.93339  3.33281

MSE 0.00060 0.00020  0.00010  0.00010  0.00007

R? 0.99488  0.99047 0.99625 0.98939  0.99129

RMSE 0.02424  0.01414 0.01022 0.00999  0.00837

Testing

MAPE 2.32722 2.06726 3.65883 2.16436  2.27304

AAD 2.06304 2.40611 3.09263 1.99255 2.16495

cov 3.24511 3.99778 4.80350 2.93449  3.33018

external spans and is designated as NET-TE. The neural
networks for external, penultimate and internal spans of
multi span beams are designated NET-ME, NET-MP and
NET-MI respectively. For data generation of NET-ME,
NET-MP and NET-MI, five span continuous beams are
considered. _ _ _

If the parameters R}, Ri;, R, R;, R"*! could be varied
independently, the upper limit to the number of possible
data sets that can be generated for training, validating and
testing of the networks NET-TE, NET-ME, NET-MP, and
NET-MI would be 1,680,700 (=10x10x7x7x7x7x7),
1,680,700 (=10x10x7x7x7x7x7x7), 40,353,607,000
(=10%x10x10x7x7x7x7x7x7x7x7x7), and 40,353,607,000
(F10x10x10x7x7x7Tx7x7x7xTx7xT) respectively. As stated
above, if one of the parameters R"}, Ri.y, R, R;, R"'at a
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Fig. 5 Variation of the MSE with the epochs
(iterations) for network NET-MI

time is varied independently and the other parameters are
constrained to assume any values in the practical range
0.25-4.00, the number of data sets gets reduced to 88,710;
6,950; 295,300 and 212,590 for networks NET-TE, NET-
ME, NET-MP, and NET-MI respectively. The numbers of
data sets for network NET-SS are 70; however, 560
additional data sets have been added for better training. In
order to bring all the input and output parameters in the
range 0.0 to 1.0, normalization factors are applied to the
parameters. The normalization factors for input and output
parameters are shown in Table 2. The biases for output
parameter of the networks NET-TE, NET-ME, NET-MP,
and NET-MI are 1.00, 0.70, 1.40 and 0.95 respectively.

5. Training, architecture and performance of neural
networks

The neural networks chosen in the present study are
multilayered feed-forward networks with neurons in all the
layers fully connected in feed forward manner (Fig. 4). The
training is carried out using the MATLAB Neural Network
toolbox (MATLAB 2009). Sigmoid function is used as an
activation function for the hidden and output neurons and
the back propagation learning algorithm is used for training.
One hidden layer is chosen and the number of neurons in
the layer is decided in the learning process by trial and
error.

70% data sets are used for the training and the
remaining data sets are divided equally for validating and
testing. Similar division has been adopted earlier by other
researchers (Gedam et al. 2014, Joshi et al. 2014). For the
training, several trials are carried out with different numbers
of neurons in the hidden layer starting with a small number
of neurons in the hidden layer and progressively increasing
it and checking the mean square errors (MSE) of the
training, the validation and the testing. The number of
neurons in the hidden layer is decided on the basis of the
least mean square errors (MSE) for the training, validation
as well testing. Care is taken that the mean square error for
test results does not increase with the number of neurons in
hidden layer or epochs (overtraining). The final
architectures (number of input parameters-number of
neurons in the hidden layer-number of output parameters)
of all networks along with the statistical parameters i.e.,
mean square error (MSE), coefficient of correlation (R),

root mean square error (RMSE), mean absolute percentage
error (MAPE), average absolute deviation (AAD) and
percentage coefficient of variation (COV) of training,
validating and testing data sets are given in Table 3. All the
parameters indicate a good performance. Typically, for
network NET-MI, variation of the MSE with the epochs
(iterations) and regressions is shown in Figs. 5 and 6
respectively.

6. Closed form expressions

Simplified closed form expressions can be developed
from the trained neural networks, for the rapid prediction of
inelastic deflections for ready use by the practicing
engineers. The closed form expressions require the values
of inputs, weights of the links between the neurons in
different layers, and biases of output neurons. Since the
sigmoid functions have been used as the activation
functions in the hidden and output layer neurons, the output
O is given as below (Tadesse et al. 2012, Gupta et al. 2013,
2015)

1

LW 1)
- blaso+z HK] (
l+e { etre

O:

[H]kxl :|:Wih :|ka [I ]jxl +[bias]k><l 2

where, q is the number of input parameters; r is the number
of hidden neurons; bias, is the bias of k™ hidden neuron

(hy); bias, is the bias of output neuron; W, is the weight

of the link between I and hy; Wfol is the weight of the link

between h, and O.
First, consider the simply supported beams. The weights
and biases are obtained from the trained neural network

NET-SS. As stated earlier, the value of D /D" is equal

to the output O. The inelastic mid-span deflection, Dlin

may be obtained from Egs. (1)-(2), using weights and biases
of NET-SS, as

D 1
in 587 7.02 1191 260 (3)
4 1 —(5.60 1 T gt 7H4]
+e +€ 1+e 1+e 1+e
Where,

H, | [-0.71 -11.56 0.47

H 425 -17.57||C 0.99
= |+ )

H, 132 -2331||R 3.81

H,| 113.67 -1.60 0.57

Next, consider the continuous beams with two and
larger number of spans. As stated earlier, the value of

AD/D® is equal to the output O. The mid-span
deflection of span i from Eq. (1) is then given as

I:)Iin — QEI +OI:)ISS (5)
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Fig. 5 Regressions of training, validation, testing and
all datasets for network NET-MI
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Fig. 6 Example beams: (a) EB1; (b) EB2; (c) EB3; (d)
EB4; and (e) EB5 (span lengths in m and loads in
kN/m)

The value of O may be obtained from the expressions
for external span of two span and external, penultimate and
internal spans of multi span continuous beams as given in
Appendix A.

7. Verification of form

expressions

the proposed closed

The proposed closed form expression (Eq. (3)) is
verified with experimental results reported by Yu and
Winter (1960) for simply supported beams with T cross-
section: A-1; B-1; C-1; D-1; E-1; F-1 subjected to
uniformly distributed loads, w. The cross-sectional
properties (Bs=width of flange, D;=depth of flange,
B,=width of web, D,=depth of web, d=effective cover at
top fibre, d,=effective cover at bottom fibre, Ag=area of
reinforcements at top fibre, Ag,=area of reinforcements at
bottom fibre) and material properties (f.=cylindrical
compressive strength of concrete, E;=modulus of elasticity

Table 4 Properties of simply supported beams

Beams

Al Bl C1 D1 E-1 F-1
B, (mm) 304.87 304.87 304.87 609.74 304.87 304.87
D, (mm) 6352 6352 6352 6352 6352 5081
B,(mm) 15244 152.44 152.44 15244 152.44 152.44
D, (mm) 241.36 241.36 24136 241.36 241.36 152.44
d, (mm) - 3963 39.63 - - -
d,(mm) 4598 4598 4598 5894 5564 45.98
A (mm? - 20009 400.19 - ; -
A, (MM?) 400.19 400.19 400.19 774.56 400.19 400.19
f (N'/mm® 2537 2677 2427 2537 2936 29.36
E (N/mm?®) 25286 25975 24732 25286 27202 27202
E, (N/mm?) 205000 205000 205000 205000 205000 205000
w(N/mm) 642 644 641 1173 1229 3.79
f (Nmm® 278 266 273 278 306 3.06
L (mm) 6098 6098 6098 6098 4268 6098

Properties

Table 5 Comparison of inelastic deflections in the simply
supported beams

Mid-span Beams
deflections
(mm) Al  B-1 C-1 D-1 E-1 F-1

DI, 2992 2969 2809 3269 1379 55.63
D, 3404 3150 3023 3223 1296 5589
Db, 3326 3131 3158 3292 1287 53.03
DI, 2886 2888 2870 3165 1361 5161

DI 2859 2860 2837 3119 1374 5093

of steel reinforcements, f; =tensile strength of concrete) of
the beams are given in Table 4. The mid-span deflections
obtained from the proposed closed form expression ( D‘C”FE

in

and experiments ( D, ) are reported in Table 5 along with
those obtained from FEM (D‘F”EM ), ACI 318 (2008)
expression ( Dy, ) and Bischoff (2005) expression ( Dy ).

The root mean square percentage errors in Dl
D&, Dy, and Dy with respect to DJ, are

6.74%, 3.08%, 8.30% and 9.17% for all the beams
respectively. The deflections obtained from the proposed
expression are in good agreement with those obtained from
the experiments.

Further, the proposed closed form expressions are also
verified for five example beams with a wide variation of
input parameters. The example beams (EB1-EB5) are
shown schematically in Fig. 7. The cross-sectional

properties and fC' are given in Table 6(a). Additionally,
E;=205000 N/mm?, E =5020,/f, N/mm? and
f,=0.623,[f, N/mm? (ACI 318 2008) are taken. As shown
in Table 6(b), three segments: left, middle, and right of
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Table 6(a) Cross-sectional and material properties

Table 7 Input parameters for the example beams

Beams  B(mm) D(mm) By(mm) Dy(mm) de=ds(mm) . (N/mm?)

EB1 400 100 300 300 25 36.60

EB2 - - 230 450 25 29.65

EB3 350 90 250 350 30 24.91

EB4 - - 300 300 27 40.38
200"

EBS 300 110 230 . 20 29.65
270

*For span AB, BC, CD, DE, EF, **For span FG, GH, HI,
1J,JK

Table 6(b) reinforcement detailing data of example beams

Segment (length)
Left (0.25L,) Middle (0.50L;) Right (0.25L)
Beams Span
Axlps) As(ps) Axlps) As(ps) Axlps) As(ps)
mm? (%)
AB 157 (0.13) 402 (0.34) 157 (0.13) 402 (0.34) 509 (0.42) 226 (0.19)
= BC 500 (0.42) 226 (0.19) 157 (0.13) 402 (0.34) 157 (0.13) 402 (0.34)
AB 157 (0.15) 509 (0.49) 157 (0.15) 500 (0.49) 760 (0.73) 226 (0.22)
EB2 BC 760 (0.73) 226 (0.22) 157 (0.15) 509 (0.49) 760 (0.73) 226 (0.22)
cD 760 (0.73) 226 (0.22) 157 (0.15) 509 (0.49) 157 (0.15) 509 (0.49)
AB 157 (0.14) 226 (0.21) 157 (0.14) 226 (0.21) 226 (0.21) 157 (0.14)
EB3 BCCD  226(0.21) 157(0.14) 157 (0.14) 226 (0.21) 226 (0.21) 157 (0.14)
DE 226(0.21) 157 (0.14) 157 (0.14) 226 (0.21) 157 (0.14) 226 (0.21)
AB 402 (0.45) 402 (0.45) 402 (0.45) 402 (0.45) 1964(2.18) 402 (0.47)
EB4 BCE‘E[;‘(EE’ 1964 (2.18) 402 (0.47) 402 (0.45) 402 (0.45) 1964 (2.18) 402 (0.47)
GH 1964 (2.18) 402 (0.47) 402 (0.45) 402 (0.45) 402 (0.45) 402 (0.45)
AB 226(0.32) 760 (1.07) 226 (0.32) 760 (1.07) 1964 (2.75) 760 (1.07)

BC,CD,DE,EF 1964 (2.75) 760 (1.07) 226 (0.32) 760 (1.07) 1964 (2.75) 760 (1.07)
EBS5
FG,GH,HI,IJ 1964 (2.25) 760 (0.87) 226 (0.26) 760 (0.87) 1964 (2.25) 760 (0.87)

K 1964 (2.25) 760 (0.87) 226 (0.26) 760 (0.87) 226 (0.26) 760 (0.87)

lengths 0.25L;, 0.50L; and 0.25L; respectively, are assumed
for reinforcement in each span. The reinforcement detailing
data for each segment is also given in Table 6(b). Example
beams have been chosen in such a way that none of the
combinations of input parameters has been used in the
training, validating and testing.

The input parameters for the example beams are shown
in Table 7. Inelastic mid-span deflections obtained from the

proposed closed form expressions ( Dl ), FEM (D&, ),
ACI 318 (2008) expression (DL”C,) and Bischoff (2005)

expression ( Dgn,s ) are reported in Table 8. For comparison,
the elastic deflections, D® neglecting cracking are also
reported.

For FEM results, modeling has been done in the
ABAQUS (2011) software (Patel et al. 2014, 2015, 20164,
b, ¢, d, Ramnavas et al. 2015, 2017). The beam is modeled
using B21 elements (2-node linear Timoshenko beam
element in plane). Under service load, the stress-strain

Input Parameters

Span
Beam @)
c ¢ C* Ry R Ri  R™ Rig Sia/Si SifSicr Wia/w; Wilwiy
1 - 0.16450.1950 - - 0.75490.57861.4041 - 130 - 229
EB1
2 0.19500.1645 0.75490.57861.4041 - - 130 - 229
1 - 0.27800.3870 - - 1.48320.77361.4549 - 073 - 037

EB2 2 0.38700.27800.38701.48320.77361.45490.95644.3505 0.73 0.43 0.37 0.44

3 0.38700.2780 1.45490.95644.3505 - - 0.43 - 0.44

1 - 0.12400.1199 - - 0.65430.61735.9921 - 0.83 - 1.21

2 0.11990.12400.11990.65430.61735.99211.84332.1260 0.83 0.84 1.21 0.72
EB3
3 0.11990.12400.11995.99211.84332.12600.94331.3968 0.84 1.06 0.72 1.18

4 0.11990.1240 2.12600.94331.3968 - - 1.06 - 118

1 - 0.20900.7160 - - 1.06520.45610.5683 - 113 - 0.63

2 0.71600.20900.71601.06520.45610.56830.41400.8575 1.13 0.78 0.63 0.68

3 0.71600.20900.71600.56830.41400.85750.42550.5898 0.78 129 0.68 1.52

EB4 4 0.71600.20900.71600.85750.42550.58980.46921.2133 1.29 0.73 152 0.69

5 0.71600.20900.71600.58980.46921.21330.46600.5838 0.73 1.36 0.69 1.45

6 0.71600.20900.71601.21330.46600.58380.43301.0624 1.36 0.56 1.45 0.58

7 0.71600.2090 0.58380.43301.0624 - - 05 - 058

1 - 0.47400.9330 - - 154230.47280.4876 - 158 - 1.01
2 0.93300.47400.93301.54230.47280.48760.40630.7231 1.58 0.78 1.01 0.66
3 0.93300.47400.93300.48760.40630.72310.40650.4899 0.78 129 0.66 1.47
4 0.93300.47400.93300.72310.40650.48990.42130.7644 1.29 0.89 1.47 0.95
5 0.93300.47400.93300.48990.42130.76440.45770.8219 0.89 1.18 0.95 1.25
e 6 0.93300.41600.83400.76440.45770.82190.59520.9091 1.18 0.80 1.25 0.58
7 0.83400.41600.83400.82190.59520.90910.45500.5380 0.80 1.27 0.58 1.23
8 0.83400.41600.83400.90910.45500.53800.44680.8608 1.27 0.79 1.23 0.71
9 0.83400.41600.83400.53800.44680.86080.42640.4971 0.79 120 0.71 172

10 0.83400.4160 0.86080.42640.4971 - - 120 - 172

relationship of concrete is assumed to be linear in
compression. Concrete is considered as an elastic material
in tension before cracking and softening behavior is
assumed linearly after cracking. Tension stiffening is
defined in the model using post-failure stress-strain data. In
order to define the smeared crack model, the absolute value
of the ratio of uniaxial tensile stress at failure to the uniaxial
compressive stress at failure is obtained using concrete
properties. The plastic strain is taken in accordance with
tensile strength of concrete. Further, at service load, the
stress in reinforcement is assumed to be in the linear range.
In absence of experimental data, the results from FEM
are taken as standard with which the results obtained from
the closed form expressions, ACI 318 (2008) expression
and Bischoff (2005) expression are compared. The
difference between the results from the any of these
expressions and FEM is taken as error. It may be noted that

small deflections (high L, /D' ratios) are not of any
practical significance. Neglecting cases with very high
L, /D' ratios (greater than 5000), the maximum absolute

percentage errors in D"._, DI and D"

ore+ Daci ois  With respect
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Table 8 Comparison of inelastic deflections in the example
beams

) : ) Error (%) in
D Dée Dftw  Dio D i
Beam Span (i)

(with respectto Dren ) L / D¢

1
(mm) Dere Dy Dg}s

1 483 946 9.08 974 1513 -419 -7.27 -66.63 1677
EB1
2 371 400 424 367 341 566 1344 1958 2830

1 396 424 445 430 432 472 3.37 292 2778

EB2 2 172 201 193 190 189 -415 1.55 2.07 4651

3 0.08 004 005 009 0.08 20.00 -80.00 -60.00 42500

1 390 1010 9.89 975 1420 -2.12 1.42 -43.58 1795

2 -0.15 -0.17 -0.24 -0.44 -054 29.17 -83.33 -125.00 -38667
EB3

3 041 040 053 049 052 2453 755 1.89 11951

4 095 121 1.07 096 099 -13.08 10.28 7.48 5474

1 360 450 429 354 344 -490 1748 1981 2222

2 8.13 1831 1889 18.88 2047 3.07 0.05 -8.36 1107

3 238 174 177 387 482 169 -118.64 -172.32 2941

EB4 4 7.81 1553 16.14 1785 1952 3.78 -1059 -20.94 1152

5 108 -095 -082 070 060 -1585 18537 173.17 6111

6 795 1722 174 1785 1933 1.03 -259  -11.09 1132

7 138 180 174 146 144 -345 16.09 17.24 3623

1 088 041 051 069 070 19.61 -3529 -37.25 6477
2 881 1571 1523 16.64 1593 -3.15 -9.26 -4.60 1022
3 261 267 256 465 447 -430 -81.64 -74.61 2682
4 847 1258 1213 16.73 16.02 -3.71 -37.92 -32.07 1063
5 344 351 389 574 549 977 -4756 -41.13 2326
£8 6 449 538 541 796 778 055 -47.13 -4381 2094
7 201 220 229 282 267 393 -2314 -16.59 3731
8 722 1165 1247 1459 1414 658 -17.00 -13.39 1316
9 190 130 122 269 264 -656 -120.49 -116.39 3947

10 877 1834 19.88 20.11 19.68 7.75 -1.16 1.01 1026

to D[, are 9.77%, 120.49% and 172.32% for all the

spans of the beams EB1-EB5 respectively. The root mean
square percentage errors in D&, Dj, and Dg with
respect to DL, are 4.78%, 46.38% and 56.67% for all
the spans of the beams EB1-EB5 respectively. Significant
errors are observed in Dj, and D, whereas, the

errors in D, are found to be small and acceptable for

H H P in in
practical design. Greater errors in D, and Dgg may

be due to adoption of ACI 435 (2000) procedure which
considered simplified assumptions for evaluation of a
weighted average effective moment of inertia in continuous
beams. This shows the efficacy of the developed
methodology for continuous beams with any number of
spans.

The procedures available in literature or any other
commercial software based on finite element analysis that
incorporate concrete cracking would require reinforcement
detailing data. It would be tedious to provide such
reinforcement detailing data for every element in a large

structure since reinforcement lengths and cross-section
areas may vary from element to element. Further, details
like post-cracking stress-strain relationship would also be
required. It is not feasible to carry out such elaborate
computations for the day to day design particularly
preliminary design. The convergence problem may also be
encountered in FEA. On the other hand, the present
methodology requires only cross-sectional properties,
elastic moments, elastic deflections and reinforcement data
at three locations.

When the closed form expressions are used, the
computational time is drastically reduced and it is a fraction
of that required for Type 1 and Type 2 procedures available
in literature. It was observed by Patel et al. (2014) that in
finite element analysis, usually 16-32 elements in a span are
required for convergence of results within 1% and the
computational effort required in the analytical-numerical
procedure is about 1-3% of that required in FEA. It may be
noted that the analytical-numerical procedure (Patel et al.
2014) typically requires five iterations for convergence
whereas ANN technique requires only one analysis. The
computational effort required in the proposed technique of
use of closed form expressions can therefore be estimated to
be about 0.2-0.6% of FEA. This reduction in computational
effort is quite significant for structures with a large number
of degrees of freedom.

8. Conclusions

A methodology, using neural networks, has been
presented for rapid prediction of deflections in reinforced
concrete beams subjected to service load. Closed form
expressions, obtained from the trained neural networks,
have been proposed for predicting the inelastic deflections
taking into account concrete cracking and tension stiffening
effect. Five separate neural networks are developed for
prediction of inelastic deflections from the elastic moments
and deflections having any number of spans. Data sets for
neural networks are generated using the computationally
efficient analytical-numerical procedure recently developed
by authors. The proposed expressions have been verified for
a number of example beams. The proposed expressions
require minimal input data and computation effort and yield
results that are close to FEM results and experimental
results. The root mean square percentage error in
deflections obtained from the proposed closed form
expression is 6.74% with respect to the experimental results
for simply supported beams reported in literature. For
continuous beams, the root mean square percentage error in
deflections obtained from the proposed closed form
expressions is 4.78% with respect to FEM results. These
errors are small for practical purposes, therefore the
proposed expressions can be used in every day design.

The methodology can be extended for large RC building
frames for use in every day design. The methodology can
also be extended to account for shear deformation in beams
with low span-effective depth ratios (Wang et al. 2015).
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CcC

Notations

area of top and bottom reinforcement

respectively
B, D width and total depth of section respectively
C,R inertia ratio and cracking moment respectively
D%, D™ elastic and inelastic deflection respectivel
D elastic deflection of an equivalent simply
supported beam
E modulus of elasticity
| moment of inertia about neutral axis
l;  j"™input parameter
L, O length of the span and stiffness respectively
M, M elastic and inelastic moment respectively
O output parameter
bias  bias of hidden or output neuron

Ast: Asb

effective concrete cover at top and bottom
respectively

tensile strength and
strength respectively
he k™ hidden neuron

q number of input parameters

r number of hidden neurons

uniformly distributed load and cracked length
respectively

W'Jhk weight of the link between ljand h,

dt, dy

cylinder compressive

f,, f,

w, X

W weight of the link between h, and O

percentage steel reinforcement at top and bottom

Ps> Pso respectively

Subscript

ends A and B of a cracked span length beam
element respectively

in-span position of a cracked span length beam
element

c,s concrete and steel respectively

f,w flange and web respectively
i i"span

j, 0 input and output neuron number respectively
k hidden neuron number or function number

A'B

S

Superscript

cr, un cracked and uncracked respectively
el, in elastic and inelastic respectively

g gross
ho  connection between hidden and output layers
i i"support

ih  connection between input and hidden layers
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Appendix A

Closed form expressions for value of O
(1) External span of two span continuous beams

(a) Left external span

4.00

o: 7(101“ 2238 1264 949 313 1990 2870 1013 2577 24.76 2,44] _100 (Al)
1+e et L™ e e ne™ ne™ ue™ pete pets peto

H[380 147 1227 -322 024 349 -087] -3.80]
H,| |-281 -175 -1258 412 023 -353 068 325
Hy| | -489 -131 1237 250 028 -395 117 g’; 459
H,| | 076 359 -034 1360 —040 045 035 029
H,| | -038 -105 -122 452 -2283 -9.07 685 R§ -0.98
Hy| | 070 115 -041 -551 2352 941 612 R o | (A2)
H,| [ 2747 -011 045 1237 064 233 -134 szs -1.29
Hy | |-2454 094 -7.48 -330 -0.44 209 121 /WZ 091
M| 1492 1088 214 1128 027 -110 034 |""™ | oos
|Ho| [-1080 179 061 -178 012 1158 -751 -3.92]

(b) Right external span

The value of O for right external span can be obtained by
replacing Ci;, Ry, Ry, Si/S; and wy/w, in Eq. (A2) with C,,
R, Ry, So/S; and w,/w respectively.

(1) External span of multi span continuous beams

(a) Left external span

0= 40 -0.70 (A3)

[y, B2 58 T S8 03 005 9% 5% 08 B
146 Tt et nef pet ue™ et pe™ ne et ety

H,] [-31.81 -1327 -123 -18.65 -0.04 -174 1.09] [2.07]
H,| | 416 234 2154 -349 -062 059 -0.04 -362
H, | |-483 -179 -17.72 281 048 004 -003 g; 3.24
H,| |-128 -326 -007 -854 086 045 -0.50 -1.03
Hy| | 652 195 044 290 129 -48) 318 R; -3.59
H| | -148 -163 -505 -155 030 392 1716 R s (A4)
H,| 1215 -025 -096 -135 1092 -0.73 020 le;Zs 1.00
Hy| | 023 362 475 -543 -161 042 040 /WZ 2.22
H,| | -533 259 -416 -278 504 -118 -355 Wl 215
|Ho| [1870 195 1726 -599 0.4 -163 -0.21] 1 0.36 |

(b) Right external span

The value of O for right external span can be obtained by
replacing C,, R, R,, S/S, and w/w, in Eq. (A4)
with C,, R, R, S,/S,, and w,/w,, respectively,
where N denotes the number of spans in the beam.

(111) Penultimate span of multi span continuous beams

0= (A5)

001 001 164 002 001 763 003
—| -25.58+ et ot T oh
1e e ™ a2 148 Lee 4 L+e'S l4g 0 L4 7

4.20

001 031 469 161 33l 007 46 003 0% -140
ue® et et pet et et et ets et
H|[-157 200 000 638 8% -378 993 520 -3249 2869 905 2431 1526
H|| 070 574 -782 -083 851 394 062 -009 -121 -650 -327 1070 106
H|[-075 5% 019 098 128 -1016 -207 067 -L02 466 -0.05 R
H| | 2076 -185 1506 780 -1894 1834 372 691 421 -1030 367 Sl | C | |87
Ho| [-3684 715 -082 -2806 4397 364 2074 -%61 T4l 2929 300 2.90: ¢t 17
Hy||-786 -1140 -375 103 -1518 -580 604 006 -151 073 082 0‘17: R, || 050
Ho||-250 -1476 193 350 11% 606 -575 157 115 656 -142 359 R | -3l
H, 1 B 43 481 -2L39 -1950 856 1857 042 -0 2110 945 355 | R . 228
Hel| 123 58 110 117 -124 028 0% 042 -123 52 07 227 | R* | |0
H| [-044 1015 080 013 041 -137 027 945 198 -141 058 1.04: R, | |22
Hol [ 133 292 028 -100 14 04 748 165 L7 1378 041 -557)S,/| | 139
W08 30 0m B2 2 m A% 05 43 0% 4R 0%)5s,| |03
Hol |24 073 0% -002 -209 -024 1786 041 -600 1930 182 —8.57:%1/\/\1‘ =328
Hyl (055 194 561 012 043 035 -1087 042 043 075 006 024 fwfw,] [-049
H| | 111 -1013 037 075 -1834 000 1096 190 308 911 -144 2.76: 0.9
Ho [ 569 180 -015 004 1344 -112 083 049 189 33 094 -162) -129

(V) Internal span of multi span continuous beams

O_ 001 1165 128 506 11.65 349 489
—[—6.31+ T i T e T
+e L+e ™ l+e 1+e 1+e 1+e 1+e 1+e
4,00
02 179 471 1557 739 0l 28 1209 866 0.9
1B et o et et et et ets g e
H[-387 077 424 048 093 223 157 228 874 271 353 065 176
H| | 038 -10158 091 -020 028 186 -047 -541 -L16 111 028 -091 =334
H[| 016 136 -373 020 031 -043 441 015 089 634 032 -28[ ¢' | |02
M| 075 -664 -054 -1219 089 013 104 025 138 097 -092 066 ¢ | |-085
Hy[ | 163 040 011 063 207 -020 -004 026 -144 140 043 -068) C™ | |-284
Hy| [-306 089 -0.15 -093 -296 037 006 035 242 -233 074 L7 R, | |470
H||-005 208 811 -045 039 001 917 008 243 -137 046 086|| R | |L06
H, i 645 072 253 -265 -279 -304 09 -351 596 -389 -209 656 R . 284
Hy|[-200 315 014 079 126 049 -047 068 078 146 000 -058| R | |-060
Hol |-149 134 012 063 055 038 -032 045 -010 113 015 -041f R, | [-216
Hy| 020 012 015 072 -089 016 -002 041 121 -136 -042 054S,/S| |L107
Hp| | 018 -129 -007 050 -078 -038 -005 025 -131 1271 039 -046)|S/S, |06l
Ho| |-086 015 076 209 369 -061 -073 045 -622 -128 559 025w /w| [-299
Hel | 015 -121 228 021 -078 003 -082 031 025 -346 -016 151 {w/w,| (045
Hg| | 048 546 064 089 069 968 -240 -0.27 302 -L06 -0.78 010 095
[Hg| [-1153 1936 -745 078 -590 -645 -0.24 014 -309 055 103 011 132

303

(A6)

(A7)

(A8)





