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1. Introduction 
 

The reinforced concrete (RC) continuous beams are 

subjected the hogging moment near the ends and sagging 

moments in the middle portion of the members (Fig. 1). 

When these moments are higher than the cracking 

moments, cracking takes place near the interior supports 

and in the middle portion of an intermediate span of a RC 

continuous beam as shown in Fig. 1. This cracking may 

result in considerable change in deflections of the 

continuous beams due to much reduced stiffness of 

members. The appropriate prediction of deflections after 

moment redistribution owing to the concrete cracking is 

important from serviceability considerations. 

Different procedures are available in the literature for 

taking into account the concrete cracking and other non-

linear effects in the analysis of RC beams. The procedures 

may be categorised in two types: Type 1 and Type 2. In 

Type 1 procedures (Wang and Hsu 2001, Yang and Chen 

2005, Stramandinoli and Rovere 2008, 2012, Mohr et al. 

2010, Casanova et al. 2012, Dai et al. 2012), members are 

discretized into a number of elements along the length and 

across the cross-section. In Type 2 procedures (Chan et al.  
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2000a, b, Tanrikulu et al. 2000, Dundar and Kara 2007, 

Kara and Dundar 2009, 2010), the average moment of 

inertia along the member length is represented by the 

effective moment of inertia of members and the transformed 

section properties are considered. Both these types of 

procedures are based either on an incremental or iterative 

approach, and therefore, require a computational effort, 

which is many times more than the required for the elastic 

analysis (neglecting cracking).  

In codes of practice (ACI 318 2008, CSA A23.3 2004), 

for simply supported beams, a simplified expression based 

on effective moment of inertia is available for estimation of 

deflections. However, this expression is not appropriate 

since under-estimation of deflections for lightly reinforced 

members has been reported (Scanlon et al. 2001, Bischoff 

2005, Kalkan 2010, Patel et al. 2015, 2016a). Some 

researchers (Scanlon et al. 2001, Bischoff 2005) have 

modified the expression for improvement in prediction of 

results, however, an expression proposed by Bischoff 

(2005) is found most accurate (Kalkan 2010). Furthermore, 

this expression is also used to evaluate a weighted average 

effective moment of inertia for continuous beams in 

accordance with ACI 435 (2000) procedure. However, the 

accuracy in defections resulting from the procedure needs to 

be investigated. Also no simplified expressions are available 

for rapid prediction of deflections in such beams. The 

appropriate prediction of deflections in continuous beams 

for entire practical range of reinforcements is therefore 

desirable. The use of closed form expressions obtained from 

the trained neural networks may be made in such cases to 

rapidly estimate the quantities of design interest for use in 

everyday design. 
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Fig. 1 A typical intermediate span of a RC beam with 

loads, bending moment, and possible cracked-

uncracked zones 

 

 

Extensive literature is available on the use of neural 

networks for prediction of behaviour of structures without 

any rigorous analysis and experiments (Pala 2006, 

Chaudhary et al. 2007, 2014, Pendharkar et al. 2007, 2010, 

2011, 2015, 2016a, b, Shahin and Elchalakani 2008, Caglar 

et al. 2009, Kim et al. 2009, Dias and Silvestre 2011, 

Saechai et al. 2011, 2012, Khan 2012, Tadesse et al. 2012, 

Gupta et al. 2013, 2015, Mohammadhassani et al. 2013a, b, 

Tohidi and Sharifi 2015). Closed form expressions have 

been proposed by many researchers using the weight 

matrices, biases and activated functions of the trained 

networks. Such expressions are useful to estimate the 

quantities of design interest for use in everyday design with 

acceptable accuracy. Researchers have proposed 

expressions for distortional buckling stress in steel members 

(Pala 2006, Dias and Silvestre 2011), inelastic distortional 

buckling capacity in steel beams (Tohidi and Sharifi 2015), 

ultimate pure bending of fabricated and cold-formed steel 

circular tubes (Shahin and Elchalakani 2008), base shear of 

steel frame structures (Caglar et al. 2009) and for 

deflections in composite bridges (Tadesse et al. 2012, Gupta 

et al. 2013, 2015). This demonstrates the strength of neural 

networks in predicting the solutions of different structural 

engineering problems. 

In this paper, a methodology using neural networks has 

been proposed for rapid prediction of inelastic deflections in 

RC continuous beams subjected to service load. The closed 

form expressions obtained from the trained neural networks 

take into account concrete cracking, tension stiffening effect 

and entire practical range of reinforcements. The 

expressions predict the inelastic mid-span deflections, D
in

 

(considering the concrete cracking) from the elastic 

moments, M
el
 and the elastic mid-span deflections, D

el
 

(neglecting the concrete cracking). M
el
 and D

el
, in turn, can 

be obtained from any of the readily available software. The 

expressions enable rapid estimation of inelastic deflections 

and require a computational effort that is a fraction of that 

required for Type 1 and Type 2 procedures available in the 

literature. The proposed expressions are verified by 

comparison with the experimental results reported 

elsewhere and also by comparison with finite element 

method (FEM) for a number of example beams. The errors 

are shown to be small for practical purposes. The 

methodology can be extended for large RC building frames 

where a very significant saving in computational effort 

would result. 

 

Fig. 2 A cracked span length beam element 

 

 

2. Analytical-numerical procedure for analysis of RC 
beams 
 

For generalized and efficient neural networks, a huge 

number of training, validating and testing data sets are 

required for which a highly computationally efficient 

method is desirable. Recently, Patel et al. (2014) have 

developed an analytical-numerical procedure to take into 

account concrete cracking within the spans and near the 

interior supports and reinforcement variation along the span 

in RC beams. The procedure is analytical at the element 

level and numerical at the structural level. A cracked span 

length beam element, consisting of five zones (three 

cracked zones of lengths xA, xB at the ends A and B 

respectively and xs, at an in-span position, and two 

uncracked zones in between the cracked zones), (Fig. 2) has 

been used in the procedure. The closed form expressions for 

crack lengths, flexibility matrix coefficients, end 

displacements and mid-span deflection of the cracked span 

length beam element are derived and used in the procedure. 

Tension stiffening effect is also taken into account by 

evaluating average interpolation coefficients for the cracked 

zones. The analysis is carried out using an iterative method. 

Consider, a typical iterative cycle. A displacement 

analysis is carried out in the beginning of the cycle for the 

out-of-balance force vector of the RC beam at the end of the 

previous cycle. Revised force vector and displacement 

vector are obtained by adding the force vector and 

displacement vector obtained from this analysis to the force 

vector and displacement vector at the end of previous cycle. 

Crack lengths and interpolation coefficients are then 

updated according to the revised force vector. 

Changes in the cracking state of the sections (cracked or 

uncracked) and thereby in the end rotations of the beam 

elements lead to the difference between the displacement 

vector of these elements obtained from the displacement 

analysis and that obtained by the principle of virtual work 

involving integration of curvature diagram of a member. 

The out-of-balance force vector of beam element 

corresponding to this error in displacement vector is 

obtained using the revised flexibility matrix of the beam 

element.  

The out-of-balance force vector of the continuous RC 

beam (obtained by assembling the out-of-balance force 

vector of the beam elements) should be within permissible 

limit (Bathe 2002) for the iterative process to terminate; 

otherwise a new cycle is started. Required results are 

obtained after the convergence is achieved. 

The procedure has been validated by comparison with 

the experimental and numerical results available in 

literature along with FEM results (Patel et al. 2014). The 

results have been found to be in good agreement. The 

required computational time by the procedure has been  
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(a) 

 
(b) 

Fig. 3(a) A typical span of a continuous beam and (b) 

schematic representation of input and output 

parameters 

 

 

found to be a small fraction of that required in the FEM. 

 

 

3. Selection of probable structural parameters 
 

In order to cover a wide range of practical cases, it is 

required to define important parameters which could be 

varied to cover all practical situations and can be used as 

input parameters for generation of data sets.  

As stated earlier, cracking in RC beams occurs near the 

interior supports (where hogging moments occur) and at in-

span (where sagging moments occur) when elastic moments 

are higher than the cracking moments. Owing to cracking, 

the moment of inertia of sections reduces from that of 

uncracked section, I
un

 to that of the cracked section, I
cr

, 

thereby reducing the stiffness of the spans. The elastic 

bending moment, M
el
 gets therefore redistributed and leads 

to inelastic bending moment, M
in

. The reduced stiffness and 

redistributed moments may result in considerable change in 

the deflections of the continuous beams. 

It has been shown in earlier studies for a continuous 

composite beam (Pendharkar et al. 2010, Chaudhary et al. 

2014), that in order to establish change in the mid-span 

deflection of any span with sufficient accuracy, cracking at 

its supports and adjacent supports only needs to be 

considered. It is therefore assumed that in order to establish 

change in the mid-span deflection of a span i  in RC 

continuous beam with sufficient accuracy, cracking at the 

supports (support i and support i+1), at the mid of a span i 

and at the mid of adjacent spans (span i−1 and span i+1) 

only needs to be considered (Fig. 3). The subscript, i and 

superscript, i here and subsequently in other quantities 

indicate that the quantities are evaluated at a mid of a span i 

and at a support i respectively. Fig. 3(a) shows an 

intermediate portion of a continuous beam with internal 

span i and adjacent spans i−1 and i+1) of lengths Li, Li−1 and 

Li+1 and with loadings wi, wi−1 and wi+1 respectively. The 

adjacent supports of the internal span i are support i and 

support i+1. 

Considering the above discussion, the parameters 

affecting the mid-span deflection in a typical span i may be 

listed as (Fig. 3) 

1. Inertia ratio at the mid of the span, Ci, where C=I
cr

/I
g
  

Table 1 Practical range and sampling point of probable 

structural input parameters 

Parameter Range 
Sampling point 

Numbers Values 

Ci, Ci, C
i+1 0.10-2.00 10 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5, 1.8, 2.0 

Ri−1, R
i, Ri, R

i+1, Ri+1 0.25-4.00 7 0.25, 0.33, 0.5, 1.0, 2.0, 3.0, 4.0 

Si−1/Si, Si/Si+1 0.25-4.00 7 0.25, 0.33, 0.5, 1.0, 2.0, 3.0, 4.0 

wi−1/wi, wi/wi+1 0.25-4.00 7 0.25, 0.33, 0.5, 1.0, 2.0, 3.0, 4.0 

 

 

(I
cr

=transformed moment of inertia of RC section about 

neutral axis neglecting concrete in tension or cracked 

moment of inertia of RC section about neutral axis, and 

I
g
=gross moment of inertia of RC section about neutral 

axis). 

2. Inertia ratios at the supports, C
i
; and C

i+1
. 

3. Cracking moment ratios at the mid of the spans, Ri-1; 

Ri; and Ri+1, where R=M
cr

/M
el
. 

4. Cracking moment ratios at the supports, R
i
; and R

i+1
. 

5. Stiffness ratios of adjacent spans, Si−1/Si; and Si/Si+1 

(Si=EcI
g
/Li, where Ec= modulus of elasticity of concrete, and 

Li=length of i
th 

span). 

6. Load ratios of adjacent spans, wi-1/wi; and wi/wi+1. 

Inelastic deflection, 
in

iD  may be obtained from the 

elastic deflection, 
el

iD  and the output parameter. The ratio 

el in

i iD D  and 
ss

i iD D  would be the output parameter of 

the neural networks for simply supported beams and 

continuous beams with two and larger number of spans 

respectively, where, and ss

iD =elastic mid-span deflection 

(neglecting concrete cracking) of an equivalent simply 

supported beam with the same span length and the loading 

as that of the span under consideration. These twelve input 

and one output parameters are schematically shown in Fig. 

3(b). The practical ranges for the probable structural 

parameters are given in Table 1. 

 

 

4. Data sets generation for neural networks 
 

A large data set is required to be generated for training, 

validating and testing to achieve better performance of 

neural network. The performance in terms of generalization 

and prediction qualities depends significantly on data sets 

and the domain this data sets covers. 

It is expected that effect of cracking on defections of 

simply supported beams, two span beams and multi span 

beams would be different. Presently, a representative beam 

having five spans is assumed to represent all beams having 

three and larger number of spans. However, for continuous 

beams having spans greater than three, nonlinear effects of 

cracking in external, penultimate and internal spans are 

different. It may, further, be assumed that the nonlinear 

effects of cracking at all internal spans are similar in beams 

having spans greater than three. Accordingly, three separate 

data sets are generated for external, penultimate and internal 

spans of continuous beams having spans greater than three.  

The external and internal spans of three span beams are 
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Table 2 Normalization factors for input and output 

parameters 

Network 

Parameters 

Input Output 

Ci Ci Ci+1 Ri-1 Ri Ri Ri+1 Ri+1 Si-1/Si

 
Si/Si+1

 
wi-1/wi

 
wi/wi+1

 
O

 

NET-SS - 2.0 - - - 4.0 - - - - - - 1.00 

NET-TE - 2.0 2.0 - - 4.0 4.0 4.0 - 4.0 - 4.0 4.00 

NET-ME 2.0 2.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.40 

NET-MP 2.0 2.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.20 

NET-MI - 2.0 2.0 - - 4.0 4.0 4.0 - 4.0 - 4.0 4.00 

 
 

assumed to be represented by external and penultimate 
spans of representative five span beam respectively. Further, 
two data sets are separately generated, each for simply 
supported and two span continuous beams. Hence, three 
sets i.e., simply supported beams, two span beams and five 
span beams are considered to represent beams with any 
number of spans. 

Only two parameters, C1 and R1 are considered for 

simply supported beams since other parameters do not exist. 

First, consider the left external span (i=1) of a two span 

continuous beams. Since moment at support i  is equal to 

zero and the parameters Ri−1, Si−1/Si, wi−1/wi indicate a non-

existent parameter, only seven input parameters (Ci, C
i+1

, Ri, 

R
i+1

, Ri+1, Si/Si+1, wi/wi+1, where i=1) need to be considered. 

Similarly, for the right external span of a two span 

continuous beam, only seven parameters (C
i
, Ci, Ri−1, R

i
, Ri, 

Si−1/Si, wi−1/wi, where i=2) need to be considered. Next, for 

left and right external spans of a beam with three and larger 

numbers of spans, the seven input parameters as described 

above for left and right external spans of a two span 

continuous beams are considered. For penultimate and 

internal spans, as discussed in Section 3, twelve input 

parameters (C
i
, Ci, C

i+1
, Ri−1, R

i
, Ri, R

i+1
, Ri+1, Si−1/Si, Si/Si+1, 

wi−1/wi, wi/wi+1) are considered. 

The sampling points of each input parameter 

(Chaudhary et al. 2014), considered for data generation, are 

shown in Table 1. A combination of sampling points of the 

input parameters and the corresponding resulting value of 

the output parameter comprises a data set. 
As stated earlier, an analytical-numerical procedure 

(Patel et al. 2014) has been used for data generation. The 
training data sets have been generated for the combinations 
of the sampling points of input parameters shown in Table 
1. The parameters Ci−1, C

i
, Ci+1, Si−1/Si, wi−1/wi can be varied 

independently and assume values indicated in Table 1. 
However, the parameters R

i−1
, Ri−1, R

i
, Ri, R

i+1
, are 

interdependent and it is difficult to vary these 
independently, therefore one parameter is varied 
independently and the other parameters are allowed to 
assume values in the practical range 0.25-4.00. The training 
sets in which the values of the other parameters fall outside 
the practical range 0.25-4.00 is not considered. 

Five neural networks, one for simply supported beams, 
one for two span beams and three for multi span (having 
three and larger number of spans, n) beams are trained. The 
neural network for simply supported beams is designated as 
NET-SS. The neural network for two span beams is for the 

 

Fig. 4 Configuration of a typical neural network 

 

Table 3 Final architectures and statistical parameters of 

neural networks 

Sets Parameters 

Network 

(Architecture) 

NET-SS 

(2-4-1) 

NET-TE 

(7-10-1) 

NET-ME 

(7-10-1) 

NET-MP 

(12-16-1) 

NET-MI 

(12-16-1) 

Training 

MSE 0.00060 0.00020 0.00010 0.00010 0.00007 

R2 0.99399 0.99025 0.99665 0.98918 0.99143 

RMSE 0.02447 0.01414 0.00999 0.00991 0.00836 

MAPE 2.43761 2.44036 4.24471 2.17690 2.31241 

AAD 2.16335 2.31421 3.03770 1.99001 2.16840 

COV 3.46748 3.96892 4.67712 2.91781 3.31823 

Validating 

MSE 0.00060 0.00021 0.00014 0.00010 0.00007 

R2 0.99410 0.98993 0.99515 0.98909 0.99153 

RMSE 0.02436 0.01449 0.01177 0.00997 0.00841 

MAPE 2.48549 2.76675 3.79801 2.20533 2.32431 

AAD 2.20885 2.41796 3.29431 1.99915 2.18436 

COV 3.49137 4.11041 5.47448 2.93339 3.33281 

Testing 

MSE 0.00060 0.00020 0.00010 0.00010 0.00007 

R2 0.99488 0.99047 0.99625 0.98939 0.99129 

RMSE 0.02424 0.01414 0.01022 0.00999 0.00837 

MAPE 2.32722 2.06726 3.65883 2.16436 2.27304 

AAD 2.06304 2.40611 3.09263 1.99255 2.16495 

COV 3.24511 3.99778 4.80350 2.93449 3.33018 

 

 

external spans and is designated as NET-TE. The neural 

networks for external, penultimate and internal spans of 

multi span beams are designated NET-ME, NET-MP and 

NET-MI respectively. For data generation of NET-ME, 

NET-MP and NET-MI, five span continuous beams are 

considered. 

If the parameters R
i−1

, Ri−1, R
i
, Ri, R

i+1 
could be varied 

independently, the upper limit to the number of possible 

data sets that can be generated for training, validating and 

testing of the networks NET-TE, NET-ME, NET-MP, and 

NET-MI would be 1,680,700 (=10×10×7×7×7×7×7), 

1,680,700 (=10×10× 7× 7×7×7×7×7), 40,353,607,000 

(=10×10×10×7×7×7×7×7×7×7×7×7), and 40,353,607,000 

(=10×10×10×7×7×7×7×7×7×7×7×7) respectively. As stated 

above, if one of the parameters R
i−1

, Ri−1, R
i
, Ri, R

i+1 
at a  
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Fig. 5 Variation of the MSE with the epochs 

(iterations) for network NET-MI 

 

 

time is varied independently and the other parameters are 

constrained to assume any values in the practical range 

0.25-4.00, the number of data sets gets reduced to 88,710; 

6,950; 295,300 and 212,590 for networks NET-TE, NET-

ME, NET-MP, and NET-MI respectively. The numbers of 

data sets for network NET-SS are 70; however, 560 

additional data sets have been added for better training. In 

order to bring all the input and output parameters in the 

range 0.0 to 1.0, normalization factors are applied to the 

parameters. The normalization factors for input and output 

parameters are shown in Table 2. The biases for output 

parameter of the networks NET-TE, NET-ME, NET-MP, 

and NET-MI are 1.00, 0.70, 1.40 and 0.95 respectively. 

 

 

5. Training, architecture and performance of neural 
networks 
 

The neural networks chosen in the present study are 

multilayered feed-forward networks with neurons in all the 

layers fully connected in feed forward manner (Fig. 4). The 

training is carried out using the MATLAB Neural Network 

toolbox (MATLAB 2009). Sigmoid function is used as an 

activation function for the hidden and output neurons and 

the back propagation learning algorithm is used for training. 

One hidden layer is chosen and the number of neurons in 

the layer is decided in the learning process by trial and 

error. 

70% data sets are used for the training and the 

remaining data sets are divided equally for validating and 

testing. Similar division has been adopted earlier by other 

researchers (Gedam et al. 2014, Joshi et al. 2014). For the 

training, several trials are carried out with different numbers 

of neurons in the hidden layer starting with a small number 

of neurons in the hidden layer and progressively increasing 

it and checking the mean square errors (MSE) of the 

training, the validation and the testing. The number of 

neurons in the hidden layer is decided on the basis of the 

least mean square errors (MSE) for the training, validation 

as well testing. Care is taken that the mean square error for 

test results does not increase with the number of neurons in 

hidden layer or epochs (overtraining). The final 

architectures (number of input parameters-number of 

neurons in the hidden layer-number of output parameters) 

of all networks along with the statistical parameters i.e., 

mean square error (MSE), coefficient of correlation (R), 

root mean square error (RMSE), mean absolute percentage 

error (MAPE), average absolute deviation (AAD) and 

percentage coefficient of variation (COV) of training, 

validating and testing data sets are given in Table 3. All the 

parameters indicate a good performance. Typically, for 

network NET-MI, variation of the MSE with the epochs 

(iterations) and regressions is shown in Figs. 5 and 6 

respectively. 

 

 

6. Closed form expressions 
 

Simplified closed form expressions can be developed 

from the trained neural networks, for the rapid prediction of 

inelastic deflections for ready use by the practicing 

engineers. The closed form expressions require the values 

of inputs, weights of the links between the neurons in 

different layers, and biases of output neurons. Since the 

sigmoid functions have been used as the activation 

functions in the hidden and output layer neurons, the output 

O is given as below (Tadesse et al. 2012, Gupta et al. 2013, 

2015) 

,1
0

1 1

1

1

hor
k

H k
k

w
bias

e

O

e




 
  
  






 
(1) 

     
1 1 1

ih

k j kk j
H w I bias

  
   

 

(2) 

where, q is the number of input parameters; r is the number 

of hidden neurons; biask is the bias of k
th

 hidden neuron 

(hk); biaso is the bias of output neuron; ,

ih

j kw  is the weight 

of the link between Ij and hk; ,1

ho

kw  is the weight of the link 

between hk and O. 

First, consider the simply supported beams. The weights 

and biases are obtained from the trained neural network 

NET-SS. As stated earlier, the value of el in

i iD D  is equal 

to the output O. The inelastic mid-span deflection, 
1

inD  

may be obtained from Eqs. (1)-(2), using weights and biases 

of NET-SS, as 

1 2 3 4

1

5.87 7.02 11.91 2.60
5.60

1 1 1 11

1

1
   

 
     
   

 
 
 
 

H H H H

el

in

e e ee

D

D
e

 (3) 

Where, 

1

2 1

3 1

4

0.71 11.56 0.47

4.25 17.57 0.99

1.32 23.31 3.81

13.67 1.60 0.57

      
                    
     

    

H

H C

H R

H

 
(4) 

Next, consider the continuous beams with two and 

larger number of spans. As stated earlier, the value of 
ss

i iD D  is equal to the output O. The mid-span 

deflection of span i from Eq. (1) is then given as 

in el ss

i i iD D OD   (5) 
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Fig. 5 Regressions of training, validation, testing and 

all datasets for network NET-MI 

 

 

Fig. 6 Example beams: (a) EB1; (b) EB2; (c) EB3; (d) 

EB4; and (e) EB5 (span lengths in m and loads in 

kN/m) 

 

 

The value of O may be obtained from the expressions 

for external span of two span and external, penultimate and 

internal spans of multi span continuous beams as given in 

Appendix A.  

 

 

7. Verification of the proposed closed form 
expressions 
 

The proposed closed form expression (Eq. (3)) is 

verified with experimental results reported by Yu and 

Winter (1960) for simply supported beams with T cross-

section: A-1; B-1; C-1; D-1; E-1; F-1 subjected to 

uniformly distributed loads, w. The cross-sectional 

properties (Bf=width of flange, Df=depth of flange, 

Bw=width of web, Dw=depth of web, dt=effective cover at 

top fibre, db=effective cover at bottom fibre, Ast=area of 

reinforcements at top fibre, Asb=area of reinforcements at 

bottom fibre) and material properties (fc=cylindrical 

compressive strength of concrete, Es=modulus of elasticity  

Table 4 Properties of simply supported beams 

Properties 
Beams 

A-1 B-1 C-1 D-1 E-1 F-1 

fB (mm) 304.87 304.87 304.87 609.74 304.87 304.87 

fD (mm) 63.52 63.52 63.52 63.52 63.52 50.81 

wB (mm) 152.44 152.44 152.44 152.44 152.44 152.44 

wD (mm) 241.36 241.36 241.36 241.36 241.36 152.44 

td (mm) - 39.63 39.63 - - - 

bd (mm) 45.98 45.98 45.98 58.94 55.64 45.98 

stA (mm2) - 200.09 400.19 - - - 

sbA (mm2) 400.19 400.19 400.19 774.56 400.19 400.19 

'

cf (N/mm2) 25.37 26.77 24.27 25.37 29.36 29.36 

cE (N/mm2) 25286 25975 24732 25286 27202 27202 

sE (N/mm2) 205000 205000 205000 205000 205000 205000 

w (N/mm) 6.42 6.44 6.41 11.73 12.29 3.79 

tf (N/mm2) 2.78 2.66 2.73 2.78 3.06 3.06 

L (mm) 6098 6098 6098 6098 4268 6098 

 

Table 5 Comparison of inelastic deflections in the simply 

supported beams 

Mid-span 

deflections 

(mm) 

Beams 

A-1 B-1 C-1 D-1 E-1 F-1 

in

CFED  29.92 29.69 28.09 32.69 13.79 55.63 

in

EXPD  34.04 31.50 30.23 32.23 12.96 55.89 

in

FEMD  33.26 31.31 31.58 32.92 12.87 53.03 

in

ACID  28.86 28.88 28.70 31.65 13.61 51.61 

in

BISD  28.59 28.60 28.37 31.19 13.74 50.93 

 
 

of steel reinforcements, ft =tensile strength of concrete) of 

the beams are given in Table 4. The mid-span deflections 

obtained from the proposed closed form expression ( in

CFED ) 

and experiments ( in

EXPD ) are reported in Table 5 along with 

those obtained from FEM ( in

FEMD ), ACI 318 (2008) 

expression ( in

ACID ) and Bischoff (2005) expression ( in

BISD ). 

The root mean square percentage errors in in

CFED , 

in

FEMD  in

ACID  and in

BISD  with respect to in

EXPD  are 

6.74%, 3.08%, 8.30% and 9.17% for all the beams 

respectively. The deflections obtained from the proposed 

expression are in good agreement with those obtained from 

the experiments. 

Further, the proposed closed form expressions are also 

verified for five example beams with a wide variation of 

input parameters. The example beams (EB1-EB5) are 

shown schematically in Fig. 7. The cross-sectional 

properties and 
'

cf  are given in Table 6(a). Additionally, 

E s = 2 0 5 0 0 0  N / m m
2
,  '5020c cE f  N / m m

2
 a n d

'0.623t cf f  N/mm
2
 (ACI 318 2008) are taken. As shown 

in Table 6(b), three segments: left, middle, and right of  
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Table 6(a) Cross-sectional and material properties 

Beams Bf(mm) Df(mm) Bw(mm) Dw(mm) dt=db(mm) 
'

cf (N/mm2) 

EB1 400 100 300 300 25 36.60 

EB2 - - 230 450 25 29.65 

EB3 350 90 250 350 30 24.91 

EB4 - - 300 300 27 40.38 

EB5 300 110 230 
200* 

20 29.65 
270** 

*For span AB, BC, CD, DE, EF, **For span FG, GH, HI, 

IJ, JK 

 
Table 6(b) reinforcement detailing data of example beams 

Beams Span 

Segment (length) 

Left (0.25Li) Middle (0.50Li) Right (0.25Li) 

Ast(ρst) Asb(ρsb) Ast(ρst) Asb(ρsb) Ast(ρst) Asb(ρsb) 

mm2 (%) 

EB1 

AB 157 (0.13) 402 (0.34) 157 (0.13) 402 (0.34) 509 (0.42) 226 (0.19) 

BC 509 (0.42) 226 (0.19) 157 (0.13) 402 (0.34) 157 (0.13) 402 (0.34) 

EB2 

AB 157 (0.15) 509 (0.49) 157 (0.15) 509 (0.49) 760 (0.73) 226 (0.22) 

BC 760 (0.73) 226 (0.22) 157 (0.15) 509 (0.49) 760 (0.73) 226 (0.22) 

CD 760 (0.73) 226 (0.22) 157 (0.15) 509 (0.49) 157 (0.15) 509 (0.49) 

EB3 

AB 157 (0.14) 226 (0.21) 157 (0.14) 226 (0.21) 226 (0.21) 157 (0.14) 

BC,CD 226 (0.21) 157 (0.14) 157 (0.14) 226 (0.21) 226 (0.21) 157 (0.14) 

DE 226 (0.21) 157 (0.14) 157 (0.14) 226 (0.21) 157 (0.14) 226 (0.21) 

EB4 

AB 402 (0.45) 402 (0.45) 402 (0.45) 402 (0.45) 1964(2.18) 402 (0.47) 

BC,CD,DE, 

EF,FG 
1964 (2.18) 402 (0.47) 402 (0.45) 402 (0.45) 1964 (2.18) 402 (0.47) 

GH 1964 (2.18) 402 (0.47) 402 (0.45) 402 (0.45) 402 (0.45) 402 (0.45) 

EB5 

AB 226 (0.32) 760 (1.07) 226 (0.32) 760 (1.07) 1964 (2.75) 760 (1.07) 

BC,CD,DE,EF 1964 (2.75) 760 (1.07) 226 (0.32) 760 (1.07) 1964 (2.75) 760 (1.07) 

FG,GH,HI,IJ 1964 (2.25) 760 (0.87) 226 (0.26) 760 (0.87) 1964 (2.25) 760 (0.87) 

JK 1964 (2.25) 760 (0.87) 226 (0.26) 760 (0.87) 226 (0.26) 760 (0.87) 

 

 
lengths 0.25Li, 0.50Li and 0.25Li respectively, are assumed 

for reinforcement in each span. The reinforcement detailing 

data for each segment is also given in Table 6(b). Example 

beams have been chosen in such a way that none of the 

combinations of input parameters has been used in the 

training, validating and testing. 

The input parameters for the example beams are shown 

in Table 7. Inelastic mid-span deflections obtained from the 

proposed closed form expressions ( in

CFED ), FEM ( in

FEMD ), 

ACI 318 (2008) expression (
in

ACID ) and Bischoff (2005) 

expression (
in

BISD ) are reported in Table 8. For comparison, 

the elastic deflections, 
elD  neglecting cracking are also 

reported. 

For FEM results, modeling has been done in the 

ABAQUS (2011) software (Patel et al. 2014, 2015, 2016a, 

b, c, d, Ramnavas et al. 2015, 2017). The beam is modeled 

using B21 elements (2-node linear Timoshenko beam 

element in plane). Under service load, the stress-strain 

Table 7 Input parameters for the example beams 

Beam 
Span  

(i) 

Input Parameters 

Ci Ci

 
Ci+1 Ri-1

 
Ri Ri

 
Ri+1 Ri+1

 Si-1/Si

 
Si/Si+1

 
wi-1/wi

 
wi/wi+1

 

EB1 

1 - 0.1645 0.1950 - - 0.7549 0.5786 1.4041 - 1.30 - 2.29 

2 0.1950 0.1645 - 0.7549 0.5786 1.4041 - - 1.30 - 2.29 - 

EB2 

1 - 0.2780 0.3870 - - 1.4832 0.7736 1.4549 - 0.73 - 0.37 

2 0.3870 0.2780 0.3870 1.4832 0.7736 1.4549 0.9564 4.3505 0.73 0.43 0.37 0.44 

3 0.3870 0.2780 - 1.4549 0.9564 4.3505 - - 0.43 - 0.44 - 

EB3 

1 - 0.1240 0.1199 - - 0.6543 0.6173 5.9921 - 0.83 - 1.21 

2 0.1199 0.1240 0.1199 0.6543 0.6173 5.9921 1.8433 2.1260 0.83 0.84 1.21 0.72 

3 0.1199 0.1240 0.1199 5.9921 1.8433 2.1260 0.9433 1.3968 0.84 1.06 0.72 1.18 

4 0.1199 0.1240 - 2.1260 0.9433 1.3968 - - 1.06 - 1.18 - 

EB4 

1 - 0.2090 0.7160 - - 1.0652 0.4561 0.5683 - 1.13 - 0.63 

2 0.7160 0.2090 0.7160 1.0652 0.4561 0.5683 0.4140 0.8575 1.13 0.78 0.63 0.68 

3 0.7160 0.2090 0.7160 0.5683 0.4140 0.8575 0.4255 0.5898 0.78 1.29 0.68 1.52 

4 0.7160 0.2090 0.7160 0.8575 0.4255 0.5898 0.4692 1.2133 1.29 0.73 1.52 0.69 

5 0.7160 0.2090 0.7160 0.5898 0.4692 1.2133 0.4660 0.5838 0.73 1.36 0.69 1.45 

6 0.7160 0.2090 0.7160 1.2133 0.4660 0.5838 0.4330 1.0624 1.36 0.56 1.45 0.58 

7 0.7160 0.2090 - 0.5838 0.4330 1.0624 - - 0.56 - 0.58 - 

EB5 

1 - 0.4740 0.9330 - - 1.5423 0.4728 0.4876 - 1.58 - 1.01 

2 0.9330 0.4740 0.9330 1.5423 0.4728 0.4876 0.4063 0.7231 1.58 0.78 1.01 0.66 

3 0.9330 0.4740 0.9330 0.4876 0.4063 0.7231 0.4065 0.4899 0.78 1.29 0.66 1.47 

4 0.9330 0.4740 0.9330 0.7231 0.4065 0.4899 0.4213 0.7644 1.29 0.89 1.47 0.95 

5 0.9330 0.4740 0.9330 0.4899 0.4213 0.7644 0.4577 0.8219 0.89 1.18 0.95 1.25 

6 0.9330 0.4160 0.8340 0.7644 0.4577 0.8219 0.5952 0.9091 1.18 0.80 1.25 0.58 

7 0.8340 0.4160 0.8340 0.8219 0.5952 0.9091 0.4550 0.5380 0.80 1.27 0.58 1.23 

8 0.8340 0.4160 0.8340 0.9091 0.4550 0.5380 0.4468 0.8608 1.27 0.79 1.23 0.71 

9 0.8340 0.4160 0.8340 0.5380 0.4468 0.8608 0.4264 0.4971 0.79 1.20 0.71 1.72 

10 0.8340 0.4160 - 0.8608 0.4264 0.4971 - - 1.20 - 1.72 - 

 

 

relationship of concrete is assumed to be linear in 

compression. Concrete is considered as an elastic material 

in tension before cracking and softening behavior is 

assumed linearly after cracking. Tension stiffening is 

defined in the model using post-failure stress-strain data. In 

order to define the smeared crack model, the absolute value 

of the ratio of uniaxial tensile stress at failure to the uniaxial 

compressive stress at failure is obtained using concrete 

properties. The plastic strain is taken in accordance with 

tensile strength of concrete. Further, at service load, the 

stress in reinforcement is assumed to be in the linear range. 

In absence of experimental data, the results from FEM 

are taken as standard with which the results obtained from 

the closed form expressions, ACI 318 (2008) expression 

and Bischoff (2005) expression are compared. The 

difference between the results from the any of these 

expressions and FEM is taken as error. It may be noted that 

small deflections (high el

i iL D ratios) are not of any 

practical significance. Neglecting cases with very high 
el

i iL D ratios (greater than 5000), the maximum absolute 

percentage errors in in

CFED , in

ACID  and in

BISD  with respect 
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Table 8 Comparison of inelastic deflections in the example 

beams  

Beam Span (i) 

Del 
in

CFED  in

FEMD  in

ACID  in

BISD  
Error (%) in 

(with respect to
 in

FEMD )
 el

i iL D  

(mm) 
in

CFED  in

ACID  in

BISD  

EB1 

1 4.83 9.46 9.08 9.74 15.13 -4.19 -7.27 -66.63 1677 

2 3.71 4.00 4.24 3.67 3.41 5.66 13.44 19.58 2830 

EB2 

1 3.96 4.24 4.45 4.30 4.32 4.72 3.37 2.92 2778 

2 1.72 2.01 1.93 1.90 1.89 -4.15 1.55 2.07 4651 

3 0.08 0.04 0.05 0.09 0.08 20.00 -80.00 -60.00 42500 

EB3 

1 3.90 10.10 9.89 9.75 14.20 -2.12 1.42 -43.58 1795 

2 -0.15 -0.17 -0.24 -0.44 -0.54 29.17 -83.33 -125.00 -38667 

3 0.41 0.40 0.53 0.49 0.52 24.53 7.55 1.89 11951 

4 0.95 1.21 1.07 0.96 0.99 -13.08 10.28 7.48 5474 

EB4 

1 3.60 4.50 4.29 3.54 3.44 -4.90 17.48 19.81 2222 

2 8.13 18.31 18.89 18.88 20.47 3.07 0.05 -8.36 1107 

3 2.38 1.74 1.77 3.87 4.82 1.69 -118.64 -172.32 2941 

4 7.81 15.53 16.14 17.85 19.52 3.78 -10.59 -20.94 1152 

5 1.08 -0.95 -0.82 0.70 0.60 -15.85 185.37 173.17 6111 

6 7.95 17.22 17.4 17.85 19.33 1.03 -2.59 -11.09 1132 

7 1.38 1.80 1.74 1.46 1.44 -3.45 16.09 17.24 3623 

EB5 

1 0.88 0.41 0.51 0.69 0.70 19.61 -35.29 -37.25 6477 

2 8.81 15.71 15.23 16.64 15.93 -3.15 -9.26 -4.60 1022 

3 2.61 2.67 2.56 4.65 4.47 -4.30 -81.64 -74.61 2682 

4 8.47 12.58 12.13 16.73 16.02 -3.71 -37.92 -32.07 1063 

5 3.44 3.51 3.89 5.74 5.49 9.77 -47.56 -41.13 2326 

6 4.49 5.38 5.41 7.96 7.78 0.55 -47.13 -43.81 2094 

7 2.01 2.20 2.29 2.82 2.67 3.93 -23.14 -16.59 3731 

8 7.22 11.65 12.47 14.59 14.14 6.58 -17.00 -13.39 1316 

9 1.90 1.30 1.22 2.69 2.64 -6.56 -120.49 -116.39 3947 

10 8.77 18.34 19.88 20.11 19.68 7.75 -1.16 1.01 1026 

 

 

to in

FEMD  are 9.77%, 120.49% and 172.32% for all the 

spans of the beams EB1-EB5 respectively. The root mean 

square percentage errors in in

CFED , in

ACID  and in

BISD  with 

respect to in

FEMD  are 4.78%, 46.38% and 56.67% for all 

the spans of the beams EB1-EB5 respectively. Significant 

errors are observed in in

ACID  and in

BISD , whereas, the 

errors in in

CFED  are found to be small and acceptable for 

practical design. Greater errors in in

ACID  and in

BISD  may 

be due to adoption of ACI 435 (2000) procedure which 

considered simplified assumptions for evaluation of a 

weighted average effective moment of inertia in continuous 

beams. This shows the efficacy of the developed 

methodology for continuous beams with any number of 

spans. 

The procedures available in literature or any other 

commercial software based on finite element analysis that 

incorporate concrete cracking would require reinforcement 

detailing data. It would be tedious to provide such 

reinforcement detailing data for every element in a large 

structure since reinforcement lengths and cross-section 

areas may vary from element to element. Further, details 

like post-cracking stress-strain relationship would also be 

required. It is not feasible to carry out such elaborate 

computations for the day to day design particularly 

preliminary design. The convergence problem may also be 

encountered in FEA. On the other hand, the present 

methodology requires only cross-sectional properties, 

elastic moments, elastic deflections and reinforcement data 

at three locations.  

When the closed form expressions are used, the 

computational time is drastically reduced and it is a fraction 

of that required for Type 1 and Type 2 procedures available 

in literature. It was observed by Patel et al. (2014) that in 

finite element analysis, usually 16-32 elements in a span are 

required for convergence of results within 1% and the 

computational effort required in the analytical-numerical 

procedure is about 1-3% of that required in FEA. It may be 

noted that the analytical-numerical procedure (Patel et al. 

2014) typically requires five iterations for convergence 

whereas ANN technique requires only one analysis. The 

computational effort required in the proposed technique of 

use of closed form expressions can therefore be estimated to 

be about 0.2-0.6% of FEA. This reduction in computational 

effort is quite significant for structures with a large number 

of degrees of freedom. 
 

 

8. Conclusions 
 

A methodology, using neural networks, has been 

presented for rapid prediction of deflections in reinforced 

concrete beams subjected to service load. Closed form 

expressions, obtained from the trained neural networks, 

have been proposed for predicting the inelastic deflections 

taking into account concrete cracking and tension stiffening 

effect. Five separate neural networks are developed for 

prediction of inelastic deflections from the elastic moments 

and deflections having any number of spans. Data sets for 

neural networks are generated using the computationally 

efficient analytical-numerical procedure recently developed 

by authors. The proposed expressions have been verified for 

a number of example beams. The proposed expressions 

require minimal input data and computation effort and yield 

results that are close to FEM results and experimental 

results. The root mean square percentage error in 

deflections obtained from the proposed closed form 

expression is 6.74% with respect to the experimental results 

for simply supported beams reported in literature. For 

continuous beams, the root mean square percentage error in 

deflections obtained from the proposed closed form 

expressions is 4.78% with respect to FEM results. These 

errors are small for practical purposes, therefore the 

proposed expressions can be used in every day design.  

The methodology can be extended for large RC building 

frames for use in every day design. The methodology can 

also be extended to account for shear deformation in beams 

with low span-effective depth ratios (Wang et al. 2015). 
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Notations 
 

Ast, Asb 
area of top and bottom reinforcement 

respectively 

B, D width and total depth of section respectively 

C, R inertia ratio and cracking moment respectively 

D
el, D

in  elastic and inelastic deflection respectivel 

D
ss elastic deflection of an equivalent simply 

supported beam 

E modulus of elasticity 

I moment of inertia about neutral axis 

Ij

 
j
th

 input parameter 

L, O length of the span and stiffness respectively 

M
el, M

in  elastic and inelastic moment respectively 

O output parameter 

bias bias of hidden or output neuron 

dt, db 
effective concrete cover at top and bottom 

respectively 

',t cf f  
tensile strength and cylinder compressive 

strength respectively 

hk
 

k
th

 hidden neuron 

q number of input parameters 

r number of hidden neurons 

w, x uniformly distributed load and cracked length 

respectively 

,

ih

j kw
 

weight of the link between Ij and hc 

,1

ho

kw  weight of the link between hc and O 

,st sb   
percentage steel reinforcement at top and bottom 

respectively 

 
 
Subscript 
 

A, B ends A and B of a cracked span length beam 

element respectively 

S in-span position of a cracked span length beam 

element 

c, s concrete and steel respectively 

f, w flange and web respectively 

i i
th 

span 

j, o
 

input and output neuron number respectively 

k hidden neuron number or function number 

 
 
Superscript 
 

cr, un
 

cracked and uncracked respectively 

el, in elastic and inelastic respectively 

g
 

gross 

ho connection between hidden and output layers 

i i
th

 support 

ih connection between input and hidden layers 
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Appendix A 
 
Closed form expressions for value of O 

(I) External span of two span continuous beams 

(a) Left external span 
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(A2) 

(b) Right external span 

The value of  O for right external span can be obtained by 

replacing C1, R1, R2, S1/S2 and w1/w2 in Eq. (A2) with C2, 

R2, R1, S2/S1 and w2/w1 respectively. 

(II) External span of multi span continuous beams 

(a) Left external span 

1 2 3 4 5 6 7 8 9 10
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(A4) 

(b) Right external span 

The value of O  for right external span can be obtained by 

replacing 
1C , 

1R , 
2R , 

1 2S S  and 
1 2w w  in Eq. (A4) 

with 
nC , 

nR , 
1nR 

, 
1n nS S 

 and 
1n nw w 

 respectively, 

where n  denotes the number of spans in the beam. 

(III) Penultimate span of multi span continuous beams 
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(IV) Internal span of multi span continuous beams 
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