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1. Introduction 
 

Concrete pipeline systems have been the material of 

choice for over a century and remain the most 

environmentally friendly and competitive installed option 

today. Compared to other pipeline materials, concrete 

provides a wide range of alternative bedding designs which 

can lead to substantial installed cost savings, faster 

installation and lower environmental impact. A proven 

service life of 100 years ensures that lifetime costs are kept 

to a minimum. The inherent strength and durability of 

precast concrete can help protect the system throughout its 

operation, during maintenance and extend replacement 

periods. Nowadays, applying the nanotechnology to 

produce the concrete structures has been a new field in 

experimental and theoretical works. Hence, in this paper, 

the concrete pipe is simulated with cylindrical shell model 

to investigate the effect of CNTs as reinforce of this 

structures. 

The study of vibration behavior of circular cylindrical 

shells has therefore been carried out extensively by many 

investigators. Junger and Mass (1952), and later Jain (1974) 

studied coupled vibrations of fluid-filled cylindrical shells 

based on shear shell theory and discussed the free vibration 

of orthotropic cylindrical shells filled partially or 

completely with an incompressible, non-viscous fluid. 

Frequency response of cylindrical shells partially 

submerged or filled with liquid was investigated by 

Goncalves and Batista (1987). An exact solution to the free 

vibration of a transversely isotropic cylindrical shell filled 

with fluid was proposed by Chen and Ding (199). Chung  
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(1981) compared analytical and experimental investigations 

carried out by him on the vibration characteristics of 

cylindrical shells filled with fluid. Amabili (1996) obtained 

natural frequencies and mode shapes of a simply-supported 

circular cylindrical shell, partially filled with liquid and 

further extended his study to include the free vibrations of 

these shells entirely filled with a dense fluid and partially 

immersed in various fluids under different end conditions 

(Amabili (1999)). Pellicano and Amabili (2003) studied the 

stability and vibration of empty and fluid-filled circular 

cylindrical shells under static and periodic axial loads. Chen 

et al. (2004) improved the previous work by introducing 

three-dimensional vibration analysis of fluid-filled 

orthotropic functionally graded piezoelectric cylindrical 

shells. Later, free vibrations of fluid-filled cylindrical shells 

embedded in an elastic foundation was investigated by 

Gunawan et al. (2005) who studied the effects of fluid and 

elastic foundation parameters such as spring stiffness on the 

natural frequency of the shell. Recently, Daneshmand and 

Ghavanloo (2010) investigated the coupled free vibration 

analysis of a fluid-filled rectangular container with a sagged 

bottom membrane. Also, coupled vibration of a partially 

fluid-filled cylindrical shell was studied by Askari et al. 

(2011) who considered the effect of free surface waves in 

their analysis. A new calculation method was developed by 

Zhu et al. (2013) based on these properties and an explicit 

iterative algorithm. Using a mesoscopic finite-element (FE) 

mesh, three-phase composites of concrete namely 

aggregate, mortar matrix and interfacial transition zone 

(ITZ) were modelled b Zhang et al. (2015). 

It is worth noting that none of the articles mentioned 

above considered nano-composite structures. Vibration 

analysis of SCCS with great potentials in manufacturing of 

actuators and sensors slows the transmission of gases and 

moisture vapor as a consequence of their exceedingly high 

surface area-to-volume ratio. Regarding composites, Gibson 
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Fig. 1 A concrete pipe modeled with cylindrical shell 

conveying fluid 

 

 

and Ronald (1994) studied numerical behavior of composite 

materials when subjected to mechanical and thermal 

loading. The embedding of piezoelectric materials in the 

form of fibers into a polymer matrix was implemented by 

Bent et al. (1995). Free vibration of composite plates and 

cylindrical shell panels were studied by Messina and  

Soldatos (1999) using a higher-order theory. Micro-electro-

mechanical models were afterwards used by Tan and Tong 

(2001) to predict the equivalent characteristics for 

piezoelectric-fiber-reinforced composite materials. They 

investigated effects of geometrical parameters on the 

effective electroelastic constants, and discussed the 

convergence of the rectangle-cylinder model. Free vibration 

and buckling analysis of composite cylindrical shells 

conveying hot fluid were proposed by Kadoli and Ganesan 

(2003). Active control of laminated cylindrical shells using 

piezoelectric fiber reinforced composites was investigated 

by Ray and Reddy (2005). In another study, vibration and 

buckling of cross-ply laminated composite circular 

cylindrical shells were studied by Matsuna (2007) based on 

a global higher-order theory. Rahmani et al. (2010) 

investigated free vibration response of composite sandwich 

cylindrical shells with flexible core. Buckling and vibration 

analysis of plate/shell structures via a smoothed 

quadrilateral flat shell element with in-plane rotations were 

studied by Nguyen-Van (2011). Zamanian et al. (2016). the  

nonlinear  buckling  of  straight  concrete  columns  

armed  with  single-walled  carbon  nanotubes 

(SWCNTs) resting on foundation was investigated by Safari 

Bilouei et al. (2016). Stress analysis of concrete pipes 

reinforced with AL2O3 nanoparticles was presented by 

Heidarzadeh et al. (2016) considering agglomeration 

effects. 

So far, very few researchers have used mathematical 

modeling for concrete structures. Presenting a mathematical 

modeling in this study, vibration and stability of concrete 

pipes reinforced with CNTs conveying fluid are 

investigated. The structure is subjected to magnetic field 

and simulated with classical cylindrical shell model. Based 

on analytical method, the frequency and critical fluid 

velocity of pipe are obtained. The effects of the fluid, 

volume percent of CNTs, magnetic field and geometrical 

parameters on the frequency and critical fluid velocity of 

the structure are investigated.  

 

 

2. Mori-Tanaka model 

Consider a pipe whose shell is concrete, and is 

reinforced by CNTs which is shown in Fig. 1. The pipe is 

reinforced with CNTs and conveying fluid.  

Using Mori-Tanaka model (Tan et al. 2005), the matrix 

is assumed to be isotropic and elastic, with the Young’s 

modulus Em and the Poisson’s ratio vm. The constitutive 

relations for a layer of the composite with the principal axes 

parallel to the r, θ and z directions are 
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(1) 

Where σij, εij, γij, k, m, n, l, p are the stress components, 

the strain components and the stiffness coefficients 

respectively. According to the Mori-Tanaka method the 

stiffness coefficients are given by (Tan et al. 2005) 
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(2) 

Where the subscripts m and r stand for matrix and 

reinforcement respectively.  Cm 
and Cr are the volume 

fractions of the matrix and the nanoparticles respectively 

and kr, lr, nr, pr, mr are the Hills elastic modulus for the 

nanoparticles (Tan et al. 2005). 

 

 
3. Stress-strain relations 

 
Shear strains yxz, yθz 

are considered negligible in the 

Kirchhoff deformation theory. Hence, the tangential 

displacements u, v become linear function of the radial 

coordinate (z) (Ghorbanpour et al. 2012). In other words 
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(3) 

The strain components 
xx ,   and 

 x
 at an 

arbitrary point of the shell are related to the middle surface 

strains εxx, εθθ and γxθ, and to the changes in the curvature 
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and torsion of the middle surface kxx, kθθ and kxθ by the 

following  relationships   
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(4) 

Where u, v and w, describe the displacements in the 

orthogonal coordinate system x, θ, z, established at the 

middle surface of the shell. 

 

 

4. Motion equations 
 

In this section, energy method and Hamilton’s principal 

are used. The potential energy of concrete pipe is 
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Substituting the strain relations into potential energy 

yields 
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Defining the stress resultants as below 
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(8) 

Eq. (6) can be simplified as follows 
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The kinetic energy of system can be written as 
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Substituting Eq. (3) into Eq. (10) and simplifying yields 
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The work done by the magnetic field can be written as 

(Agrawal et al. 2016) 
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Where η and Hx 
are magnetic permeability and magnetic 

field, respectively.  

The governing equation of the fluid can be described by 

the well-known Navier-Stokes equation as below (Baohui et 

al. 2012) 
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Where V≡(vz, vθ, vx) is the flow velocity vector in 

cylindrical coordinate system with components in 

longitudinal x, circumferential θ and radial z directions. 

Also, P, μ and ρf are the pressure, the viscosity and the 

density of the fluid, respectively and Fbody denotes the body 

forces. In Navier-Stokes equation, the total derivative 

operator with respect to t is 
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At the point of contact between the fluid and the core, 

the relative velocity and acceleration in the radial direction 

are equal. So  

,
dt

dw
vz   (15) 

By employing Eqs. (14) and (15) and substituting into 

Eq. (13), the pressure inside the pipe can be computed as 
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(16) 

By multiplying two sides of Eq. (16) in the inside area 

of the pipe (A), the radial force in the pipe is calculated as 

below 
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(17) 

Finally, the external work due to the pressure of the fluid 
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may be obtained as follows 
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Finally, applying Hamilton’s principal as follows 
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Where m

x

mm

xx NNN  ,,  are external applied forces. 

Substituting Eq. (1) into Eqs. (7) and (8) yields 
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Substituting Eqs. (23)-(28) into Eqs. (20)-(22) yields 
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5. Boundary conditions 
 

The boundary conditions defined for two circular ends 

of the pipe are simply supported mechanical boundary 

conditions. The simply supported mechanical boundary 

condition is selected because in practice, simply supported 

ends could be achieved approximately by connecting the 

pipe to thin end plates and rings. Hence, the three 

displacement shapes may be written as (Reddy 2004) 
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(32) 

Where ω represents vibration frequency of the pipe, m 

and n are half axial and circumferential wave numbers, 

respectively. It should be noted that m is any positive 

number, while n is an integer, and Ai, (i=1,..,3)
 
represent 

displacement amplitudes. Substituting Eq. (32) into motin 

equations yields 
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Setting the determinate of above matrix equal to zero, 
the frequency and critical fluid velocity of structure can be 
obtained.  
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Fig. 2 The effect of CNT volume percent on the 

frequency of structure 

 

 

Fig. 3 The effect of CNT volume percent on the 

damping of structure 

 

 

Fig. 4 The effect of magnetic field on the frequency of 

structure 

 

 

Fig. 5 The effect of magnetic field on the damping of 

structure 

 

 

6. Result and dissection 
 

Assuming a simply supported concrete pipe conveying 

water with density of ρf=1000 Kg/m
3
, with L/h=25 and 

h/R=0.02. In the following subsections, the effects of fluid, 

volume percent of CNTs, magnetic field and geometrical  

 

Fig. 6 The effect of length to thickness ratio on the 

frequency of structure 

 

 

Fig. 7 The effect of length to thickness ratio on the 

damping of structure 

 

 

Fig. 8 The effect of thickness to radius ratio on the 

frequency of structure 

 

 

Fig. 9 The effect of thickness to radius ratio on the 

damping of structure 

 

 

parameters of pipe on the frequency and critical fluid 

velocity of the structure are studied and discussed in details. 

Figs. 2 and 3 show the CNT volume percent on the 

frequency (Im(Ω)) and damping (Re(Ω)) of structure (

 fC /11 ) versus flow velocity ( ,/ 11 xf vCV  ) in 
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the dimensionless form, respectively. As can be seen, Im(Ω) 

decreases with increasing V, while the Re(Ω) remains zero.  

These imply that the system is stable. When the natural 

frequency becomes zero, critical velocity is reached, which 

the system loses its stability due to the divergence via a 

pitchfork bifurcation. Hence, the Eigen frequencies have the 

positive real parts, which the system becomes unstable. In 

this state, both real and imaginary parts of frequency 

become zero at the same point. Therefore, with increasing 

flow velocity, system stability decreases and became 

susceptible to buckling. Furthermore, increasing CNT 

volume percent yields to increases in the Im(Ω). This is 

because increasing the CNT volume percent implies stiffer 

structure. 

In realizing the influence of magnetic field, Figs. 4 and 

5 show how dimensionless frequency and damping of 

concrete pipe changes with respect to dimensionless fluid 

velocity. It is found that from Fig. 4, the Im(Ω) and critical 

flow velocity for the structure increase with the increase of 

magnetic field. It is due to the fact that with increasing the 

magnetic field, the stiffness of structure increases. 

Figs. 6 and 7 illustrate the effect of length to thickness 

ratio (a/h) on the Im(Ω) and Re(Ω) versus V, respectively. 

The results indicate that with increasing length to thickness 

ratio, the frequency and critical flow velocity of concrete 

pipe are decreased. Figs. 8 and 9 show the variation of 

dimensionless frequency and damping versus dimensionless 

fluid velocity for different thickness to radius ratio (h/R). It 

can be observed that the frequency and critical flow 

velocity of concrete pipe are increased with increasing 

thickness to radius ratio. It is because with increasing length 

to thickness ratio and decreasing thickness to radius ratio, 

the stiffness of structure is decreased.   

 

 

7. Conclusions 
 

Applying classical cylindrical shell model, the vibration 

and stability of a concrete pipe reinforced with CNT were 

investigated. The pipe was conveying fluid and the structure 

was subjected to magnetic field. Using an analytical 

method, the frequency and critical fluid velocity of structure 

were derived. Following investigating the volume percent 

of CNTs, geometrical characteristics of the structure, fluid 

and magnetic field, it could be said that increasing volume 

percent of CNTs, increased frequency and critical fluid 

velocity. Applying the magnetic field to the structure leads 

to higher frequency and critical fluid velocity. It was also 

concluded that with increasing length to thickness ratio and 

decreasing thickness to radius ratio, the frequency and 

critical fluid velocity of structure were decreased.  
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