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Abstract.  This paper describes a deformation-based strut-and-tie model for the flexural members at post-yield state. 

Boundary deformation conditions by flexural post-yield response are chosen in terms of the flexural bar strains as the 

main factor influenced on the shear strength. The main purpose of the proposed model is to predict the shear 

capacities of the flexural members associated with the given flexural deformation conditions. To verify the proposed 

strut-and-tie model, the estimated shear strengths depending on the flexural deformation are compared with the 

experimental results. The experimental data are in good agreement with the values obtained by the proposed model. 
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1. Introduction 
 

The flexural and shear capacities of the line components of structures including beams 

subjected to transverse loading are a primary concern when they are designed. The procedure of 

the structural analysis of an entire structure is as follows: The flexural design is first conducted so 

that their flexural capacities satisfy applied bending moments and then the shear strength is 

checked to be stronger than the shear forces associated with the flexural strength. Flexural design 

of the members is simply achieved by sectional analysis under the assumption of the plane section. 

However, despite the tremendous empirical or analytical studies (Bresler and Scordelis 1963; Kani 

et al. 1979; Anderson and Ramirez 1989; Reineck 1991; Collins et al. 1996; Choi et al. 2012; 

Kassem 2015; Lee et al. 2016), there are no shear strength models which were generally consented, 

and the conservative shear strength obtained from empirical works is used in current design. The 

shear strength of reinforced concrete members is known to be influenced by a number of factors, 

which include the concrete strength, the quantity of the shear reinforcement, the ratio of shear 
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(a) Arch action (b) Truss action 

Fig. 1 Shear transfer mechanisms of deep beams: (a) arch action; (b) truss action 

 

 

reinforcement to flexural reinforcement, and the ratio of shear span relative to section depth. In 

addition to these geometrical factors, however, deformation condition of the members can be also 

an important factor determining the shear strength because of the softening characteristics of 

concrete with the increase of the strain in transverse direction and the bond loss with yield 

penetration (Hong et al. 2011, 2016). 

In this paper, a deformation-based strut-and-tie model for flexural members at the post-yield 

state is proposed. The deformation states of general beams are classified into five states. To 

validate the developed strut-and-tie model, the estimated shear strengths are compared with the 

experimental results. The experimental data show good agreement with the values estimated by the 

proposed model. 

 

 

2. Deformation-based Strut-and-Tie model for deep beams  
 

2.1 Shear transfer mechanism of deep beams 
 

Fig. 1 shows a load path of shear forces in deep beams. Arch action signifies the shear transfer 

by direction of diagonal strut connecting from the loading to the support, while truss action 

denotes the shear transfer via the transverse tie. In general, the portions of arch and truss actions 

are known to be dependent upon the ratio of shear span to section depth a/d and the transverse 

reinforcement.  

 

2.2 Strut-and-Tie modeling of deep beams 
 

To present the deformation-based strut-and-tie models, the deformation states of the deep 

beams are categorized into four states with the model taken as a function of the strain of flexural 

bars at the loading section. First, the flexural bars remain elastic or embark yielding in the model 

for State-I. In State-II, the flexural bars yield and yield penetration begins to propagate. In State-III, 

flexural deformation is developed so that the length of yielding bars is over half the span length. 

The yield penetration of flexural bars is fully developed and then the bond stress disappears in 

State-IV. The states, as a general guide to construct the strut-and-tie models, are selected from the 

following equations. These equations are demonstrated in terms of the range of the strain value of  
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(1) 

the flexural bars at the loading section. where req denotes the required strain of flexural bars at the 

loading section;y is yield strain of steel; Esh is the post-yield modulus of steel (=1/20 Es); and fby 

is the fictitious bond stress along the yielded bar (=1/5 fb) . The length of yielding bars is 

determined as 
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where db is the diameter of a flexural bar.  

The guide for dividing the deformation states can be replaced in terms of the length of yield 

penetration ly as follow 
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 (I) State-I State-II State-III State-IV 

Fig. 2 Model for State-I to IV: (a) stress field; (b) strain distribution of flexural bar; (c) bond stress 

distribution; (d) strut-and-tie model 
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2.2.1 State-I: Before yielding or initial yielding 
Fig. 2 exhibits the stress field for the deep beam. The distributions of flexural bar strain, bond 

stress, and the strut-and-tie model representing the load flows of the stress field are illustrated in 

Figs. 2(b), 2(c), and 2(d), respectively. In the stress field in Fig. 2(a), the maximum bond stress is 

determined to be at the support region. The maximum bond stress is calculated by the capacity of 

transverse tie and diagonal strut as follows 

max

1
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sv yv

b
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 (4) 

where n is the number of flexural bars; Asv is the area of transverse reinforcement between a space 

s; fyv is the yield stress of transverse reinforcement; fce is the effective strength of the diagonal strut; 

b is the beam width; fb is the bond strength (= 2ftsin2θ (0°≤θ≤45°) for T-T-C node or 4ft for C-C-T 

node); and the inclined angle α is determined as 

tan
jd

a
   (5) 

From the maximum bond stress in Eq. (5), the stress of transverse reinforcement is reversely 

found as 

max tan
 b

sv

sv

n d u s
f

A

 
  (6) 

The stress of transverse reinforcement fsv generally takes yield stress fyv. However, Eq. (6) 

shows that in case where the bond stress u near the support reaches the strength fb, the stress of 

transverse reinforcement fsv is governed by bond strength. 

Deformation of flexural tension reinforcement determines the flexural deformation of a deep 

beam. The average strain of the flexural reinforcement is a factor to determine the effective 

strength fce of a diagonal strut. With maximum bond stress umax in Eq. (4), the bond stress and the 

strain increment of flexural bars at the distance of x from the loading section are as follows 

max

x
u u

a
  (7) 

max4s

b s

d u
x

dx d E a


   (8) 

The strain of the flexural bars at the distance of x from the loading point is calculated as in the 

following 

2max2
s req

b s

u
x

d E a
    (9) 

Integrating the strain of the flexural bars over the span a, the entire tensile deformation of the 
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flexural bars s are given by 

2max max
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From Eq. (10), the average strain of the flexural bars can be calculated by the dividing the 

deformation by the span length a as 

,ave
s

s
a


   (11) 

 
2.2.2 State-II: After yielding (small flexural deformation) 
If the strain of the reinforcement at loading section exceeds the yield strain, yield penetration to 

the deep beam region is developed and the bond stress is diminished in the yielding zone (see Fig. 

2). To carry the bond stress lost in the yielding zone, the fan-shaped region near the yielding zone 

changes into uniform stress field. The bond stress between the end of yielding zone and the twice 

of the yielding zone length from the loading section is uniformly distributed. In the other regions 

out of the twice of the yielding length from the loading section, the bond stress distribution is the 

same as that of the State-I. The maximum bond stress and stress of transverse reinforcement of 

State-II are not different from those of State-I. Eqs. (4), (5), and (6) are employed for State-II. 

The bond stress and the strain increment of flexural bars at the distance of x from the loading 

section are as follows 

 

 

 

max

max

0   

2
   2

   2

y

y

y y

y

x l

l
u u l x l

a

x
u l x a

a





  


  


 
(12) 

 

 

 

max

max

4
   

8
   2

4
   2

by

y

b sh

ys
y y

b s

y

b s

f
x l

d E

u ld
l x l

dx d E a

u
x l x a

d E a




 


   


  



 
(13) 

The strain distribution of the flexural bars in the State-II can be determined by integrating the 

strain increment. Along the x-axis, the strain of the flexural bar is given by 
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The deformation of the flexural bars of the deep beam is calculated by integrating the strain 

over the span length as 
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The average strain of the flexural bars is calculated by dividing s by span a. 

 

2.2.3 State-III: Large flexural deformation 
If the strain of main bars increases such that the yielding zone length ly exceeds half the span 

length a/2, bond forces transferred in the smeared T-T-C nodal zone are gradually shifted to the C-

C-T node at the support, as demonstrated in Fig. 2. In State-III, the maximum bond stress and the 

stress of transverse reinforcement should be changed to satisfy the change of the inclined strut 

angle near the support. The maximum bond stress is taken as 
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(16) 

where ′ is the changed angle of the inclined strut connected with the non-yielding ties, which is 

defined as 

tan
2 y

jd

l
   (17) 

Note that if the inclined strut angle is changed in Eq. (17), the fan region must extend over the 

support point to carry the bond force lost in the yielding zone. Thus, another component to transfer 

the bond force, which cannot be carried by the T-T-C node, is required. That will be addressed with 

the condition of C-C-T nodal zone. From the maximum bond stress in Eq. (16), the stress of 

transverse reinforcement is reversely determined as 

max tan
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In the same manner as the State-I or II, bond stress u and strain increment of distance x from 

the loading section is calculated as 
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The strain distribution of the flexural bars in the State-III can be determined by integrating the 

strain increment. Along the x-axis, the strain of the flexural bar is determined as 
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The deformation of the flexural bars of the deep beam is calculated by integrating the strain 

over the span length as 
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The average strain of the flexural bars is calculated by dividing s by span a. 

 

2.2.4 State-IV: Ultimate Flexural Deformation 
In State-IV, the main bars over the span are fully yielded. The smeared T-T-C node having been 

in the flexural tie disappears and then only arch action resists the shear force. The State-IV 

represents the ultimate state in carrying the shear force of the deep beam. The transverse 

reinforcement just plays a part as confining of arch strut. The stress of transverse reinforcement is 

determined by only the capacity of the diagonal strut as 

2since
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sv
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f

A


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In State-IV, the bond stress along the flexural bars is fully diminished. 
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The strain increment of the flexural bar is given by 
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The strain distribution of the flexural bars in the State-III can be determined by integrating the 

strain increment. Along the x-axis, the strain of the flexural bar is given by 
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The deformation of the flexural bars of the deep beam is calculated by integrating the strain 

over the span length as 

2
2 by

s req y

b sh

f
l a

d E
    (27) 

The average strain of the flexural bars is calculated by dividing s by span a. 
 

2.3 Shear strength of deep beams 
 

2.3.1 State-I and-II 
In the State-I and II, shear strength of deep beams are determined by the summation of arch 

action Va and truss action Vt as 

u a tV V V   (28) 

The shear forces transferred by arch action Va and truss action Vt are defined as follows 

sina arch ceV a b f   (29) 

sv sv
t

A f a
V

s
  (30) 

where the strut width aarch is determined from the capacity of C-C-T nodal zone at the support; and 

the effective strength fce is calculated in Eq. (31) with the following deformation conditions.  

ce cf f   (31) 

where fc′ is the concrete compressive strength;  

0.85       for longitudinal strutv   (32) 

1

1
0.85      for diagonal strut

0.8 170



 


 (33) 

1 2x v       (34) 

To make easier, it is assumed that the direction of principal compression strain coincides with 

the direction of diagonal concrete strut. Since the model represents the ultimate state of shear 

transferring mechanism, the principal compression strain is taken as the strain at the ultimate stress. 

 2 0.002cu     (35) 

The average horizontal strain x is taken as the half of the average strain of the flexural bars in 

Eq. (11) as below on the assumption that the horizontal compression strain of top chord is ignored. 

,

2

s ave

x


   (36) 

The vertical strain is simply taken by dividing the transverse tie stress by elastic modulus of 

steel. 
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(a) Forces acting on C-C-T node (b) Geometries of the node 

Fig. 3 C-C-T node: (a) forces acting on C-C-T node; (b) geometries of the node 

 

 
Fig. 4 Dimensions of C-C-T node 

 

 

Fig. 3 shows (a) forces acting on the C-C-T node at support and (b) the geometries of the node. 

In the figure, the force Ct represents the compression force of fan region carrying the shear via the 

transverse ties and the force Ca denotes the compression force of arch strut. To ensure the 

transferring between the tensile force T in the flexural tie and compression forces in diagonal strut 

Ct and Ca, the load transferring capacity of the C-C-T node should be sufficiently achieved. In 

Figure 3(b), fictitious anchor plate is employed so as to determine the dimension and strength of 

the C-C-T nodal zone. In order to avoid the anchorage failure, sufficient anchorage length should 

be provided in the left side of the support. The anchorage length la is defined as the length between 

the support point and end of the bars. The nodal depth of C-C-T node wn can be determined by 

assuming the anchorage zone as smeared C-C-T node where bond stress along the bars is fbc (=4ft). 
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In the State-I or II, the dimensions of C-C-T node is defined as shown in Fig. 4. The 

compression forces Ct and Ca are determined as 
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a arch cC a bvf   (40) 

where  is the angle of the mean angle of fan-shaped strut composing truss action Ct as 

2
tan

jd

a
   (41) 

At the C-C-T node, equilibrium among the horizontal components of the anchorage force, the 

compression force Ct and the compression force Ca should be satisfied as 

 0.85 cos cosc n t af w b C C     (42) 

Thus, the depth of arch strut aarch can be determined as 

cos

cos (0.85 )cos

n t
arch

c

w C
a

b f



 
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
 (43) 

If the depth of diagonal strut aarch has a negative value, the failure of a deep beam is governed 

by anchorage failure. In that case, the contribution of arch action becomes nullified and the truss 

action is also limited by anchorage capacity. Therefore, the shear strength governed by anchorage 

failure is given by 

 0.85 tanu n cV bw f   (44) 

 

 
2.3.2 State-III and IV  
In the State-III and State-IV, shear resistance by truss action is gradually diminished and the 

role of transverse reinforcement is changed from truss action to the confining effect of the arch 

strut. From the strut-and-tie models in Fig. 2(d), the shear strength of deep beams in the State-III 

and IV is presented in the same form of those of the State-I or State-II as 

u a tV V V   (45) 

The shear force transferred by arch action Va is defined in the same manner with in State-I or II, 

as follows 

sina arch ceV a b f   (46) 

The strut width aarch is determined from the C-C-T nodal condition at the support and the arch 

strut mid-depth as below 

 

cos
at C-C-T nodal face

cos (0.85 )cos 

2 sin at mid-strut

n t

carch

y

w C

b fa

a l



 




  

 


 (47) 

where the compression force composing the truss action Ct is determined as 

 2 2
sin

sv sv
t y

A f
C a l

s 
   (48) 
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The effective strength fce follows the effective strength of nodal face fcn at the C-C-T node and 

Eq. (33) at the mid-strut with deformation conditions in the same manner with those in State I and 

State II. The shear resistance of arch action is determined as 

 

cos
sin sin

cos (0.85 )cos min 

2 sin sin

n t
arch ce cn

ca

y ce

w C
a b f b f

b fV

a l b f


 

 

 

  
   

  
 


 (49) 

The shear resistance by truss action Vt should be reduced to satisfy the equilibrium condition in 

the updating stress field as 

 2 2sv sv
t y

A f
V a l

s
   (50) 

At the C-C-T node, equilibrium among the horizontal components of the anchorage force, the 

compression force Ct and the compression force Ca should be satisfied as 

 0.85 cos cosc n t af w b C C     (51) 

In case of the State-III and IV, anchorage failure is apt to occur because the more tension force 

in reinforcement should be anchored. However, since the depth of arch strut is calculated from the 

anchorage capacity of C-C-T node in this proposed model, the anchorage failure is presented as 

the failure of arch strut. Note that the anchorage failure in the State-III and IV is associated with 

the compression failure of arch strut. 
 

 

3. Deformation-based Strut-and-Tie model for general beams 
 

In case that shear span to depth ratio a/d increases, uniform compression field between the two 

opposite fans should take place instead of direct arch strut. Fig. 5 shows the stress field of a typical 

simple supported beam, where fan region is near the loading point and the support, and  

uniform compression field is between the fan regions. 

To determine the shear strength of the beam, the geometry of stress field should be defined. The 

region of fan and the arch strut angle is predefined by the dimensions of the deep beam that are 

shear span a and lever arm length jd, the diagonal strut angle α of general beam depends on the 

transverse reinforcement, bond capacity of main bars, compressive strength of diagonal strut as 

well as the dimensions of beam. The diagonal strut angle should be determined according to the 

failure mode of a beam. In this section, possible shear failure modes of general simple supported 

beams are classified and the strut-and-tie models for estimating the shear strengths of the beams 

are provided. Stress fields vary due to the governing failure modes and flexural deformation 

conditions. 
 

 

 
Fig. 3 Stress field of simple supported beam 
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(a) combining failure of shear tension-bond (b) shear compression failure 

 
(c) anchorage failure 

Fig. 4 Shear failure modes of general beams: (a) combining failure of shear tension-bond; (b) shear 

compression failure; and (c) anchorage failure 

 
 

3.1 Classification of shear failure modes for beams  
 

Relatively short beams with shear span to depth ratio a/d from 1 to 6 develop inclined cracks. 

The shear forces are carried by the concrete between the inclined cracks and transverse bars 

crossing the cracks. Due to redistribution of the internal forces, inclined crack angles are changed 

according to the loading stages. After forming the inclined cracks joining the support and the 

loading point, a part of shear force can be carried by arch action. In such a beam, shear failure 

modes are divided into four types: combining failure of shear tension and bond, shear compression 

failure and anchorage failure, which are illustrated in Fig. 6.  

If the strut angle is defined and the strength reduction by flexural deformation is ignored, the 

shear strengths according to each failure mode can be determined by equilibrium condition and 

strengths of the component, as follows 

(1) Shear tension failure at inclined crack 

tan

sv yv

ST

A f jd
V

s 
  (52) 

(2) Bond failure along the main bars 

B b bV jdn d f  (53) 

(3) Shear compression failure at the uniform stress field 

sin cosSC ceV b jd f    (54) 

(4) Anchorage failure at the support 

  0.85 2tanAn n cV bw f   (55) 

(b)

(c)

(a) (b)

(c)

(a)

(b)

(c)

(a)
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Deformation-based Strut-and-Tie Model for flexural members subject to transverse loading 

3.2 Shear strength of general beam 
 

In the same manner as deep beams, stress fields for general beams are presented and 

categorized into five states according to the strain state of flexural bars at the loading section. First, 

in the model for the State-I, flexural bars remain elastic or embark yielding. In the State-II, flexural 

bars yield and yield penetration begins to propagate. In the State-III, flexural deformation has 

developed such that the length of yielding bars ly exceeds half the initial fan shaped region. In the 

State-IV, the length of yielding bars ly exceeds half the span a/2. In the State-V, the main bars yield 

over the span and the bond stress is fully deteriorated. The states, as a general guide to construct 

models, may be selected from the following equation 

y

    for State I

2
    for State II

tan

2 2
   for  State III

tan

2 4
   for  State IV

4
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 

  


  


  

 





  

   

   

 

req y

by

req y

b sh

by by

y req y

b sh b sh

by by

y req y

b sh b sh

by

y req

b sh

f jd

d E

f fjd
a

d E d E

f f
a a

d E d E

f
a

d E













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


 (56) 

It also can be presented in terms of the yielding zone length ly, as follows 

0    for State I

0     for State II
2 tan

    for State III
2 tan 2

   for  State IV
2

    for State IV







  


  


  

 


y

y

y

y

y

l

jd
l

jd a
l

a
l a

l a

 (57) 

 

 

3.2.1 State-I: Before yielding 
 
Fig. 7(a) shows the stress field for beams in the State-I, where shear tension failure would occur 

with bond failure or shear compression failure; shear tension-bond failure and shear tension-

compression failure. Fig. 7(b) and (c) display the stress field and bond stress distribution along the 

main bars in the State-I, respectively, where the angle of uniformly distributed stress field  can be 

calculated by the condition of simultaneous failure of two components.  
If the transverse reinforcement yields and the bond stress along the main bars reaches the 
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(a) 

  

(b) 

(c) 

 State-I State-II 

Fig. 7 Model for State-I and State-II: (a) stress field; (b) strain distribution of flexural bars; and (c) 

bond stress distribution along the flexural bars 

 

 

strength, shear tension-bond failure occurs. From the condition of simultaneous yielding of 

transverse tie and bond failure at T-T-C node, the following equation is given 

tan

sv yv

b b

A f jd
n d f jd

s



  (58) 

If the transverse reinforcement is yielded and the compression stress of the uniformly 

distributed field reaches the effective strength, shear tension-compression failure occurs. From the 

condition of simultaneous yielding of transverse tie and crushing of diagonal strut, the following 

equation is given 

cos sin
tan

sv yv

ce

A f jd
b jd f

s
 


  (59) 

If the inclined strut angle  obtained from Eqs. (58) and (59) is smaller than the angle from 

horizontal axis to the line joining load and support, uniformly distributed stress field does not form 

and the strength of a beam is determined from the stress field for deep beams, when the angle of 

inclined strut is given by 

tan
jd

a
   (60) 

The inclined strut angle in the State-I is determined as the minimum of the angles in Eqs. (58), (59) 

and (60). The governing failure mode of beam is determined by the inclined strut angle. 

1

1

1
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4

 min. of sin    shear tension-compression failure
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sv yv
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 (61) 
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3.2.2 State-II: After yielding (small deformation) 
In the stress field in the State-II, inclined strut angle does not change but the effective strength 

of concrete strut decreased due to the flexural deformation, as demonstrated in Fig. 7. The shear 

strength in the State-II is the same as that in the State-I, and is expressed as 

tan

sv sv
u

A f jd
V

s 
  (62) 

where the stress of transverse reinforcement fsv is limited by the equilibrium with diagonal strut 

forces as 

2since
sv yv

sv

sb f
f f

A


   (63) 

The effective strength fce is calculated in Eqs. (31), (32), (33), and (34). 

  

3.2.3 State-III: When yielding zone exceeds half of fan region 
If flexural deformation increases so that the yielding zone length ly exceeds half the fan length, 

the fan region extends with reduced inclined angle ′ to carry the bond forces lost in previous fan 

region and stress field is then modified in Figure 8. Thus, the shear strength in the State-III is 

determined as 

tan

sv sv
u

A f jd
V

s 



 (64) 

Since the inclined strut angle decreases with the extension of yielding zone, the tensile stress of 

transverse reinforcement becomes under the yield stress which is calculated by equilibrium 

condition with inclined strut force and bond force as 

2sin
     compression failure

 min. of 
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     bond failure
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sv
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A
f

sn d f

A



 




 



 
(65) 

The effective strength fce is calculated using Eqs. (31), (32), (33), and (34).   

 

 

(a) 

 

(b) 

(c) 
Fig. 8 Model for State-III: (a) stress field; (b) strain distribution of flexural bars; and (c) bond stress 

distribution along the flexural bars 
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(a) 

 

  

(b) 

(c) 

 State-IV State-V 

Fig. 9 Model for State-IV and State-V: (a) stress field; (b) strain distribution of flexural bars; and (c) 

bond stress distribution along the flexural bars 

 

 

3.2.4 State-IV and V: When yielding zone exceeds half of span 

If the inclined strut angle ′ decreases so that the fan region length reaches the span length, an 

arch strut forms connecting the support and the loading point like the stress field of deep beams. 

Figure 9 shows the stress fields in the State-IV and V. The shear strength in the State-IV and V can 

be calculated by the procedures of deep beams in the State-III and IV, respectively.  

 

3.2.5 Anchorage failure 
Regardless of flexural deformation, anchorage failure may occur if sufficient development 

length over the support is not achieved. This anchorage failure should be checked for the stress 

fields at all states illustrated in the previous sections. The strength of anchorage failure is given by 

 0.85 tanu n cV bw f   (66) 

where the strut angle  is as follows 
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 


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



 
(67) 

 

 

3.3 Summary of shear failure modes 
 

Table 1 summarizes shear failure modes and guide for appropriate selection of the stress field 

according to the geometries and loading states of the beams. In elastic state (State-I), shear failures 

are accompanied with the yielding of shear reinforcement; (1) yielding of shear reinforcement and 

bond failure or (2) yielding of shear reinforcement and crushing of web concrete. Since the shear 

capacity associated with bond strength does not depend on the flexural deformation, bond failure 

could occur only before flexural yielding. At post-yield state, only the failure of compression strut 

causes the shear failure of the beam. 
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Table 1 Guide for appropriate selection of the model according to loading states 

 Bond failure mode Compression failure mode Deep beam (arch strut failure) 

State-I 

0yl  

 : Eq. (59) 

Vu: Eq. (53) 

Shear tension-bond failure 

 : Eq. (60) 

Vu: Eq. (54)  

Shear tension-compression 

failure 

 : Eq. (5)  

Vu: Eq. (28)  

Shear tension and arch strut 

failure 

State-II 

0
2

 
f

y

l
l   

  

State-III 

2 2
 

f

y

l a
l  

 :Eq. (65)  

Vu: Eq. (54)  

Shear compression failure by 

concrete softening 
 

 

 : Eq. (17)  

Vu: Eq. (45)  

Arch strut failure 

State-IV 

2
 y

a
l a  

 

State-V 

yl a  

 

 

4. Verification 
 

4.1 Relationship between flexural deformation of beam and required strain of flexural 
bars at loading section 
 

The stress fields and strut-and-tie models for beam shear strength proposed in this paper were 

based on the boundary deformation condition in terms of required strain of the flexural bars at the 

loading section. Because the boundary deformation is affected by the deformation of beam or the 

plastic hinge rotation, the strain of flexural bars is expressed in terms of flexural deformation of 

the beam. 

 

 

 
Fig. 5 Calculation of plastic flexural deformation of beam 
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For the relationship between vertical displacement of a beam at the mid-span and the strain of 

the flexural bars, the flexural deformation of a beam is subdivided into elastic deformation and 

plastic deformation. The vertical displacement of the mid-span  is expressed as 

e p      (68) 

where e is vertical displacement by the elastic flexural deformation of beam, which is calculated 

by following the ACI 318-14, as 

3

3
e

c eff

Va

E I
   (69) 

where V is the shear force applied on the beam; Ieff is the effective moment of inertia, which is 

selected as the equation proposed by ACI code. Note that the shear force V is not the shear strength 

of the strut-and-tie model but the shear force associated with flexural strain at the loading section.  
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

 (70) 

where p is the vertical displacement of beam by plastic strain of main bars within the yielding 

zone. As shown in Figure 10, plastic deformation is calculated as 

 

1

2 3

req y

p y yl a l
d c

   
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  
 (71) 

 

 

4.2 Comparison of the model prediction with test data 
 

The proposed deformation-based strut-and-tie model for beams is used to calculate the shear 

strengths depending on the flexural deformation of total nine test specimens in the literature (Shin 

et al. 1999; Vecchio and Shim 2004). All tested beams were simply supported beams subjected to 

one point monotonic loading. In selecting the test data, the specimens that exhibited shear failure 

mode were considered. To consider the bond in T-T-C node composing the truss action, the beams 

without  
 

 

 
Fig. 6 Procedures determining ultimate deformation 
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Table 2 Dimensions and sectional properties of test specimens (Shin et al. 1996; Vecchio and Shim 2004) 

Specimen b (mm)  d (mm)  h (mm)  a (mm)  a/d 

HB1.5-25 125 215 250 323 1.5 

HB2.0-25 125 215 250 430 2 

HB2.5-25 125 215 250 538 2.5 

A1 305 457 552 1830 4 

A2 305 457 552 2285 5 

A3 305 457 552 3200 7 

B1 229 457 552 1830 4 

B2 229 457 552 2285 5 

B3 229 457 552 3200 7 

C1 152 457 552 1830 4 

C2 152 457 552 2285 5 

C3 152 457 552 3200 7 

Notes: b is the beam width; d is the effective depth; h is the beam depth; a is the shear span length. 

 
Table 3 Material properties and reinforcement information (Shin et al. 1996; Vecchio and Shim 2004) 

Specimen 
Concrete Flexural Reinforcement Vertical Reinforcement 

 ' MPacf   2mmsA   MPayf   2mmsvA   MPayvf   mms  

HB1.5-25 73 982 414 56.5 414 101 

HB2.0-25 73 982 414 56.5 414 141 

HB2.5-25 73 982 414 56.5 414 188 

A1 22.6 2400 440 64.4 600 210 

A2 25.9 3100 440 64.4 600 210 

A3 43.5 3800 440 51.4 600 168 

B1 22.6 2400 440 64.4 600 190 

B2 25.9 2400 440 64.4 600 190 

B3 61.5 3100 440 51.4 600 152 

C1 22.6 1400 440 64.4 600 210 

C2 25.9 2400 440 64.4 600 210 

C3 43.5 2400 440 51.4 600 168 

 

Notes: f′c is the concrete compressive strength; AS is the area of reinforcement; fy is the yield strength of reinforcing steel; ASV is the area 
of vertical reinforcement; fyv is the yield strength of vertical reinforcing steel; s is the spacing of shear reinforcement. 

 

 

stirrup were not used for predition. The geometries of the tested beams, the material properties, 

and the reinforcement information are summarized in Table 2 and 3. The tested beams cover a 

wide range of span conditions exhibiting the shear failure mode. The ratio of shear span to 

sectional effective depth a/d varies from 1.5 to 7. Using the proposed strut-and-tie model, the shear 

capacity of the beam is calculated with incrementally increasing flexural deformation. The 

ultimate deformation is obtained when the shear capacity decreases to the applied shear force  
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associated with flexural moment. The procedures determining the ultimate flexural deformation 

are summarized as below and conceptually illustrated in Fig. 11. 
 

 

Table 4 Comparisons of strength and deformation with test results (Shin et al. 1996; Vecchio and Shim 

2004) 

Specimen 
Test Result Proposed Model Comparison(cal/test) 

 , kNu testV   , mmu test   , kNu calV   , mmu cal  , ,/u cal u testV V  , ,/u cal u test   

HB1.5-25 211.6 2.68 192.8 1.17 0.911 0.438 

HB2.0-25 145.1 3.07 151.6 1.78 1.045 0.581 

HB2.5-25 120.4 3.33 123.1 2.79 1.022 0.838 

A1 229.5 18.80 211.7 16.30 0.922 0.867 

A2 219.5 29.10 212.1 31.33 0.966 1.077 

A3 210.0 51.00 200.1 69.74 0.953 1.367 

B1 217.0 22.00 194.5 17.37 0.896 0.789 

B2 182.5 31.60 162.8 32.35 0.892 1.024 

B3 171.0 59.60 170.5 76.87 0.997 1.290 

C1 141.0 21.00 118.3 15.03 0.839 0.716 

C2 145.0 25.70 138.3 33.71 0.954 1.312 

C3 132.5 44.30 119.8 60.32 0.904 1.362 

Notes: Vu, test is the shear strength of specimen; δu,test is the deformation at failure; Vu,cal is the calculated shear strength; δu,cal is the 

calculated deformation at failure. 

 

   

   

   
Fig. 12 Comparison of test results with predicted results 
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Fig. 12 Continued 

 

 

 (1) Determine the governing failure mode in elastic state from Eqs. (58), (59), and (60). This 

enables to determine the initial shear capacity and inclined strut angle .  

(2) Increase the required strain req of flexural bars at the loading section. 

(3) Calculate the applied shear force V and the flexural deformation   associated with the 

flexural bar strain req from Eqs. (68), (69), (70), and (71). These shear force and flexural 

deformation govern the flexural response of the beam. 

(4) Determine shear strength using the proposed strut-and-tie model according to the required 

strain req. It is required to select the loading state from Eq. (56). The shear capacity can be 

calculated from the stress field corresponding to the selected loading state. In design, since the 

deformation requirement is given, shear reinforcement can be detailed in this step. 

(5) Compare the applied shear force in step (3) and the shear strength in step (4). If the shear 

strength decreases to the applied shear force, shear failure occurs, and the flexural deformation is 

the ultimate flexural deformation of the beam. Repeat from step (2) to step (5) until the shear 

failure occurs.  

Comparison of the predicted results with test data is illustrated in Fig. 12. The x-axis denotes 

the vertical displacement of beams and y-axis signifies the shear forces. The normal solid line 

illustrates the load-deformation relationship of the tested beam, the dashed line denotes the 

flexural response calculated from the deformation condition, and the bold solid line is the 

predicted shear strengths according to the flexural deformations using the proposed model. The 

intersection point of the shear strength (bold solid line) and flexural response (dashed line) 

indicates the flexural deformation capacity of the beam limited by shear failure.  
 

 

5. Conclusions 
 

In this paper, the procedure to determine the shear strength of beams at post-yield state 

depending on the flexural deformation is presented. Using strut-and-tie models capable of 

considering the change of stress field due to the redistribution of internal forces by the effect of 

flexural deformation at post yield state, flexural deformation capacity limited by shear failure can 

be predicted. The conceptual relationship between the shear capacity and the flexural behavior of 

beams is shown. As flexural deformation increases, shear strength of beams decreases. The point 

where the curve of flexural behavior meets the curve of shear capacity means shear failure limiting 

the flexural behavior. If requirement of flexural deformation is determined from the system 

analysis, the shear design can be carried out with the proposed deformation-based strut-and-tie 

model so that shear strength at required deformation state is larger than the shear force associated 

with flexural strength. 
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