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Abstract. A methodology using neural networks has been proposed for rapid prediction of inelastic bending
moments in reinforced concrete continuous beams subjected to service load. The closed form expressions
obtained from the trained neural networks take into account cracking in concrete at in-span and at near the
internal supports and tension stiffening effect. The expressions predict the inelastic moments (considering
the concrete cracking) from the elastic moments (neglecting the concrete cracking) at supports. Three
separate neural networks are trained since these have been postulated to represent all the beams having any
number of spans. The training, validating, and testing data sets for the neural networks are generated using
an analytical-numerical procedure of analysis. The proposed expressions are verified for example beams of
different number of spans and cross-section properties and the errors are found to be small. The proposed
expressions, at minimal input data and computation effort, yield results that are close to FEM results. The
expressions can be used in preliminary every day design as they enable a rapid prediction of inelastic
moments and require a computational effort that is a fraction of that required for the available methods in
literature.

Keywords: bending moment; closed form expression; cracking; neural network; reinforced concrete;
service load

1. Introduction

Reinforced Concrete (RC) beams are widely used in the construction of buildings and bridges.
In a continuous beam, the hogging moment occurs near the ends of the members whereas the
sagging moment occurs in the middle portion of the members. At service load, concrete in tensile
zone generally gets cracked owing to moments in the zone being higher than the cracking
moments. For example, in an intermediate span of a RC continuous beam, cracking may occur
near the internal supports and in the middle portion of a span as shown in Fig. 1. Due to this
cracking, there can be a significant amount of moment redistribution in the continuous beams.

A large number of procedures are available in the literature for the analysis of RC beams, which
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Fig. 1 A typical intermediate span of a RC beam with loads, bending moment, and possible cracked-

uncracked zones 

 

 

take into account the concrete cracking and other non-linear effects such as aggregate interlock, 

dowel action, bond-slip, etc. In Type 1 procedures (Wang and Hsu 2001, Yang and Chen 2005, 

Stramandinoli and Rovere 2008, 2012, Mohr et al. 2010, Casanova et al. 2012, Dai et al. 2012), 

members are discretized into a number of elements along the length or across the cross-section or 

both along the length and across the cross-section. In Type 2 procedures (Chan et al. 2000a, b, 

Tanrikulu et al. 2000, Dundar and Kara 2007, Kara and Dundar 2009, 2010), the effective moment 

of inertia of members (representing average moment of inertia along the member length) and the 

transformed section properties are considered. Both these types of procedures are based either on 

an incremental or iterative approach and therefore, require a computational effort, which is many 

times more than that required for the elastic analysis (neglecting cracking). 

In order to deal with serviceability limit state of cracking, ACI 318 (2005) gives an empirical 

relation for limiting value of reinforcement spacing, s , in which stress in steel, fs on tension face is 

one of the parameters. It is implicit that undistributed moments would be used in evaluation of fs. It 

would be rational to develop relation which would make use of distributed moments in evaluation 

of S. No procedure exists for rapid evaluation of inelastic moments resulting from cracking. The 

use of closed form expressions obtained from the trained neural networks may be made in such 

cases to rapidly estimate the inelastic moments of design interest for use in everyday design. It is 

expected that the present methodology which yields rapid estimation of inelastic moments would 

give impetus to develop more rational relation that make use of inelastic moments rather than 

elastic moments. 

Neural networks have been extensively used in the field of structural engineering to predict the 

parameters without any rigorous analysis and experiments (Chaudhary et al. 2007, 2014, 

Pendharkar et al. 2007, 2010, 2011, 2015, Kim et al. 2009, Saechai et al. 2011, 2012, Khan 2012, 

Mohammadhassani et al. 2013a, b, Joshi et al. 2014, Tohidi and Sharifi 2015). Many researchers 

have proposed closed form expressions using the weight matrices and activated function of the 

trained neural network. Some of the closed form expressions obtained from the trained neural 

networks have been used by researchers for determination of distortional buckling stress in cold-

formed steel members (Pala 2006), estimation of ultimate pure bending of fabricated and cold-

formed steel circular tubes (Shahin and Elchalakani 2008), prediction of base shear of steel frame 

structures (Caglar et al. 2009), estimation of distortional buckling stress in elliptical hollow section 

tubes (Dias and Silvestre 2011), evaluation of deflections in composite bridges considering 
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Fig. 2 A cracked span length beam element 
 

 

nonlinear effects like flexibility of shear connectors, concrete cracking and shear lag effect 

(Tadesse et al. 2012, Gupta et al. 2013, 2015), and prediction of effective moment of inertia in RC 

beams (Patel et al. 2015). Such closed form expressions are useful to estimate the quantities of 

design interest for use in everyday design with acceptable accuracy. These studies reveal the 

strength of neural networks in predicting the solutions of different structural engineering problems. 

In this paper, a methodology using neural networks has been proposed for rapid prediction of 

inelastic bending moments in RC continuous beams subjected to service load. The closed form 

expressions obtained from the trained neural networks take into account cracking in concrete and 

tension stiffening effect. The expressions predict the inelastic moments, M
in
 (considering the 

concrete cracking) from the elastic moments, M
el
 (neglecting the concrete cracking) at supports. 

M
el
, in turn, can be obtained from any of the readily available software. The expressions enable 

rapid estimation of inelastic moments and require a computational effort that is a fraction of that 

required for Type 1 and Type 2 procedures available in the literature. The proposed expressions 

have been verified for a number of example beams. The errors are shown to be small for practical 

purposes. The methodology can be extended for large RC building frames where a very significant 

saving in computational effort would result. 

 

 

2. Analytical-numerical procedure for analysis of RC beams 
 

For generalized and efficient neural networks, a huge number of training, validating, and 

testing data sets are required for which a highly computationally efficient method is desirable. 

Recently, Patel et al. (2014) developed an analytical-numerical procedure to take into account 

concrete cracking within the spans and near the internal supports and reinforcement variation 

along the span in RC beams. The procedure is analytical at the element level and numerical at the 

structural level. A cracked span length beam element, consisting of five zones (three cracked zones 

of lengths xA, xB at the ends A and B respectively and xS at an in-span position, and two uncracked 

zones in between the cracked zones), (Fig. 2) has been used in the procedure. The closed form 

expressions for crack lengths, flexibility matrix coefficients, end displacements, and mid-span 

deflection of the cracked span length beam element are derived and used in the procedure. Tension 

stiffening effect is also taken into account by evaluating average interpolation coefficients for the 

cracked zones. The analysis is carried out using an iterative method. 

Consider, a typical iterative cycle. A displacement analysis is carried out in the beginning of 

the cycle for the out-of-balance force vector of the RC beam at the end of the previous cycle.  
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xA xS 

L 

xB 
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Revised force vector and displacement vector are obtained by adding the force vector and 

displacement vector obtained from this analysis to the force vector and displacement vector at the 

end of previous cycle. Crack lengths and interpolation coefficients are then updated according to 

the revised force vector (Varshney et al. 2013). 

Changes in the cracking state of the sections (cracked or uncracked) and thereby in the end 

rotations of the beam elements lead to the difference between the displacement vector of these 

elements obtained from the displacement analysis and that obtained by the principle of virtual 

work involving integration of curvature diagram of a member. The out-of-balance force vector 

corresponding to this error in displacement vector can be obtained using the revised flexibility 

matrix of the beam element. 

The out-of-balance force vector of the continuous RC beam (obtained by assembling the out-

of-balance force vector of the beam elements) should be within permissible limit (Bathe 2002) for 

the iterative process to terminate; otherwise a new cycle is started. Required results are obtained 

after convergence is achieved. 

The procedure has been validated by comparison with the experimental and numerical results 

available in literature along with finite element method (FEM) results. The computational time 

required by the procedure is shown to be a small fraction of that required in the FEM. 

 

 

 
(a) 

 
(b) 

Fig. 3(a) A typical span of a continuous beam and (b) schematic representation of input and output 

parameters 
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Table 1 Practical range and sampling point of probable structural input parameters 

Parameter Range 
Sampling point 

Numbers Values 

1iC 
, 

iC , 
iC  0.10 - 2.00 10 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.2, 1.5, 1.8, 2.0 

1iR  , 
1iR
, iR , 

iR , 1iR   0.25 - 4.00 7 0.25, 0.33, 0.5, 1.0, 2.0, 3.0, 4.0 

1i iS S  0.25 - 4.00 7 0.25, 0.33, 0.5, 1.0, 2.0, 3.0, 4.0 

1i iw w  0.25 - 4.00 7 0.25, 0.33, 0.5, 1.0, 2.0, 3.0, 4.0 

 

 

3. Selection of probable structural parameters 
 

In order to cover a wide range of practical cases, it is required to define important parameters 

which could be varied to cover all practical situations and can be used as input parameters for 

generation of data sets.  

As stated earlier, cracking in RC beams occurs near the internal supports (where hogging 

moments occur) and at in-span (where sagging moments occur) when elastic moments are higher 

than cracking moments. Owing to cracking, the moment of inertia of sections reduce from that of 

uncracked section, I
un

 to that of the cracked section, I
cr

, thereby reducing the stiffness of the spans. 

The elastic bending moment, M
el
 gets therefore redistributed and lead to inelastic bending moment, 

M
in
. 

It has been shown in earlier studies for continuous composite beams (Chaudhary et al. 2007, 

Pendharkar et al. 2007), that in order to establish redistribution of moment at any support with 

sufficient accuracy, cracking at the support and adjacent supports only needs to be considered. It is 

therefore assumed that in order to establish redistribution of moment at a support i  in a RC 

continuous beam with sufficient accuracy, cracking at the support and adjacent supports and at the 

mid of adjacent spans only needs to be considered (Fig. 3). In the figure, superscript, i  refers to 

the quantities at support i whereas, subscripts, i−1 or i refer to the quantities in spans i−1 or i. Fig. 

3(a) shows an intermediate portion of a continuous beam with internal support i, and adjacent 

spans i−1 and i of lengths Li−1 and Li subjected to loadings wi−1 and wi respectively. 

Considering the above discussion, the parameters affecting the redistribution of moments at a 

support i may be listed as 

1. Inertia ratio at the support, C
i
 , where C=I

cr
/I

g
 (I

cr
= transformed moment of inertia of RC 

section about neutral axis neglecting concrete in tension or cracked moment of inertia of RC 

section about neutral axis, and I
g
 = gross moment of inertia of RC section about neutral axis). 

2. Inertia ratios at the mid of the spans, C i−1 and Ci. 

3. Cracking moment ratios at the supports, R
i−1

, R
i 
and R

i+1
 where R=M

cr
/M

el
.  

4. Cracking moment ratios at the mid of the spans, Ri−1 and Ri. 

5. Stiffness ratio of adjacent spans, Si− 1/Si (Si=EcI
g
/Li, where Ec= modulus of elasticity of 

concrete, and Li = length of i
th
 span). 

6. Load ratio of adjacent spans, wi−1/wi. 

 

The moment at any cross-section along the length of a span can be obtained from the support 

moments and loading. Inelastic moment, M
in,j

, at support i, may be obtained from elastic moment, 

M
el,j

 and the inelastic moment ratio, M
el,j

/M
in,j

 at support i. The ratio M
el,i

/ M
in,i

 would be the output 
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parameter, O for the neural networks. These ten input and one output parameters are schematically 

shown in Fig. 3(b). The practical ranges for the probable structural parameters are given in Table 1. 

 

 

4. Data sets generation for neural networks 
 

Since the training of the neural network is an essential step in its performance, a sufficiently 

large data set should be generated for training, validating, and testing. The performance in terms of 

generalization and prediction qualities of a neural network depends significantly on the training, 

validating, and testing data and the domain this data covers (Maru and Nagpal 2004). 

It may be noted that the minimum number of spans in a continuous RC beam in which moment 

redistribution occurs is two. It may, further, be assumed that a beam with more than two spans 

would represent all the beams with three and larger number of spans. Presently, a representative 

beam having five spans is assumed to represent all beams having three and more spans. However, 

for continuous beams having more than two spans, non linear effects of cracking at penultimate 

and internal supports are different. It may further be assumed that the non linear effects of cracking 

at all internal supports are similar in beams having more than two spans. Accordingly, two separate 

data sets are generated for penultimate and internal supports of continuous beams having more 

than two spans. The penultimate supports of three span beams are assumed to be represented by 

penultimate supports of representative five span beam. One data set is separately generated for two 

span continuous beams. Hence, two sets of beams with number of spans equal to two and five may 

be considered to represent continuous composite beams with any number of spans. 

First, consider the internal support (i = 2) of a two span continuous beam. Since moments at 

supports 1i  and 1i  are equal to zero, only eight input parameters (Ci−1, C
i
, C i+1, Ri−1, R

i
, Ri+1, Si−

1/Si, wi−1/wi) need be considered. Next, consider continuous beams having three and more spans. 

For internal supports, as discussed in section 3, ten input parameters are considered. For 

penultimate supports also, ten parameters are considered. In order to simulate values of moments 

at external supports equal to zero, constant high values (= 20) for R
i−1

 and R
i+1

 are specified. 

The sampling points of each input parameter considered, for data generation, are shown in 

Table 1. A combination of sampling points of the input parameters and the corresponding resulting 

value of the output parameter comprises a data set. 

For data generation, an analytical-numerical procedure (Patel et al. 2014) has been used. The 

training data sets have been generated for the combinations of the sampling points of input 

parameters shown in Table 1. The parameters Ci − 1, C
i
, C i+1, Si − 1/Si, wi − 1/wi can be varied 

independently and assume values  indicated in Table 1. However the parameters R
i−1

, Ri−1, R
i
, Ri, 

R
i+1

 are interdependent and it is difficult to vary these independently, therefore one parameter is 

varied independently and the other parameters are allowed to assume values in the practical range 

0.25 - 4.00. The training sets in which the values of the other parameters fall outside the practical 

range 0.25 - 4.00 are not considered. 

Three neural networks, one for two span beams and two for multi span (having three and larger 

number of spans) beams are trained. The neural network for two span beams is for the internal 

supports and is designated as NET-TI. The neural networks for internal and penultimate supports 

of multi span beams are designated NET-MI and NET-MP respectively. For data generation of 

NET-MI and NET-MP, five span continuous beams are considered. 

If the parameters R
i−1

, Ri−1, R
i
, Ri, R

i+1
 could be varied independently, the upper limit to the 

number of  possible data sets that can be generated for training, validating and testing of the  
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Table 2 Normalization factors for input and output parameters 

Network 

Parameters  

Input Output 

1iC 
 iC  iC  1iR   1iR

 iR  iR  1iR   1i iS S  1i iw w  , ,el i in iM M  

NET-TI 2.0 2.0 2.0 - 4.0 4.0 4.0 - 4.0 4.0 2.25 

NET-MI 2.0 2.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.25 

NET-MP 2.0 2.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 2.25 

 

 
Fig. 4 Configuration of a typical neural network 

 

 

networks NET-TI, NET-MI, and NET-MP would be 16,807,000 (= 10 10 10 7 7 7 7 7), 

823,543,000 (= 10 10 10 7 7 7 7 7 7 7) and 117,649,000 (= 10 10 10 7 7 7 7

7 7), respectively. As stated above if one of the parameters 
1iR 
, 

1iR
, 

iR , 
iR , 

1iR 
 at a time is 

varied independently and the other parameters are constrained to assume values in the practical 

range 0.25 - 4.00, the number of data sets gets reduced to 89,349, 199,682 and 185,536 for 

networks NET-TI, NET-MI, and NET-MP respectively. In order to bring all the input and output 

parameters in the range 0.0 to 1.0, normalization factors are applied to the parameters. The 

normalization factors for input and output parameters are shown in Table 2. 

 

 

5. Training, architecture and performance of neural networks 
 

The neural networks chosen in the present study are multilayered feed-forward networks with 

neurons in all the layers fully connected in feed forward manner (Fig. 4). The training is carried  
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Table 3 Final architectures and statistical parameters of neural networks 

Sets Parameters 

Network 

(Architecture) 

NET-TI 

(8-10-1) 

NET-MI 

 (10-16-1) 

NET-MP 

 (10-16-1) 

Training 

MSE 0.00020 0.00010 0.00015 

R 0.99171 0.99573 0.99426 

RMSE 0.01414 0.01000 0.01225 

MAPE
 

2.74659 1.70130 2.20178 

AAD 2.49425 1.61497 2.04647 

COV 3.36310 2.18033 2.77475 

Validating 

MSE 0.00020 0.00010 0.00015 

R 0.99151 0.99567 0.99444 

RMSE 0.01424 0.01002 0.01224 

MAPE
 

2.76137 1.70930 2.20132 

AAD 2.50259 1.62443 2.04760 

COV 3.39545 2.18879 2.76660 

Testing 

MSE 0.00020 0.00010 0.00015 

R 0.99152 0.99578 0.99422 

RMSE 0.01442 0.01000 0.01239 

MAPE
 

2.79743 1.69556 2.21097 

AAD 2.53728 1.61376 2.06196 

COV 3.43025 2.18130 2.80723 

 

 
Fig. 5 Variation of the MSE with the epochs (iterations) for network NET-TI 

 

 

out using the MATLAB Neural Network toolbox (2009). Sigmoid function is used as an activation 

function and the back propagation learning algorithm is used for training. One hidden layer is 
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chosen and the number of neurons in the layer is decided in the learning process by trial and error. 

70% data sets are used for training and the remaining data sets are divided equally for 

validating and testing. For the training, several trials are carried out with different numbers of 

neurons in the hidden layer starting with a small number of neurons in the hidden layer and 

progressively increasing it and checking the mean square errors (MSE) of the training, the 

validation and the testing. The number of neurons in the hidden layer is decided on the basis of the 

least mean square errors (MSE) for the training, validation as well testing. Care is taken that the 

mean square error for test results does not increase with the number of neurons in hidden layer or 

epochs (overtraining). The final architectures (number of input parameters - number of neurons in 

the hidden layer - number of output parameters) of all networks along with the statistical 

parameters i.e. mean square error (MSE), coefficient of correlation (R), root mean square error 

(RMSE), mean absolute percentage error (MAPE), average absolute deviation (AAD) and 

percentage coefficient of variation (COV) of training, validating and testing data sets are given in 

Table 3. All the parameters indicate a good performance. Typically, for network NET-TI, variation 

of the MSE with the epochs (iterations) and regressions is shown in Figs. 5 and 6, respectively.  

 

 

 
(a) 

 
(b) 

Fig. 6 Regressions of (a) training; (b) validation; (c) testing; and (d) all data sets for network NET-TI 
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(c) 

 
(d) 

Fig. 6 Continued 
 
 
6. Closed form expressions 
 

For the ease of practicing engineers and users, it is desirable to propose simplified closed form 

expressions, obtained from the trained neural networks, for the rapid prediction of inelastic 

bending moments. The closed form expressions require the values of inputs, weights of the links 

between the neurons in different layers, and biases of output neurons. Since the sigmoid functions 

have been used as the activation functions in the hidden and output layer neurons, the output O, 

(=M
el,i

/M
in,i

) is given as below (Tadesse et al. 2012, Gupta et al. 2013, 2015) 

,1
0

1 1

1

1

hor
k

H k
k

w
bias

e

O

e




 
  
  






 (1) 
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,

1

q
ih

k j k j k

j

H w I bias


    (2) 

where, q is the number of input parameters; r is the number of hidden neurons; biask is the bias of 

k
th
 hidden neuron (hk); biaso is the bias of output neuron; ,

ih

j kw  is the weight of the link between Ij 

and hk; ,1

ho

kw  is the weight of the link between hk and O. It has been established by researchers in 

previous studies that the weights and biases of trained networks define the relative importance of 

the input variables (Garson 1991, Olden and Jackson 2002, Olden et al. 2004). 

The inelastic bending moment at support i  is then given from Eq. (1) as 

, , /in i el iM M O  (3) 

The value of O may be obtained from closed form expressions for internal supports of two span 

and multi span continuous beams and for penultimate supports of multi span continuous beams as 

given in Appendix A. 
 

 

7. Verification of the proposed closed form expressions 
 

The proposed closed form expressions are verified for five example beams with a wide 

variation of input parameters. The example beams (EB1-EB5) are shown schematically in Fig. 7. 

The cross-sectional properties (Bf = width of flange, Df = depth of flange, Bw= width of web, Dw = 

depth of web, dt = effective cover at top fibre, db= effective cover at top fibre) and Ec are given in 

Table 4. Additionally, the modulus of elasticity of steel reinforcements,Es= 205,000 N/mm
2
, and 

tensile strength of concrete, '0.623t cf f  (ACI 318 2005) are taken. As shown in Table 4, three 

segments: left, middle, and right of lengths 0.25Li, 0.50Li and 0.25Li respectively, are assumed for 

reinforcement in each span. The reinforcement detailing data (area of top reinforcements, Ast and 

area of bottom reinforcements, Asb) in each segment are also given in Table 4. Example beams 

have been chosen in such a way that none of the combinations of input parameters has been used 

in the training, validating and testing. 

The inputs in the closed form expressions for the example beams are shown in Table 5. 

Inelastic moments, M
in 

obtained from finite element method (FEM), analytical-numerical 

procedure and proposed closed form expressions are reported in Table 6. For comparison, elastic 

moments, M
el
 are also reported. 

For FEM analysis, modeling has been done in the ABAQUS (2011) software (Patel et al. 2014, 

2015; Ramnavas et al. 2015). The beam is modelled using B21 elements (2-node linear 

Timoshenko beam element in plane). Under service load, the stress-strain relationship of concrete 

is assumed to be linear in compression. Concrete is considered as an elastic material in tension 

before cracking and softening behavior is assumed linearly after cracking (Patel et al. 2016). 

Tension stiffening is defined in the model using post-failure stress-strain data. In order to define 

the smeared crack model, the absolute value of the ratio of uniaxial tensile stress at failure to the 

uniaxial compressive stress at failure is obtained using concrete properties. The plastic strain is 

taken in accordance with tensile strength of concrete. Further, at service load, the stress in 

reinforcement is assumed to be in the linear range. 
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Fig. 7 Example beams: (a) EB1; (b) EB2; (c) EB3; (d) EB4; and (e) EB5 (span lengths in m and loads in kN/m) 



Table 4 Properties of the example beams 

Beams fB  

(mm) 

fD  

(mm) 

wB  

(mm) 

wD  

(mm) 

t bd =d  

(mm) 

cE  

(N/mm
2
) 

Segment 

(length) 

 

Span 

Left (0.25Li) Middle (0.50Li) Right (0.25Li) 

stA  

(mm
2
) 

sbA  

(mm
2
) 

stA  

(mm
2
) 

sbA  

(mm
2
) 

stA  

(mm
2
) 

sbA  

(mm
2
) 

EB1 400 100 300 300 25 30,370 
AB 157 402 157 402 509 226 

BC 509 226 157 402 157 402 

EB2 - - 230 450 25 27,335 

AB 157 509 157 509 760 226 

BC 760 226 157 509 760 226 

CD 760 226 157 509 157 509 

EB3 350 90 250 350 30 25,055 

AB 157 226 157 226 226 157 

BC 226 157 157 226 226 157 

CD 226 157 157 226 226 157 

DE 226 157 157 226 157 226 

EB4 - - 300 300 27 31,900 

AB 402 402 402 402 1,964 402 

BC 1,964 402 402 402 1,964 402 

CD 1,964 402 402 402 1,964 402 

DE 1,964 402 402 402 1,964 402 

EF 1,964 402 402 402 1,964 402 

FG 1,964 402 402 402 1,964 402 

GH 1,964 402 402 402 402 402 

EB5 300 110 230 

200 

20 27,335 

AB 226 760 226 760 1,964 760 

BC 1,964 760 226 760 1,964 760 

CD 1,964 760 226 760 1,964 760 

DE 1,964 760 226 760 1,964 760 

EF 1,964 760 226 760 1,964 760 

270 

FG 1,964 760 226 760 1,964 760 

GH 1,964 760 226 760 1,964 760 

HI 1,964 760 226 760 1,964 760 

IJ 1,964 760 226 760 1,964 760 

JK 1,964 760 226 760 226 760 

 



 

 

Table 5 Input parameters for the example beams 

Beam 
Used Neural 

Network 

Support 

(i) 

Input parameters 

1iC 
 iC  iC  1iR   1iR

 iR  iR  1iR   1i iS S  1i iw w  

EB1 NET-TI 2 0.1645 0.1950 0.1645 - 0.7549 0.5786 1.4041 - 1.30 2.29 

EB2 
NET-MP 2 0.2780 0.3870 0.2780 20.000 1.4832 0.7736 1.4549 0.9564 0.73 0.37 

NET-MP 3 0.2780 0.3870 0.2780 0.7736 1.4549 0.9564 4.3505 20.000 0.43 0.44 

EB3 

NET-MP 2 0.1240 0.1199 0.1240 20.000 0.6543 0.6173 5.9921 1.8433 0.83 1.21 

NET-MI 3 0.1240 0.1199 0.1240 0.6173 5.9921 1.8433 2.1260 0.9433 0.84 0.72 

NET-MP 4 0.1240 0.1199 0.1240 1.8433 2.1260 0.9433 1.3968 20.000 1.06 1.18 

EB4 

NET-MP 2 0.2090 0.7160 0.2090 20.000 1.0652 0.4561 0.5683 0.4140 1.13 0.63 

NET-MI 3 0.2090 0.7160 0.2090 0.4561 0.5683 0.4140 0.8575 0.4255 0.78 0.68 

NET-MI 4 0.2090 0.7160 0.2090 0.4140 0.8575 0.4255 0.5898 0.4692 1.29 1.52 

NET-MI 5 0.2090 0.7160 0.2090 0.4255 0.5898 0.4692 1.2133 0.4660 0.73 0.69 

NET-MI 6 0.2090 0.7160 0.2090 0.4692 1.2133 0.4660 0.5838 0.4330 1.36 1.45 

NET-MP 7 0.2090 0.7160 0.2090 0.4660 0.5838 0.4330 1.0624 20.000 0.56 0.58 

EB5 

NET-MP 2 0.4740 0.9330 0.4740 20.000 1.5423 0.4728 0.4876 0.4063 1.58 1.01 

NET-MI 3 0.4740 0.9330 0.4740 0.4728 0.4876 0.4063 0.7231 0.4065 0.78 0.66 

NET-MI 4 0.4740 0.9330 0.4740 0.4063 0.7231 0.4065 0.4899 0.4213 1.29 1.47 

NET-MI 5 0.4740 0.9330 0.4740 0.4065 0.4899 0.4213 0.7644 0.4577 0.89 0.95 

NET-MI 6 0.4740 0.9330 0.4160 0.4213 0.7644 0.4577 0.8219 0.5952 1.18 1.25 

NET-MI 7 0.4160 0.8340 0.4160 0.4577 0.8219 0.5952 0.9091 0.4550 0.80 0.58 

NET-MI 8 0.4160 0.8340 0.4160 0.5952 0.9091 0.4550 0.5380 0.4468 1.27 1.23 

NET-MI 9 0.4160 0.8340 0.4160 0.4550 0.5380 0.4468 0.8608 0.4264 0.79 0.71 

NET-MP 10 0.4160 0.8340 0.4160 0.4468 0.8608 0.4264 0.4971 20.000 1.20 1.72 
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Table 6 Comparison of inelastic moments in the example beams 

Beam 
Support 

(i) 

,el iM  
(kNm) 

,in iM  (kNm) Error 

(%) FEM NN 

EB1 2 71.80 69.59 69.60 -0.01 

EB2 
2 42.53 39.88 39.71 0.43 

3 34.40 32.90 30.97 5.87 

EB3 

2 55.27 54.08 51.35 5.05 

3 18.51 16.78 16.79 -0.06 

4 36.17 34.90 35.55 -1.86 

EB4 

2 56.53 64.84 63.88 1.48 

3 62.29 67.21 67.74 -0.79 

4 60.60 65.52 66.27 -1.14 

5 54.96 61.24 62.76 -2.48 

6 55.33 60.12 62.62 -4.16 

7 59.55 67.08 67.55 -0.70 

EB5 

2 52.81 57.04 57.70 -1.16 

3 61.45 64.00 63.63 0.58 

4 61.43 64.33 67.40 -4.77 

5 59.27 62.19 61.62 0.92 

6 54.56 57.10 54.25 4.99 

7 59.48 61.57 63.38 -2.94 

8 77.80 86.41 82.29 4.77 

9 79.23 84.70 82.99 2.02 

10 83.02 97.29 94.61 2.75 

 

 

Fig. 8 Two span continuous beam 

 

 

The maximum absolute percentage errors for beams EB1-EB5 are 0.01%, 5.87%, 5.05%, 4.16% 

and 4.99% respectively as shown in Table 6. The root mean square percentage error for all the 

beams is 2.97%. This shows the efficacy of the developed methodology for continuous beams with 

any number of spans. 

Further, in order to validate the proposed closed form expression for inelastic bending moments 

with increasing uniformly distributed load, w, a two span continuous beam EB6 is considered (Fig. 

8). The properties are: L1= L2= 6.34 m, Bw= 304.8 mm, Dw = 127 mm, dt = db = 24 mm, Ec = 

23,270 N/mm
2
, Es = 206,843 N/mm

2
, ft = 3.27 N/mm

2
, Ast = Asb = 1,000 mm

2
 in segment EF and 

Ast = Asb = 516 mm
2
 in segments AE, FC. Bending moment at the centre of span AB and at support 

B obtained from the proposed closed form expression, the analytical-numerical procedure (Patel et 

al. 2014) and FEM are shown in Fig. 9. Inelastic bending moments at the centre of span AB are 

obtained using the moments at support B, loading and span length. Also shown, for comparison, 

are the elastic bending moments obtained neglecting cracking. Close agreement is observed 
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between the results obtained using the proposed closed form expression, the analytical-numerical 

procedure (Patel et al. 2014) and FEM. 

The procedures available in literature or any other commercial software based on finite element 

analysis that incorporate concrete cracking would require reinforcement detailing data. In finite 

element analysis, usually 16-32 elements in a span are required for convergence of results within 

1% (Patel et al. 2014). It would be tedious to provide such reinforcement detailing data for every 

element in a large structure since reinforcement lengths and cross-section areas may vary from 

element to element. On the other hand, the present methodology requires only cross sectional 

properties, elastic moments and reinforcement data at three locations. When the closed form 

expressions are used, the computational time is drastically reduced and it is a fraction of that 

required for finite element analysis and other procedures available in literature. 

 

 
 

 

(a) 

 

(b) 
Fig. 9 Comparison of bending moments at: (a) centre of span AB (sagging), and (b) support B 

(hogging) in beam EB6 
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8. Conclusions 
 

Closed form expressions, obtained from the trained neural networks, have been proposed for 

rapid prediction of the inelastic bending moments in continuous RC beams subjected to service 

load. The expressions take into account the concrete cracking and tension stiffening effect. Three 

separate neural networks (NET-TI, NET-MI, and NET-MP) are developed for prediction of 

inelastic moments (due to concrete cracking and tension stiffening) from the elastic moments 

(neglecting concrete cracking) for continuous RC beams having any number of spans. Data sets for 

training, validating, and testing for neural networks are generated using the computationally 

efficient analytical-numerical procedure recently developed by authors. The proposed expressions 

have been verified for a number of example beams. The maximum absolute error for any span in 

the example beams is 5.87% and root mean square error of all spans of all beams is 2.97%. The 

proposed expressions require minimal input data and computation effort and yield results that are 

close to FEM results. The expressions can be used in preliminary every day design since the 

required computational effort is a fraction of that required for the available methods. 

The methodology can be extended for large RC building frames where a very significant saving 

in computational effort would result. The methodology can also be extended to account for shear 

deformation in RC beams with low span-effective depth ratios (Wang et al. 2015). 
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Notation 
 
s  : reinforcement spacing; 

,st sbA A  : area of top and bottom reinforcement respectively; 

,B D
 : width, and total depth of section respectively; 

sf  : stress in steel reinforcement on tension face; 

,t bd d
 : effective concrete cover at top and bottom respectively; 

E  : modulus of elasticity; 
',t cf f  : tensile strength and cylinder compressive strength respectively; 

L
 

: length of the span; 

M  : bending moment; 

,C R
 

: inertia ratio and cracking moment respectively; 

S  : stiffness; 

kh  : k
th

  hidden neuron; 
q

 
: number of input parameters; 

r  : number of hidden neurons; 

,

ih

j kw
 

: weight of the link between Ij  and hc; 

,1

ho

kw  : weight of the link between hc  and O; 
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w  uniformly distributed load; 
x

 : crack length; 

O
 

: output parameter; 

jI  : j
th

  input parameter; 

bias
 

: bias of hidden or output neuron; 

I
 

: moment of inertia about neutral axis. 

Subscript 

,A B  : ends A and B of a cracked span length beam element; 

S  : in-span position of a cracked span length beam element; 
,c s

 : concrete and steel respectively; 

j  : input neuron number; 

k
 

: hidden neuron number or function number; 

o  : output neuron number; 

i
 

: i
th 

 span; 

,f w  : flange and web respectively. 

Superscript 

in
 

: inelastic; 

el  : elastic; 
,cr un  : cracked and uncracked respectively; 

g  : gross; 

i  : i
th

  support; 

ho  : connection between hidden and output layers; 

ih  : connection between input and hidden layers. 
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Appendix A: Closed form expressions for value of O 
 
(I) Internal support of two span continuous beams  

1 2 3 4 5 6 7 8 9 10

50.08 13.71 18.31 0.66 3.10 0.82 1.65 2.13 4.07 1.12
10.11

1 1 11 1 1 1 1 1 1
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 (A2) 

 
(II) Internal supports of multi span continuous beams 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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(III) Penultimate supports of multi span continuous beams 
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