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Abstract. This paper, proposes 20 models for predicting compressive strength of recycled aggregate
concrete (RAC) containing silica fume by using gene expression programming (GEP). To construct the
models, experimental data of 228 specimens produced from 61 different mixtures were collected from
the literature. 80% of data sets were used in the training phase and the remained 20% in testing phase.
Input variables were arranged in a format of seven input parameters including age of the specimen,
cement content, water content, natural aggregates content, recycled aggregates content, silica fume
content and amount of superplasticizer. The training and testing showed the models have good
conformity with experimental results for predicting the compressive strength of recycled aggregate
concrete containing silica fume.
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1. Introduction

Increasing costs and decreasing in natural resources, caused humankind turns towards recycling
and reuse of wastes. Recently, this subject is also common in the construction industry. But
unfortunately has not yet been fully applied throughout the world. One of these methods is
recycling materials from construction and demolition (C&D) waste as alternative aggregate in new
concrete (Xie et al. 2015). Being a lower quality of recycled aggregate concrete (RAC) than
conventional concrete, researchers have done many experiments to find solutions for improving
RAC quality. Generally, the use of recycled aggregate (RA) increases the drying shrinkage, creep,
carbonation rate and water absorption, and decreases the compressive strength, modulus of
elasticity and resistance to freezing and thawing of concrete compared to those of natural
aggregate concrete. But with the use of appropriate mix design and mineral admixtures, the results
can be improved (Kou and Poon. 2015).

Compressive strength of concrete is one of the most valuable mechanical properties because of

∗Corresponding author, Associate Professor, E-mail: abdollahzadeh@nit.ac.ir



Gholamreza Abdollahzadeh, Ehsan Jahani and Zahra Kashir

its direct relationship to both quality and other features. The compressive strength of RAC is
greatly influenced by the recycled aggregate replacement ratio and the effective w/c ratio (Ulloa et
al. 2013). Higher variation in terms of the compressive strength is observed for 100% replacement
where it is comparatively low for lower replacement levels such as 20% to 50%. Alam et al.
(2012) found almost 15% reduction in compressive strength as compared to control mix for 25%
to 50% recycled concrete aggregate. Ajdukiewicz and Kliszczewicz (2002) used some different
mixers to predict mechanical properties of HSC/HPC containing recycled aggregate. They crushed
original concrete of about 35-70 MPa containing high quality aggregates and large amount of
cement to make mixers. To maintain the connection between the crushed aggregates, they replaced
different percentages of silica fume with part of cement. Finally, it was found properties of RAC
can be improved satisfactorily by adding mineral/chemical additives. Ö. Çakır (2014)] replaced 
various ratios of RC instead of NA. Mineral additives used in this experimental work are silica
fume (SF) and ground granulated blast furnace slag (GGBFS) at various ratios. The results showed
replacing about 100% recycled aggregate instead of NA caused a 24 % reduction in compressive
strength and as a total result, it is found to increase in replacing of RA proportion with NA,
compressive strength decrease. Also, he found compressive strength of RAC containing 5% &
10% SF increase and it is in contrast to results found by using of GGBFS. Elhakam et al. (2012),
studied concrete properties made of recycled coarse aggregates. Results showed the negative
effects of using RC in making concrete, especially at higher contents. So they proposed three
methods to enhance the quality of RAC properties. These methods included self-healing of
recycled aggregates mixing method and adding silica fume. The results showed immersing
recycled aggregates in water up to 30 days, especially for lower cement contents, improves RAC
mechanical properties. Mixing water, cement, addition and recycled aggregates, then natural sand
and natural coarse aggregates were added, two stages mixing approach enhance the properties of
recycled aggregate concrete. Adding 10.0% silica fume as cement addition to recycled aggregates
concrete enhanced properties of concrete.

Since making concrete at laboratory and measuring its properties, especially compressive
strength, is time-consuming, so recently, researchers use of computational methods to predict
concrete properties. Also some of these methods such as artificial neural networks and fuzzy logic
have been used for predicting RAC properties. Genetic programming (Koza. 1995) is quite new
modeling, proven to be superior to regression methods and neural networks because of obtaining
explicit formulations for experimental studies (Elhakam et al. 2012). There are some studies done
by GP for modeling concrete containing natural aggregate and both fresh and hardened properties
of it in literature in later years (Nazari and Riyahi. 2011, Castelli et al. 2013). But about recycled
aggregate, it is the first time in this paper.

2. Gene expression programming models and parameters

Gene expression programming (GEP) is, like genetic algorithms (GAs) and genetic
programming (GP), a genetic algorithm as it uses populations of individuals, selects them
according to fitness, and introduces a genetic variation using one or more genetic operator
(Ferreira 2001). GEP is a kind of evolutionary algorithms which inherited the linear chromosomes
of fixed length from genetic algorithms and the expressive parse trees of varied sizes and shapes
from genetic programming. The fundamental steps of Gene Expression Programming are
schematically represented in Fig. 1. The process is repeated for a certain number of generations or
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until a good solution has been found (Ferreira 2006). The genes of gene expression programming
have all the same size. However, these fixed length strings code for expression trees (ET) of
different sizes. All problems in GEP are presented by ETs which include operators, functions,
constants and variables.

Fig. 1 Flowchart of Gene expression programming (Ferreira. 2006)

It is proven, the GEP proposes many advantages as compared with other classical regression
techniques. Some functions define in advance in regression techniques where analyses of these
functions are later performed while no predefined function is considered for the GEP approach. It
is believed for modeling and obtaining clear formulations of experimental studies, like multivariate
problems, GEP is more powerful than regression techniques and neural networks (Milani and
Nazari 2012, Nazari et al. 2011, Bhargava et al. 2011, Ganguly et al. 2009, Podgornik et al. 2011).
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Table 1 The input and output quantities used in GEP approach models

Maximum Minimum

Input variables Data used in the models

Age of specimens (day) 3 90

Cement (kg/m3) 250 500

Water (kg/m3) 113 246.2

Natural aggregates (kg/m3) 0 2044

Recycled aggregates (kg/m3) 0 1797.7

Silica fume (kg/m3) 0 115

Superplasticizer (kg/m3) 0 15

Output variable

Compressive strength (MPa) 14.9 97.5

In this paper, for the first time, we predict compressive strength RAC containing silica fume by
GEP modelling. We used GeneXproTools software (Ganguly et al. 2009) to modelling data.
Unluckily, there is no precious way to obtain the best performance and combination of parameters
to achieve the highest accuracy. Thus, it causes complicating and time-consuming of modelling
process. In this paper, different levels of effective GEP parameters used to acquire correlations of
higher efficiency and lower complexity. Hence, for achieving the highest possible accuracy for
entire models, at first, the lowest possible level of parameters such as, 1 gene, was utilized and
then the model was trained by a combination of different input parameters. “Addition”,
“subtraction”, “multiplication” and “division” be introduced in utilized GEP software, as linking
functions. Considering addition and subtraction operating in a parallel way, “addition” was
selected to try the models. In the same way, between multiplication and division, “multiplication”
was considered. Appling multiplication instead of addition might implicate models; therefore,
addition is preferred. To solve a problem, a chromosome with single-gene could be selected and
then the modelling may proceed by increasing the length of the head. However, the number of
genes could be increased and a function to link the sub-expression trees (sub-ETs) could be chosen
when it becomes very large (Pouraliakbar et al. 2014).

It is not measurable the magnitude of a model complexity. As a whole, increasing the inputs of
a model, increases complexity. For example, how much the number of genes increase, the model
strongly complicates. However, about other utilized parameters, it acts as the same manner. There
is not any specific definition of complexity. Consequently it may be considered definite
combinations of input parameters together as a factor of complication. Also, continuing the
generation to achieve higher levels of regression and better fitness in training data set causes
complexity too (Pouraliakbar et al. 2014). Therefore by using different parameters, compressive
strength was predicted and at the end, modelling results compared with experimental results.

To predict RAC compressive strength, the details of 228 samples constructed of 61 different
mixers collected from literature (Ajdukiewicz and Kliszczewicz. 2002, Çakır and Sofyanlı. 2014, 
Modani and Mohitkar. 2014). This information includes the weight of concrete's components (age
of the samples, cement, water, natural aggregates, recycled aggregates, sand, silica fume and
superplasticizer) and compressive strength. Quantities about inputs and output values were
presented in Table 1. Among 228 experimental samples, randomly selected 80% samples used as a
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training set for models and 20% samples used as testing set. For using GEP there are five major
steps.

First of all is choosing fitness function, which in this problem, we measured the fitness �� by
using two following expressions

�� = ��� − |�(�,�) − ��|�

��

���

(1)

Where M is the range of selection, �(�,�)the value returned by the individual chromosome i for

fitness case j (out of �� fitness cases) and �� is the target value for fitness case j. if ��(�,�) − ���

(the precision) less or equal to 0.01, then the precision is equal to zero, and �� = ���� = ���. In
this case, M = 100 was used, therefore 	���� = 1000. The advantage of this kind of fitness
functions is that the system can find the optimal solution by itself (Ferreira. 2001).

�� = �
∑ ��(�,�) − ���

��
���

∑ ��� − ���
��

���

(2)

Where P(�,�) is the value predicted by the individual program i for fitness case j (out of n fitness

cases or sample cases);	�� is the target value for fitness case j; and	�� is given by the formula

�� =
1

�
���

�

���

(3)

For a perfect fit, the numerator is equal to 0 and ��= 0. So, the RRSE index ranges from 0 to
infinity, with 0 corresponding to the ideal. As it stands �� can not be used directly as fitness since,
for fitness proportionate selection, the value of fitness must increase with efficiency. Thus, for
evaluating the fitness fi of an individual program i, the following equation was used

�� = 1000 ∙
1

1 + ��
(4)

Which obviously ranges from 0 to 1000, with 1000 corresponding to the ideal (Modani and
Mohitkar 2014). The second major step is selection of terminals T and functions F to create
chromosomes. In this case terminals set include of the independent variable. i.e., T= {AS, C, W,
NA, RA, SF, SP} and about functions, four basic arithmetic operators (+,−,∗,/) and some basic
mathematical functions (����, ��, … )were used the models. The weight of each function is 1, but
you can increase the probability of a function being included in your models by increasing its
weight in the Select/Weight column (www.gepsoft.com). The third major step is to choose the
chromosomal architecture, namely the length of the head and the number of genes. In this case we
used 2, 3 and 4 genes [Sub-ETs] and length of heads 8, 9, 10, 12 and 14 for models randomly. The
fourth major step in preparing to use GEP is to choose the linking function to link the sub-ETs
which in this problem we used multiplication and addition.
And finally, a combination of all genetic operators (mutation, transposition and crossover…) was
utilized as set of genetic operators. All details of used parameters were presented in Table 2.
Explicit formulations based on the approach models for fc were obtained by Eq. (5)
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Fig. 2 Expression trees of GEP-9 approach model Fig. 3 Expression trees of GEP-12 approach model



Fig. 4 Expression trees of GEP-14 approach model Fig. 5 Expression trees of GEP-19 approach model



Table 2 Utilized parameters for each GEP approach
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GEP-1 30 10 3 Addition
Absolute
with SR

0.044 0.1 0.1 2 6a,1

GEP-2 26 12 3 Multiplication
Absolute
with SR

0.044 0.1 0.1 2 6a,1

GEP-3 40 14 4 Addition
Absolute
with SR

0.044 0.1 0.1 2 6a,1

GEP-4 35 12 3 Multiplication
Absolute
with SR

0.044 0.1 0.1 2 7b,1

GEP-5 35 8 3 Addition
Absolute
with SR

0.044 0.1 0.1 2 8�,�

GEP-6 30 12 3 Addition
Absolute
with SR

0.044 0.1 0.1 2 4�,�

GEP-7 30 8 2 Addition
Absolute
with SR

0.044 0.1 0.1 2 6�,�

GEP-8 30 10 3 Addition
Absolute
with SR

0.044 0.1 0.1 2 6�,�

GEP-9 40 12 4 Addition
Absolute
with SR

0.044 0.1 0.1 1 10�,�

GEP-10 30 9 3 Addition
Absolute
with SR

0.044 0.1 0.1 2 7�,�

GEP-11 60 8 3 Addition
Absolute
with SR

0.044 0.1 0.1 2 7�,�

GEP-12 30 10 3 Addition
Absolute
with SR

0.044 0.1 0.1 2 13�,�

GEP-13 30 8 3 Addition RRSE 0.044 0.1 0.1 2 8�,�

GEP-14 30 8 3 Addition RRSE 0.044 0.1 0.1 1 4�,�

GEP-15 30 8 3 Addition RRSE 0.044 0.1 0.1 2 7�,�

GEP-16 30 12 3 Multiplication RRSE 0.044 0.1 0.1 2 9�,�

GEP-17 30 10 3 Addition RRSE 0.044 0.1 0.1 2 6�,�

GEP-18 40 12 4 Addition RRSE 0.044 0.1 0.1 1 8�,�

GEP-19 30 12 3 Addition RRSE 0.044 0.1 0.1 2 13�,�

GEP-20 30 12 3 Addition RRSE 0.044 0.1 0.1 2 12�,�

1 The weight of "+,−,∗ " functions were 4 weight of other functions
2 The weight of "+,−,∗ " functions were 7 weight of other functions

3 The weight of " ∗ " functions were 4 weight of other functions
4 The weight of "+,−,∗ " functions were 3 weight of other functions
a The utilized functions were +,−,∗,/, ����, ,��

b The utilized functions were +,−,∗,/, ����, ��, ��

c The utilized functions were +,−,∗,/, ����, ��, ��, 3��
d The utilized functions were +,−,∗,/
e The utilized functions were +,−,∗,/, ����, ���, ���, ���, ����, ��	
f The utilized functions were +,−,∗, ����, ��, ��, 3��

g The utilized functions were +,−,∗,/, ����, ��, ��, ��, ��, 3��, 4��, 5��, ��
h The utilized functions were +,−,∗,/, ����
i The utilized functions were +,−,∗,/, ����, ��, ���, ���, ���	

j The utilized functions were +,∗, ����, ��, ��, ���
k The utilized functions were +,−,∗,/, ���, ���, ���, ����
l The utilized functions were +,−,∗,/, ����, ��, ��, ��, 3��, 4��, ���, ��



Table 3 The obtained mathematical equations from different GEP approaches

Models set Obtained equations for prediction of compressive strength of RAC

GEP-1

�(�5 + �5) ∗ �
�(6.803 + 6.803) − �5�

�√�5− 5.717�
�� + ���(�5− 9.723) + (�1− �0)�+ �(�5− �0) + �4�� ∗ √�0

+ ���4 + �√�2 + �2�� + √�4

GEP-2

�����(�0 − �5) + (�1 − �6)�− �
�1 − (−9.952)

�0
�+ �0�− �5�

+ �����(3.966 + �1) + �0� − �4�− ��5 − �
�1

−9.487
���− �6 + ��5 − (−7.175)

GEP-3

���5− ��4− ���1 + √�2� + √�2���− (�5 + �4) + (�5)

+��1 − ���(�4 − 5.090) + √�5 ∗ �3� + √�3 ∗ 0.292�+ �4�

+�
���(�0 ∗ �5) ∗ �5�+ (�0 ∗ �0)�− �6�

�(5.065 ∗ �0) − (9.843 − �0)�+ ��0 + (5.065 + �4)�
�

GEP-4 ��5.493 + √d0�+ �√8.876 + d5� + ��−0.644 + ���1− �(�6 + �5) + �4�� + �(�1− �4) − ��6 − (−9.842)���

GEP-5 ���5 + �
�2

7.961 ∗ 7.961
�+ 7.961�+ ����((�1)� ∗ �0) − (�1)��− �2

�
� + ��5 − �

�4 + �6

(−6.693 + �5) ∗ (−8.941)
��

GEP-6
⎝

⎜
⎛
�5 −��

�(−7.858 − 9.925)− 9.925�+ �0

−7.858
−7.858

− �0
�− 9.925�

⎠

⎟
⎞

+

⎝

⎜⎜
⎛
�5 −

⎝

⎜
⎛
�(�4 − �5) +

�0
4.036�

− �(�5 + �5) + �0�

4.036
− 0.203

⎠

⎟
⎞

⎠

⎟⎟
⎞

+ (9.130 ∗ 3.596)

GEP-7 ���3 − (�6 − �2)�+ �(4.528 ∗ 4.176) ∗ (�0 − �5)�+

⎝

⎜
⎛
��(�5 − 9.989)−

9.989

�0
� ∗�

�5

0.684
�+ �5

⎠

⎟
⎞

GEP-8 ���(�5− �0) − (�4− �0)�+ �(6.831 ∗ 6.831) + �1�� ∗ √�0 + �(�5 + �5) ∗
(6.803 + 6.803)− �5

√�5− 5.778
� + √�4

GEP-9
���5 ∗ (tan��(sin�5 ∗ (�0 + �2)))�+ �

[0.775]

tan��(0.775 − �5)
�� + �(ln(cos�1 ∗ sin�6) + �0) ∗ �1

+ �ln ���tan���cos(−4.377 + �6) + ��2 ∗ (−4.377 + �0)����− (−4.377)�� + (�5)
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GEP-10

��1 + ��0 − �
�1 + �5

�0
+ (�4 + �4)��+ ��1 + ��(�5 ∗ �5) −

�6

3.868
�− �(�6 + �5) + �4��

+ ��5 + ��5 + ��0 + �(−8.894 + �0) + �0���

GEP-11 ���5 ∗ √�5
�

� + (−1.791)�+ �(�1− �4) − ���4 + (−2.611)�+ (�4 + �5)� + ��0 ∗ ���2� ∗ 9.607
�

+ �1�
�

GEP-12

��5 ∗ �
�5

ln ��(�1 + �3) + (�5 + �5)� ∗ 0.570�
��+��1 − ��4 − ���1 − (�4 + �4)�+ (−1.548 ∗ �4)��

+ ln��ln ��0� + √�1 − �6
�

�

�

�

�

GEP-13

��(�5) + �(�1− �4) − (�4 + �4)�
�+ �5� +���(�1− 9.926)− �6�+ (−9.904− 9.926)�− �4

+���(�1 ∗ �0) + (−9.391 ∗ �4)�
��

− 9.935

GEP-14 �
�
−5.807 ∗ (�3 + �1)

(�6− �0) + �5
�

�6
�+ �(−5.807 ∗ −5.807) + �

�1 + �1

�6
− (−5.807)�� + �

��5 − (�5 ∗ �5)�− (�0− �4)

−5.807
�

GEP-15

���(6.586 + 2.972) + (2.972 ∗ �5)�+ √�0 ∗ 2.972�− �5�+

⎝

⎜
⎛
�(�0− 5.319) −

�4
�6�

∗ (5.319 + 2.632)

�0

⎠

⎟
⎞

+ ���(�5 ∗ �5) − (�4 + 9.966)�− (�4 + �4)� + �1

GEP-16

�cos�cos�
�√�0 ∗ �1 + (cos(�5− �4) + (9.225 ∗ 9.225))

9.225
���

+ �cos�cos�
�cos(9.108 ∗ �4) ∗ (sin(�2)− �5)�− cos(cos�6)

−8.055
��� + �(−9.740) ∗ (−9.740)�

GEP-17

��5 + ���√�1 ∗ ��0 + (−2.966)��

�

+ �4.548 + ��1 + �(−2.709 + �5)� + �(�5 + �4) ∗ (−2.709)���

+ ����(�1 + �2) ∗ (�0 + �1)� ∗ �6��.����+ �0 + �5�

GEP-18 ⎝

⎜
⎛

sin�5 ∗

⎝

⎜
⎛
�5 ∗ �tan��

⎝

⎛�
�0

�
�5 − 0.838

0.838
�
� ∗ �0

⎠

⎞�

⎠

⎟
⎞

⎠

⎟
⎞

+ ��5 + ��0 ∗ �sin 6.517 + �
cos(�5 − 6.517) + �3

�5
����

+ ��−6.010 + tan�� �(tan�� �3) ∗ ��(�5 + �5) ∗ �5� − sin�2��� ∗ −6.010�

+ ��sin�(sin�4) ∗ �5�� ∗ �5�
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GEP-19

���1� + ���1� ∗ (�2 ∗ �4)� ∗ (�1 − �4)�
��

+

⎝

⎜⎜
⎛
�5 +

⎝

⎜
⎛

6.779 +

⎝

⎛
�4 − �0

� �4
6.799

�

− 7.674⎠

⎞

⎠

⎟
⎞

⎠

⎟⎟
⎞

+

⎝

⎜
⎛
�5−

�

�6

ln��0− �√�5 + 0.722
��

⎠

⎟
⎞

GEP-20

ln ��0� − ln ��3 − �−9.668 ∗ �(�5 ∗ 9.953) + (�1 + �4)����

+ �ln�(�1 − �4) + ���(−5.329) − �6� − �5�− (−5.329)���

�

+ �5�

+

⎝

⎜⎜
⎛
�3 −

⎝

⎜
⎛
�3 −

⎝

⎛�ln��
2.717 + �0

1.075

�

�

�

�

�

+ �5

⎠

⎞

⎠

⎟
⎞

⎠

⎟⎟
⎞
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�� = �(��,�,�,��,��, ��, ��) (5)

As has been given in the literature, the equations were obtained from corresponding expression
trees (ET) of 20 GEP models are presented in Table 3 where d0, d1, d2, d3, d4, d5 and d6 refer to
AS, C, NA, RA, SF, SP and W respectively. The ETs of the best models (GEP-9, GEP-12, GEP-
14 and GEP-19) were presented in Figs. 2-5.

3. Results and discussion

Absolute fraction of variance (R2) mean absolute error (MAE), root mean square error (RMSE),
relative absolute error (RAE) and root relative squared error (RRSE) were presented in this paper
as statistical evaluations for inevitable errors while training and testing the models according to the
Eqs. (6)-(10), respectively.

�� =
(�∑ ���� −∑ �� ∑ ��)

�

(�∑ ��
� − (∑ ��)

�)(�∑ ��
� − (∑ ��)

�)
(6)

��� =
1

�
�|�� − ��|

�

���

(7)

���� = �
1

�
� (�� − ��)

�
�

���

(8)

��� =
∑ |�����|�

∑ |� �� − (1 �⁄ )∑ ��|�

(9)

���� = �
∑ (�� − ��)

�
�

∑ (�� − (1 �⁄ )∑ ��� )��

(10)

Here t is the target value, o is the output value and n is the number of all collected data.
Statistical errors values for both training and testing the models were shown in Table 4. If (R2)
values are above 0.7 and closer to 1, predicted results are closer to experimental results. In
addition, R2 shows the fitness level of defined function on data set. Higher R2 in training is a result
of excellent fitness of the final function. On the other hand, this might cause deviation of the
model in a way that cannot cover the unseen data and results in appreciable difference between
training and testing errors and consequently higher regression values in both training and testing
series are of interest. Usually higher values can be achieved by more complex models due to more
tries and generations, lower complexity level was also always considered as mission. In the most
cases of proposed models, the value of R2 in testing is higher than in training. As it is
known(www.gepsoft.com), it's not very important which fitness function be selected in GEP
modelling so we used two fitness functions for the models. In this paper, cannot be compared these
two fitness functions with each other exactly because of using different parameters in each model,
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Table 4 Statistical parameters for predicting 	��values of RAC

R^2RRSERAERMSEMAER^2RRSERAERMSEMAEModels set

TestingTraining

0.91850.32260.27675.63634.20890.9370.25950.24045.13343.8988GEP-1

0.93870.25840.23554.51583.58220.88670.35020.31046.92695.033GEP-2

0.93120.29460.26685.14724.05830.91820.28780.26325.6924.2683GEP-3

0.91160.30010.27395.24434.16530.88510.34610.33176.84465.3788GEP-4

0.91640.32840.27835.73814.23330.88060.35270.30076.97674.8757GEP-5

0.88520.36120.31416.31224.77750.87450.36490.31587.21735.1217GEP-6

0.89690.35180.30326.14794.61170.9170.29340.27685.80364.48892GEP-7

0.88730.36320.32616.34644.95990.93320.26390.25355.21964.1106GEP-8

0.93610.26930.25124.70573.82070.94420.23640.19974.6763.2388GEP-9

0.90340.32820.26985.73394.10290.88430.34660.31096.85575.0418GEP-10

0.90970.33140.29455.794.47920.90440.31270.29616.18474.8019GEP-11

0.93320.26940.22394.70743.40610.92430.2750.25345.43944.1085GEP-12

0.89840.31910.29015.57584.41270.89120.3310.31866.54665.1664GEP-13

0.90710.31850.29375.56544.46670.91450.29230.28035.78154.5452GEP-14

0.89380.34450.32076.01974.87680.89140.33080.31936.54255.1769GEP-15

0.89860.34140.31135.96514.73490.92230.290.27955.73684.5321GEP-16

0.91130.31230.28275.45664.29980.8870.33860.32926.69815.3388GEP-17

0.89640.33810.31315.90854.76160.9330.25880.25035.11834.0585GEP-18

0.94140.24520.22334.28513.39560.9130.29880.28095.91074.555GEP-19

0.91130.30050.2765.25114.19740.90690.30520.29216.03764.7366GEP-20

but about models with similar parameters, Absolute with SR has better results than RRSE results.
R2 Values for fitness function (1) in the training set ranges from 0.8745 to 0.9442 and for testing it
is between 0.8852 and 0.9387. RRSE values of R2, ranges between 0.8870 and 0.9155 for training
and ranges from 0.8938 to 0.9414 for testing set.

There were few differences between experimental and predicted values statistically. So, all
models can be applied for predicting compressive strength of RAC containing silica fume.

Also, if (MAE, RMSE, RAE, RRSE) values increase, reduce models performance. In some
models, RMSE, RAE, MAE and RRSE values are higher in training than testing. Increase of error
reduces the model performance. For instance, higher error levels of GEP-6, GEP-13and GEP-15
definitely decrease their performance. On the other hand, GEP-1, GEP-3, GEP-9 and GEP-19 have
minimum introduced errors in both training and testing. It is concluded that the latter group has
higher prediction accuracy in comparison with the first group. The minimum value of RMSE is
4.2851 for testing of GEP-19 and its maximum value is 7.2173 in training phase of GEP-6;
however, the difference between the minimum and maximum was relatively high. The minimum
value of MAE is 3.2388 for training of GEP-9 while its maximum 5.3788 belongs to GEP-4 in
training. Also, details of other statistical errors were shown exactly for both fitness functions in
Table 4. GEP-9 and GEP-12 are the best models for Absolute with SR and GEP-14 and GEP-19
are the best models of RRSE. The linear least square fit and fit line and the best models R2 values
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Table 5 GEP models results compared with experimental results are used as test sets

Data used in models construction Compressive strength (MPa)

AS(day) C(kg/m3) W(kg/m3) NA(kg/m3) RA(kg/m3) SP(kg/m3) SF(kg/m3) Exp. GEP-9 GEP-12 GEP-14 GEP-19

3 500 180 485.5 1132 0 0 35.4 30.61475 30.61891 27.75674 33.28929

3 500 214.3 0 1567.7 0 0 30.9 26.2542 30.50182 25.77328 31.2384

3 454.5 126 1837.3 0 15 45.5 65.6 60.5716 65.54658 69.2146 59.48382

3 454.5 133.1 511 1191.4 15 45.5 62.4 59.33418 58.28499 53.24708 57.25867

3 454.5 176 0 1650 15 45.5 49.9 54.08107 57.02104 51.87096 48.60335

3 500 180 1745.6 0 0 0 36.5 30.6147 30.61891 40.13712 33.28929

3 500 180 485.5 1132 0 0 38.2 30.61475 30.61891 27.75674 33.28929

7 500 180 485.5 1132 0 0 39.3 40.08943 39.35715 38.46793 42.16529

7 500 214.3 0 1567.7 0 0 35.8 35.61661 39.34786 37.12998 40.87574

7 454.5 126 1837.3 0 15 45.5 72.8 71.49746 74.25948 73.46497 70.65067

7 454.5 133.1 511 1191.4 15 45.5 69.7 71.11525 67.01902 66.21663 68.71663

7 454.5 176 0 1650 15 45.5 57.3 65.42066 65.89096 64.7405 61.67548

7 500 180 1745.6 0 0 0 41.2 40.09206 39.35715 43.89649 42.16529

7 500 180 485.5 1132 0 0 44.3 40.08943 39.35715 38.46793 42.16529

14 500 180 485.5 1132 0 0 42.3 44.80019 45.29398 43.42144 45.38792

14 500 214.3 0 1567.7 0 0 39.5 41.13574 45.29308 42.32828 44.30892

14 454.5 126 1837.3 0 15 45.5 80.7 76.50014 80.19431 75.99974 73.96195

14 454.5 133.1 511 1191.4 15 45.5 75.1 76.32334 72.95552 72.00812 72.08632

14 454.5 176 0 1650 15 45.5 62.9 71.94006 71.83801 70.50267 65.36906

14 500 180 1745.6 0 0 0 45 44.80091 45.29398 46.25017 45.38792

14 500 180 485.5 1132 0 0 48.5 44.80019 45.29398 43.42144 45.38792

28 454.5 133.1 511 1191.4 15 45.5 79.2 80.73413 77.60496 76.66774 75.74282

28 454.5 176 0 1650 15 45.5 67.7 77.05091 76.48846 75.16761 69.21116

28 500 180 1745.6 0 0 0 48.9 49.10834 49.94345 49.22807 48.60369

28 500 180 485.5 1132 0 0 52.5 49.10805 49.94345 47.68343 48.60369

28 500 222.9 0 1567.7 0 0 50.7 46.11985 49.94333 46.6407 47.42498

28 454.5 126 1837.3 0 15 45.5 85.3 80.82828 84.84358 79.06075 77.58498

28 454.5 136 511 1191.4 15 45.5 89.2 80.9171 77.60495 76.58913 75.64525



Table 5 Continued

56 500 214.3 0 1567.7 0 0 44.2 49.89514 53.72154 52.488 52.36012

56 454.5 126 1837.3 0 15 45.5 87.7 84.7044 88.62167 84.16189 83.2475

56 454.5 133.1 511 1191.4 15 45.5 82 84.64711 81.38306 82.4783 81.42828

56 454.5 176 0 1650 15 45.5 71.3 81.32273 80.26666 81.05027 75.0238

56 500 180 1745.6 0 0 0 51.9 53.07063 53.72155 54.3136 53.22375

56 500 180 485.5 1132 0 0 55.4 53.0705 53.72155 53.36689 53.22375

56 500 222.9 0 1567.7 0 0 55.1 50.18093 53.72154 52.37776 52.15466

90 454.5 126 1837.3 0 15 45.5 89.9 87.16184 90.84999 89.99595 89.56139

90 454.5 133.1 511 1191.4 15 45.5 84.3 87.11853 83.61138 88.3582 87.7544

90 454.5 176 0 1650 15 45.5 73.9 83.93025 82.49499 87.17697 81.41777

90 500 180 1745.6 0 0 0 53.2 55.61228 55.94987 60.22788 58.17599

90 500 180 485.5 1132 0 0 56.1 55.6122 55.94987 59.41627 58.17599

90 500 222.9 0 1567.7 0 0 55.6 52.75676 55.94987 58.51319 57.16581

90 454.5 126 1837.3 0 15 45.5 89.9 87.16184 90.84999 89.99595 89.56139



(a) Training (b) Testing

Fig. 6 Scattering Diagram of predicted vs experimental for training & testing models of GEP-9

(a) Training (b) Testing

Fig. 7 Scattering Diagram of predicted vs experimental for training & testing models of GEP-12

y = 0.9522x + 2.3252
R² = 0.9442

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150

P
er

ed
ic

te
d

fc
re

su
lt

s,
M

P
a

Exprimental fc results, MPa

y = 1.0255x - 1.775
R² = 0.9362

0
10
20
30
40
50
60
70
80
90

100

0 50 100

p
re

d
ic

te
d

fc
re

su
lt

s,
M

P
a

Exprimental fc results, MPa

y = 0.9297x + 3.7239
R² = 0.9244

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150

P
re

d
ic

te
d

fc
re

su
lt

s,
M

P
a

Exprimental fc results, MPa

y = 1.0005x + 0.5403
R² = 0.9333

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

P
re

d
ic

te
d

fc
re

su
lt

s,
M

P
a

Exprimental fc results, MPa



(a) Training (b) Testing

Fig. 8 Scattering Diagram of predicted vs experimental for training & testing models of GEP-14

(a) Training (b) Testing

Fig. 9 Scattering Diagram of predicted vs experimental for training & testing models of GEP-19
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of two fitness functions are shown in Figures 6-9 for the training and testing sets. These figures
show clearly, the fc values obtained from the training and testing sets in GEP-9, GEP-12, GEP-14
and GEP-19 models are very close to the experimental results. Also, inputs values and
experimental results with testing results obtained from best models were given and compared in
Table 5. As we can see, GEP-19 has closer results to experimental results.

All results show GEP also is a good approach for predicting of RAC fc values like NAC as was
done before by some researchers (Nazari and Riyahi. 2011, Castelli et al. 2013, Sonebi and Cevik
2009, Kara 2011, Gandomi et al. 2014, Sarıdemir 2011, Sarıdemir 2010, Sarıdemir 2014, 
Tanyildizi and Çevik 2010, Chen et al. 2014, Ozbay et al. 2008, Pérez et al. 2010).

4. Conclusions

As we know, the compressive strength is the most important properties of all concretes. For the
first time, this study evaluates fc of RAC in different ages, and proposes formulation for it by a
novel application of GEP. To predict the compressive strength values of RAC, 20 models with
different parameters were proposed. For running the models, data of some experimental studies
were collected from literature. Almost all of the models indicate good results which are close to
experimental results. Another reason for GEP capability for predicting fc is about statistical
parameters values (R2, MAE, RMSE, RAE, RRSE) .This paper also proposes that GEP can be an
alternative approach for prediction of fc of recycled aggregate concrete containing silica fume and
effective explicit formulation of many civil engineering problems. We hope to use of this approach
in other RAC properties in nearer future.
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