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Abstract. This paper describes a method of the refined plastic hinge approach in the framework of the
higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole
reinforced concrete structural system using least number of element(s), whereas the traditional design of a
reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the
material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the
element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects,
which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this
paper relies on the higher-order element formulation with element load effect. Eventually, the load
redistribution can be considered and make full use of the strength reserved owing to the redundancy of an
indeterminate structure. And it is particularly true for the performance-based design of a structure under the
extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural
system is important for the economical design approach, which is great superiority over the conservative
optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode
2).

Keywords: refined plastic hinge method; second-order inelastic analysis; one element per member; higher-
order element formulation; concrete structures; element load method.

1. Introduction

Concrete material is non-homogenous material, which behaves differently in different load
directions that makes concrete material is more difficult to predict than the metal or alloy, since the
inelastic deformations of concrete material are due to micro-cracking and internal friction sliding.
Also it greatly depends on the material composition that is highly uncertain, which makes the very
precise numerical modelling of local concrete behaviour may be meaningless for the engineering
applications. For example, a number of researchers (i.e. Cope and Rao (1977); Bergan and Holand
(1979); Ma and May (1986)) exploited the plane stress elements for the comprehensive modelling
of a concrete member, whose accuracy largely depends on how to model concrete, steel and their
mutual interaction and which method of the element discretization being used.
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To facilitate the design of a concrete structure, the inelastic analysis of the reinforced concrete
structure using the beam-column finite element has drawn a great deal of research interests (i.e.
Izzuddin et al. (1994); Bratina et al. (2004)) in the last decades, who based on the plastic zone
method, which is desirable to investigate the material effect on the non-uniform reinforced
concrete section. Unfortunately, their well-known setback is not efficacious, because the
comprehensive stress-strain relationship is needed to characterise the material condition of the
element section and the high number of numerical operations are required by stress integration in
stress-strain relationship with an allowable error level.

The alternative inelastic analysis is the plastic hinge approach, of which the lump-sum spring
stiffness at element ends in terms of the load-deformation relationship characterises the material
conditions of the whole element section, this process of which is equivalent to the stress numerical
integration. The plastic hinge approach always ensures the reliable numerical convergence thanks
to the compatible load-deformation relationship. In addition, it can circumvent the tedious and
inefficient stress integration technique.

The cross-section analysis is the technique of element loading state evaluation, particularly
helpful to the non-uniform and arbitrary element section. In the framework of the plastic zone
approach, a few scholars (i.e. Izzuddin and Lloyd Smith (2000); Chiorean (2004)) presented the
cross-section analysis to build the axial and bending interaction capacity curve of the element
section. Based on the plastic hinge approach, Liu et al. (2012a) developed the cross-section
analysis for the element section from the previous research work by Chen et al. (2001). Iu (2008)
developed the cross-section analysis for the non-uniform and arbitrary composite beam sections
without bending and axial interaction effect. As a result, the design interaction equation is needed.

The new system design approach of the RC structure using least number of element(s) is to
account for the true performance of a whole structure, when the modelling capacity of the method
is competent, which exploits the refined plastic hinge method in the context of the higher-order
finite element formulation with element load effects.

2. Higher-order displacement-based element with element load effect

The deformations comprise the deformations u in the x direction, v in the y direction, w in the z
direction and the twist φ about the x-axis. Based on the co-rotational coordinate system, the
dependent variables of transverse deflections v and w are replaced by nodal rotations as θz and θy,
about z- and y-axis, respectively, such as u = {u, θy, θz, φ}T. These rotations are the dependent
variables in turn which define the transverse deflections in the element stiffness formulation.

The higher-order transverse displacement interpolation function of an element given in Eq. (1)
not only fulfils the essential boundary condition (compatibility condition) in Eqs. (2) - (3), but also
natural boundary condition (force equilibrium equation) in Eqs. (4) - (5), as originally proposed by
Chan and Zhou (1994). The equivalent mid-span moment M0 and shear force S0 are respectively
introduced into Eqs. (7)-(8), which enable to measure additional deflection and loading
distribution due to element load effect (Iu and Bradford (2015); Iu (2015)).

( ) ∑=
p

i

i
i xcxv (1)

in which ci is unknown coefficient solved from boundary conditions given from Eqs. (2) to (8); p
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is polynomial of order up to 5 in this sense. In the transverse deflection v in the y direction,
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while the equilibrium equation of bending and shear force given by
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in which
EI

PL
q

2

= . (11)

The transverse deflection w in the z direction is in a similar fashion. N1, N2, Nm and Ns are
displacement functions with respect to rotations at first and second node, and element load
contributed from moment and shear force components, respectively; the equivalent mid-span

moment 0M and shear force 0S are given under the different sorts of element load, which

accounts for the element load effect at the element level and comprehensively discussed in Iu and
Bradford (2015) and Iu (2015); q is axial load parameter.

3. Stiffness formulation for higher-order element with element load effects

The derivation of the stiffness formulation of the higher-order element with element load
effects can be by virtue of the virtual work principle. Finally, the secant stiffness formulation or
element resistance formulation can be obtained as,
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in which the subscript α denotes y or z, and
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Right subscript symbol m and s in Eqs. (17) - (22) stand for the contribution from moment and
shear force component, respectively. Cm and Cs provoke the second-order moment from the

moment 0M and shear force 0S components respectively due to coupling effect of both axial

loads and lateral element loads, whereas bm1, bm2, bs1 and bs2 exhibit axial force resistance
subjected to the coupling effect between the axial loads and the lateral element loads.

4. Cross-section analysis of non-uniform and arbitrary RC section

According to the plastic hinge approach, the yield function of the element section is required to
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Fig. 1 Material laws and stress-strain distribution of reinforced concrete section

identify its material condition in the load-deformation relationship. Therefore, a cross-section
analysis is necessarily proposed in this study in the simple and efficient manner in order to
regulate the material condition across the non-uniform and arbitrary element section under
interaction effect by using a unique set of yield functions.

To extend from Iu (2008) to any axial load level in the interaction curve, the algorithm of the
proposed cross-section analysis is to scrutinise the layer δA as the depth of neutral axis yp, at which

the condition of ∫ = cPdAσ at the specific axial load level Pc is satisfied. When the depth of

neutral axis yp is assumed, the failure surface is thus determined in Fig. 1. Eventually, the failure
strain distribution profile is obtained and written as Eq. (23),

( )cyy −=φε (23)

which is also known as the failure compatibility condition. The curvature φ is obtained from the
failure surface εcu and depth of neutral axis yp. It is interesting to note that since the ductility of the
concrete material far less compared to those of the steel material (i.e. εcu (0.003) << εsu (0.02)), the
failure surface of the reinforced concrete section is always dictated by the compression in concrete,
except for the very high-strength steel reinforcement whose ductility is very low.

The material law of the concrete and steel reinforcement are simplified as the bi-linear relation
for the practical design aim as shown in Fig. 1, but not limited to, when the algorithm of the
proposed cross-section analysis can expand to the multi-linear stress-strain relation for
comprehensive material study, such as strain-hardening region. However, more parameters are
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Fig. 2 Interaction profile of the reinforced concrete section with special loading state

required for multi-linear relation and thus hinder the application of design.
While the strain εs of the steel reinforcement exceeds yield strain εy according to the linear

compatibility condition of Eq. (23), the yield stress fy is attained at that steel reinforcement.
Otherwise, the elastic stress of steel reinforcement complies with the elasticity Hooke law, such as
fs=Esε. However, the concrete fibre does not always follow the compatibility condition strictly,
whose capacity is derived as the ideal compressive stress fc times a portion α of the depth of plastic
neutral axis yp for the simplified ideal compressive stress block as illustrated in Fig. 1. The factor
of α is normally taken as 0.8 in this study.

Therefore, once the failure compatibility condition according to a particular yp is computed, at
which the axial force equilibrium,

dAPc ∫= σ (24)

is sought at specific axial load level Pc or its difference is less than the axial load of a strip of layer
(i.e. δPc≤σδA). In the meantime, the overall moment capacity Mc of the section can be given by,

( )dAyyM cc ∫ −= σ (25)

This procedure is further repeated for other axial load level Pc until the whole interaction
capacity curve of the element section completes as illustrated in Fig. 2. However, this procedure is
valid if and only if the neutral axis (i.e. yc or yp) lies within the element section. It heralds that the
above procedure is only applicable between the decompression and pure bending as shown in
Fig.2. Because of this, the interaction capacity curve between decompression and pure axial
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(a) Section with high steel to concrete ratio (b) Section with low steel to concrete ratio

Fig. 3 Three-Dimensional interaction profile of concrete section

compression as well as between pure bending and axial tension is assumed linear without loss of
accuracy. The number of specific axial load level Pc between the decompression and pure bending
can define the fineness of the interaction capacity curve. In this proposed cross-section analysis, 3
specific axial load levels are required to construct the capacity curve between decompression and
pure bending piecewise, which is derived by a fraction (i.e. ¼; ½; ¾) of the axial capacity at
decompression Pc as indicated in Fig. 2. Hence, there are total 7 ordinates (i.e. Mc & Pc) to define
the interaction capacity curve of a particular non-uniform and arbitrary reinforced concrete section
by a set of the linear equations as depicted by the dash lines in Fig. 2.

For the domain of the biaxial bending, this cross-section analysis relies on the well-developed
interaction capacity curve from design codes (i.e. AS3600; Eurocode 2) as written in Eq. (26),
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in which Mcx and Mcy are respectively moment capacity about major and minor axis at the
particular axial load level Pc, which can be derived from Eq. (25) for the respective axis; αn is the
parameter to control the shape of biaxial interaction capacity curve, whose value is 1 ≤ αn ≤ 2. 
When αn is equal to 1, it means linear biaxial bending relation, which is very conservative,
whereas αn is 2 for circular biaxial bending relation, which is very economical but sometimes
unsafe. Therefore, the three-dimensional (i.e. Pc, Mcx, Mcy) interaction capacity curve is constructed
as illustrated in Fig. 3.

Unlike the other cross-section analysis (i.e. Chiorean (2010); Liu et al. (2012a)), they can
generate the comprehensive three-dimensional interaction capacity curve but computational
demanding. On the other hand, the benign feature of the proposed cross-section analysis is to
locate a unique set of discrete critical loading states (i.e. Pc, Mcx, Mcy), which can define the three-
dimensional interaction capacity curve, in advent of the numerical procedures without demanding
computational storage, and further this cross-section analysis is no longer implemented in the
course of the nonlinear solution procedures and thereby without demanding computational
operation.

It is noteworthy that the interaction capacity curve of the reinforced concrete section normally
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characterises with the strength enhancement in moment capacity at balanced point B compared to
the pure bending state at A as indicated in Fig. 2, because the compression in concrete can
contribute to the massive moment capacity enhancement by lowering the plastic neutral axis yp

from those at pure bending state, which implies increase in lever arm and larger compression
portion. On contrary, the steel section cannot provide such large moment capacity enhancement
owing to the inconsiderable steel section.

5. Flexural stiffness of the concrete element at pre-yield stage

The concrete cracking due to tension can affect the flexural behaviour significantly at the pre-
yield regime, which results in larger deflection. The present method therefore adopts the effective
second moment of area Ieff in Eq. (27) proposed by Branson and Metz (1963), which offers a
reasonable estimation of the pre-yield behaviour in the simple and effective manner and thereby is
widespread in the analyses for the reinforced concrete structures,
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whose principle is to model the localised flexural cracking phenomenon by equivalent flexural
stiffness of a whole element section, which is bounded by Icr ≤ Ieff ≤ Ig; Ig and Icr are respectively
second moment of area of gross section and cracked section, which can be obtained from the
present cross-section analysis; Mcr and M are the cracking moment capacity and bending moment
of the member, respectively. In this study, the ratio of (Mcr/M) in Eq. (27) is kept constant in the
course of the nonlinear solution procedure, because it maintains the high level of efficiency.
Therefore, the constant effective second moment of area Ieff in between Icr and Ig, is reasonable and
accurate in the integral sense. By contrary, the effective second moment of area Ieff commensurate
to the latest load level is unreliable, because the solution procedure traces the nonlinear
equilibrium path of which depends on the loading states. As a result, the approach with updated
loading state may provoke the issue of path dependent, as the load increment can determine the
load states but it in turn affects the equilibrium path itself. The similar phenomenon reported in
Zienkiewicz and Taylor (1991) that the material nonlinear effect can have the path-dependent
effect. On the other hand, the plastic hinge approach has not encountered of this problem when
assuming the elastic element stiffness formulation, which is irrelevant to the loading state of an
element. Therefore, for the robust, efficient and reliable standpoint, the constant effective second
moment of area Ieff is adopted in this study.

6. Refined plastic hinge method for a concrete element at post-yield stage

Post-yield behaviour is essential to the performance-based design approach, while the true
performance of a whole structure is of much concern. Iu and Chan (2004) developed the nonlinear
fire analysis of a steel frame, in which the strain-hardening effect in terms of engineering plasticity
was first introduced in the plastic hinge approach. Further, Iu et al. (2009) presented the refined
plastic hinge approach, which includes the inelastic effects under interaction effect. This plastic
hinge approach with the present cross-section analysis can therefore capture the inelastic buckling
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of a member by itself. The incremental refined plastic hinge stiffness for the beam-column
concrete element at post-yield stage is given as,
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in which the incremental spring stiffness ∆S is such that ∞ > ∆S > 0; µ is strain-hardening
parameters; φi(f) and φf(f) are the initial yield and interaction capacity curve, respectively, in which
f is load vector or element loading state. The interaction capacity curve φf(f) is founded by a
unique sets of discrete points with respect to each axis generated from the present cross-section
analysis, whereas the initial yield function φi(f) is given as,
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in which Mcx and Mcy are the moment capacity, which can be either plastic moment capacity Mp

(i.e. Zp⋅fc) or elastic moment capacity Me (i.e. Ze⋅fc); The higher-order element with the refined
plastic hinge stiffness formulation are comprehensively discussed in Iu and Bradford (2012).
Under a particular circumstance (i.e. the bending dominant element), the incremental spring
stiffness in Eq. (28) can be reduced to,
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For the bending beam element, Eq. (30) is adopted similar to those used in Iu and Chan (2004)
and Liu et al. (2012b).

Fig. 4 Ultimate section capacity of rectangular reinforced concrete section
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Fig. 5 Mid-span deflections of a simple rectangular RC beam subjected to 2 point loads

7. Numerical examples

In this verification section, a number of examples are examined in this paper, including the
section capacity, a few simple reinforced concrete members as well as a concrete frame.

7.1 Ultimate capacity of RC section under interaction between axial load and bending

A rectangular reinforced concrete section under interaction effect was presented by Liu et al.
(2012a), whose layout of the section and properties are given in Fig. 4. The interaction capacity
curves about both major and minor axes from the present cross-section analysis are very consistent
with the others, including Eurocode 2 and Liu et al. (2012a). It can be seen that, in the major
bending direction, the enhancement in moment capacity is greater than those in minor axis, when
the large lever arm from the plastic centroid yp to the concrete compression is accommodated. This
kind of phenomenon is easily found in the concrete section with low steel to concrete ratio as
illustrated in Fig. 3.

7.2 A simple supported rectangular reinforced concrete beam with strain-hardening
effect

A simply supported rectangular reinforced concrete beam is subjected to 2 point loads. The
geometry and its section properties are shown in Fig. 5, which was experimentally and numerically
investigated by Cope and Rao (1977) and Ma and May (1986) numerically. In their numerical
studies, the comprehensive finite element meshes were required for the reinforced concrete beam,
which was based on the two-dimensional plane stress elements. The present approach uses 3 one-
dimensional higher-order elements for this simply supported beam as given in Fig. 5 in order to
capture material effects at load applications.
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Fig. 6 Mid-span deflection of a simple supported RC T-beam

Fig. 5 indicates the mid-span deflections of the concrete beam against the total point load P. In
the elastic range, the load-deflection curve from the present method is in between the experimental
and numerical approach (Cope and Rao (1977)). And the concrete beam reaches its full plasticity
at the level of 120kN from the present method similar to Ma and May (1986). And the post-yield
behaviour of this concrete beam from the present method is also consistent with others as shown in
Fig. 5. Therefore, the present method can yield the accurate solutions in the efficient manner with
least number of elements when compared to Cope and Rao (1977) and Ma and May (1986).

7.3 Ultimate strength of a simple supported reinforced concrete T-beam

This example investigates the behaviour of the T-shape reinforced concrete beam under a point
load at mid-span, which was studied by Cope and Rao (1977) experimentally and numerically. In
their numerical modelling, the concrete T-beam is simulated by the three-dimensional
comprehensive element mesh using the plane stress finite elements. On contrary, the present
method divides a simple supported T-beam into 2 higher-order finite elements so as to capture the
material yielding by a plastic hinge at mid-span.

Fig. 6 plots the mid-span deflection of the concrete T-beam with the applied point load P from
Cope and Rao (1977) and the present method. It is observed that the discrepancy of the mid-span
deflections between the present method and experimental result becomes apparent while applied
load P increases, because the severe cracking was measured. In spite of this, the present method
can average the nonlinear pre-yield behaviour when compared to the comprehensive numerical
modelling. The ultimate load of the concrete T-beam was measured at P=127kN (Cope and Rao
(1977)), and the present method can predict it at P=130kN, which are very consistent. All in all,
the present method is accurate in modelling capacity but more efficient and effective when using
the least number of elements.
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Fig. 7 Lateral tip displacement vs axial compressive load of the Foure’s RC column

Fig. 8 Interaction capacity curve of the Foure’s RC column

7.4 A Cantilever concrete column encountering the stiffness degradation due to P-∆
effect

A cantilever reinforced concrete column (Foure’s column) was tested by Espion (1993) as one
of the benchmark examples to verify the accuracy of nonlinear analysis of the RC structures. This
column is subjected to an axial compression load P and eccentric moment 0.015P, so it is critical
to the P-∆ effect and its interaction between bending and axial compression.

The lateral tip displacement v against the axial compression P is plotted in Fig. 7. In the onset
of elastic range, there is an offset after 100kN at which the column begins cracking. Despite this
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Table 1 Material and section properties of the concrete frame

Material Elasticity (kN/m2) Yield stress (kN/m2) Ultimate strain (%)

Concrete: 3.15×107 3.6×104 0.035

Steel: 2×108 2.93×105 0.015

Section Ze (m3) Zp (m3) Ig (m4) Icr (m4) Yield surface

1 0.24495×10-3 0.29317×10-3 0.40062×10-4 0.19361×10-4 Eq. (30)

2 0.26836×10-3 0.29421×10-3 0.43694×10-4 0.20395×10-4 Eq. (30)

3 0.24495×10-3 0.28904×10-3 0.40062×10-4 0.19361×10-4 Eq. (30)

4 0.24495×10-3 0.29317×10-3 0.40062×10-4 0.19361×10-4 Eq. (28)

5 0.24495×10-3 0.28904×10-3 0.40062×10-4 0.19361×10-4 Eq. (28)

Fig. 9 Numerical modelling details of the simple portal concrete frame

slight discrepancy at the elastic regime, the present method can offer the consistent load-deflection
behaviour with the other approaches (i.e. Bratina et al. (2004), Liu et al. (2012)) as shown in Fig. 7
as well as the accurate ultimate load 441kN when compared to experimental and numerical results
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Fig. 10 Mid-span deflection of the concrete beam of the Cranston’s frame

454kN (Espion (1993)) and 447kN (Bratina et al. (2004)), respectively. After the ultimate load, the
present method can predict that the stiffness and strength of the Foure’s column deteriorates due to
the P-∆ effect, when the lateral displacement increases in Fig. 7 with the loading state decreasing
in Fig. 8 till a mechanism at its base.

7.5 A simple portal concrete frame with pinned supported at its column bases

A reinforced concrete portal frame (Cranston’s frame) was tested by Cranston (1965) and
numerically analysed by a few scholars, including Sun et al. (1994), Bratina et al. (2004) and Liu
et al. (2012). The geometry of the Cranston’s frame is illustrated in Fig. 9; Figure 9(a) is the
original detailed numerical modelling of the Cranston’s frame (case a), whereas the Figure 9(b) is
the simplified modelling (case b), which investigate the numerical modelling effect for the better
behavioural evaluation. The details of the sections are given in Fig. 9(c).

The material and section properties are listed in Table 1. Their second moment of area Ig and Icr

of gross and cracked section are same, because Ig disregards the direction of loading distribution
and Icr possesses the same detailing arrangement with respect to the loading distribution. On
contrary, the plastic modulus Zp of the sections are a bit different, for example Zp of the sections
1&4 slightly defers from the sections 2&5 in Fig. 9(c), because the concrete exhibits different
capacity in different loading directions at inelastic range. It is reminded that the numerical
modelling of the reinforced concrete structure is dependent on the detailing arrangement and
loading distribution of the priori behavioural pattern.

The mid-span deflections of the concrete beam against the applied loads P are plotted in Fig.
10. The present method with the detailed modelling (case a) can compute the behaviour of the
Cranston’s frame in the very consistent manner with those from Bratina et al. (2004). The ultimate
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load from the present method (i.e. P=20.4kN) is slightly lower than the tested result (Cranston
(1965)) (i.e. P=21.1kN). Further, the present method with the simplified modelling (case b) can
predict its ultimate load (i.e. P=19.6kN) lower than those by using the detailed modelling (case a)
as shown in Fig. 10, because the section capacity (i.e. Zp) of section 3 is only a bit lower than those
of section 2 as given in Table 1. If the section 2 in the original modelling (case a) in Fig. 9(a)
replaces with the section 1 as regarding another modelling (case c), whose load-deflection
behaviour and ultimate load are all well-agreed with those of (case a) as illustrated in Fig. 10,
because the region from node 4 to 7 in Fig. 9(a) are most likely under sagging moment, and the
section 1 can capture the significant flexural behaviour of the original detailing of the Cranston’s
frame.

It heralds that the accuracy of the integrated analysis and design of the reinforced concrete
structure relies on the numerical modelling in alignment with its priori behavioural pattern,
especially when the behaviour of the non-homogenous concrete member section is extreme with
respect to the loading distribution.

8. Concluding remarks

In summary, the present nonlinear analysis by using the least number of the sophisticated
higher-order element(s) with the refined plastic hinges can evaluate the behaviour of a whole
reinforced concrete structure at pre-yield and post-yield stages very consistently, whose modelling
capacity comprises the linear flexural cracking behaviour, gradual yielding, strain-hardening effect
contributed from the reinforcement, loading redistribution due to plasticity, second-order P-δ
effect, strength and stiffness deterioration due to P-∆ effect. Moreover, in order to underpin the
integrated design of a RC structure using least number of element(s), several standpoints are given
below,

1. Since the concrete material is non-homogenous, the evaluation of the concrete section
capacity should comply with its loading distribution roughly but enough to capture the overall
significant behaviour of a RC member. Hence the numerical modelling of a whole structure should
be defined by the priori behavioural pattern, which can be accomplished by the automatic re-
meshing process as described by Iu (2008). And the element discretisation and section properties
assigned according to the priori behavioural pattern keep same in the whole loading increment of
the nonlinear solution procedures.

2. A reinforced concrete member with different detailing should be divided into a number of
elements complying with the corresponding reinforcement section as long as the overall significant
behaviour of the RC member can be reasonably and accurately replicated, which is not sensitive
but adequate.

3. The present refined plastic hinge is unfortunately only formed at the element nodes,
including other conventional plastic hinge approaches, which causes the element discretisation if
the material plasticity occurs along span of a member.

4. There is no ultimate error-proof element (Trifunovic and Iu (2014)) that can replicate all
significant global behaviour of a member by itself. Because of this, the design of a structure with
recourse to the integrated design approach is still dependent of the computer modelling, including
the type of element adopted for the corresponding behaviour (i.e. its geometric and material
capacity), accurate element solutions (Iu and Bradford (2015); Iu (2015)) under element loads as
well as the element discretisation owing to the aforesaid causes.
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