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Abstract. Degradation of reinforced concrete (RC) structures due to chloride penetration followed by
reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical
simulation methods at present are mainly finite element method (FEM) and finite difference method
(FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present
article, the numerical solution of chloride transport in concrete is analyzed using radial point
interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM
utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin
weak form on global is used to attain the discrete equation, and four different numerical examples are
presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical
simulation results are compared with those obtained from the finite element method (FEM) and
analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are
analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is
obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable
meshless methods for prediction of chloride concentration in concrete structures.
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1. Introduction

Reinforced concrete structures located in exposed marine environments present corrosion
damage. Chloride corrosion of steel reinforcement is a main cause of deterioration of concrete
structures, such as highway bridges and marine structures (Ahmad 2003, Goltermann 2003,
Marchand and Samson 2009, Faramarz et al. 2014, Seyed et al. 2015). Initiation period is defined
as the time for sufficient chloride penetration into the concrete cover to initiate corrosion.
Therefore, developing reliable numerical methods for predicting chloride concentration is urgent
to prevent deterioration of new structures and assess conditions of existing RC structures.
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Depending on the degree of saturation, concrete can be classified as saturated or unsaturated.
Chloride penetration is different in saturated and unsaturated concretes. Chloride diffusion is
assumed to follow Fick’s second law under the assumption that the concrete is fully saturated.
Chloride penetration is complex when the concrete is unsaturated in practical engineering. Several
authors proposed different models to predict chloride transport into unsaturated concrete (Guzmán
et al. 2011, Boddy et al. 1999, Martın-Pérez et al. 2001,Conciatori et al. 2008). Thus, various
models are analyzed with finite element method (FEM), finite difference method (FDM), and other
complicated numerical methods. The common characteristic of all these methods is based on a
mesh, but mesh generation that involves complex regions for actual engineering takes a long time,
making mesh generation an important link of numerical modeling.

New numerical techniques called meshless methods have been developed over the past
decades. Meshless methods do not require element connectivity and the integration over the
solution domain requires only simple integration of cells to obtain the solution. In recent years, the
method has been widely used in different areas, such as elasticity and thermal conduction fracture
mechanics. Meshless method is used for the diffusion of chloride in the concrete only in (Bitaraf
and Mohammadi 2008, Guo et al. 2012). The study in (Bitaraf and Mohammadi 2008) about a
finite point method (FPM) is developed and adopted to solve the chloride diffusion equation in
concrete. In (Guo et al. 2012), the transient meshless boundary element method is adopted to
predict chloride diffusion as it places emphasis on time-dependent nonlinear coefficients. Meshless
methods can be classified into three categories. The first category includes methods that need to be
set up based on moving least-squares approximation. Element-free Galerkin (EFG) method
(Dolbow and Belytschko 1998) and local Petrov–Galerkin method (Atluri and Zhu 1998) belong
to this category. The second category includes radial point interpolation method (RPIM) with
polynomial reproduction (Liu et al. 2005). The third class includes particle methods using the
integral form approximation, such as the smoothed particle method (Randles and Libersky 1996).

RPIM and EFG are meshless methods. The governing differential equation is obtained using
the Galerkin weak form, but they differ in that radial point interpolation is adopted in RPIM,
whereas MLS approximation is adopted in EFG; their boundary is also enforced in different
methods. The solution procedure of the RPIM is similar to that of the FEM; thus, the essential
boundary conditions to be imposed are direct approach as FEM. However, Lagrange’s Multiplier
technique was used to impose the essential boundary conditions in the EFG method in this article.

In this article, the chloride diffusion in full saturated and unsaturated concrete is numerical
simulation in RPIM and EFG methods. Section 2 briefly discusses the formulation using radial
polynomial basis. Section 3 describes MLS approximation. Section 4 discusses discrete chloride
diffusion model in Galerkin weak form. 1D and 2D numerical examples are then solved,
discussed, and analyzed, and FEM, EFG, and RPIM results are compared in Section 5, followed
by the conclusion section.

2. Radial polynomial basis in RPIM

Consider a continuous function C(x) defined on a domain Ω⊆Rd (d=1,2) where x is a point, Ωs

is the neighborhood of a point and Ωx⊆Ω. In RPIM with polynomial reproduction, the 
approximation Ch(x) is (Kumar and Dodagoudar 2008)
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n m

i i j j
i=1 j=1

( ) ( ) R ( )a + p ( )b +hC C Τ Τ≈ = =∑ ∑x x x x R (x)a P (x)b (1)

where ai(x) is the coefficient for Ri(x), Ri(x) is radial basis function, bj is the coefficient for pj(x), n

is the number of nodes in Ωs of x, and m is the number of polynomial basis function, which is

usually m<n. In 2D space, PT(x)=[1,x,y]. The vectors are defined as: a=[a1,a2,…an]
T;

b=[b1,b2,…bm]T; RT(x)=[R1(x),R2(x),…Rn(x)]; PT(x)=[p1(x),p2(x),…pm(x)]. The coefficients ai and

bj in Eq. (1) are determined by enforcing the interpolation pass through all n -scattered nodal

points within the influence domain. The matrix form of Eq. (1) is expressed as: To guarantee the

uniqueness of the approximate function, the coefficient of additional conditions is as Eq.(2)

Ce=R0a+Pb (2)

1
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=

= =∑ K
n

j i
i

p a j m (3)

The matrix form of Eq. (3) is

PTa=0 (4)

Combining Eq. (2) and Eq. (4), Eq. (2) is expressed in matrix form as follows
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It can be attained from Eq. (1)

0

-1 e -1
0a = R C - R Pb (9)

 
 

-1e Τ -1 Τ -1 e
b 0 0b = S C = P R P P R C (10)

Combing Eq. (9) and Eq.(10)
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a=SaC
e (11)

where

-1 -1 -1
a 0 b 0 0 bS = R [1 - PS ] = R - R PS

(12)

Substituting Eq. (10) and Eq. (11) in Eq. (1) yields

( ) [ ] ( )Τ Τ= =ex R S + P S C Φ x Ce
a bC (13)

where

1 2( ) [ ( ), ( ), ( )]n= Φ Φ ΦΦ x x x xK (14)

The derivatives of shape function are
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In this article, the thin plate spline (TPS) radial basis and multi-quadrics (MQ) are adopted (Li
et al. 2003). The radial basis function is only related with the distance ri as follows

2 2( ) ( )i i ir x x y y= − + − (16)

MQ function

2 2 2 2 2( ) ( ) ( ( ) ) [( ) ( ) ( ) ]q q
i i c c i i c cr r d x x y y dα α= = + = − + − +i iR x R (17)

TPS function

2 2 2( ) ( ) ( ) [( ) ( ) ]i i i ir r x x y yη η= = = − + −i iR x R (18)

where αc, q, and η are shape parameters and dc is the average distance between two nodes in Ωs.
Their partial derivatives are obtained as follows
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3. MLS approximation in EFG

In the MLS approximation, u(x) is assumed to be set as a field function in the support domain
Ω. The approximation of C(x) at point x is denoted by Ch(x) (Boddy et al. 1999) as

1

( ) ( ) ( )
=

= =∑ Tx x x p (x)a(x)
m

h
i i

i

C p a (20)

where

1 2[ ( ), ( ), ( )]na a a= Ta(x) x x xK (21)

2 2( , ) [1, , , , , , , , ]k kx y x y xy x y x y= =T Tp (x) p L (22)

The undetermined coefficients a(x) are obtained by minimizing the function J

2 2
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= = =

= − − = − −∑ ∑ ∑ Tp a (23)

The sationarity of J in Eq. (23) with respect to a(x) results in the following equations

( ) ( ) ( )A x a x B x C= (24)

a(x) = -1A (x)B(x)C (25)
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I I I
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1 1 2 2( [ ( ) ( ) ( ) ( ) ( ) ( )]=x) K N NB w x p x w x p x w x p x (27)

( ) = T T -1x p (x)a(x) = p (x)A (x)B(x)ChC (28)

4. Discretization of governing equation

Chloride diffusion in full saturated concrete is generally assumed to follow Fick’s second law
(Bitaraf and Mohammadi 2008). The diffusion equation is written as

2 2

2 2x y

C C C
D D

t x y

∂ ∂ ∂
= +

∂ ∂ ∂
(29)

where C=C (x, y, t) represents concentration, t is time, and Dx and Dy are diffusion coefficient in x-

and y-directions, respectively.
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The initial and boundary conditions are

00C x y C=( , , ) in Ω (30)

sC C= on
1Γ (31)

The weighted integral form of Eq. (29) with Galerkin weak form on global is expressed as

2 2

2 2
0x y

C C C
C D d C D d C d

tx y
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∂ ∂ ∂
Ω + Ω − Ω =
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By using divergence theorem and natural boundary conditions
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Substituting Eq. (13) or Eq. (28) into Eq. (32) yields
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The matrix form of Eq. (34) are written as
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Galerkin approach is applied to solve the weak form; thus, integrating over the problem domain
is necessary. Gauss quadrature scheme is used for integration.

Using Crank-Nicolson technique for time approximation, Eq. (35) can be written as

n n
eff =K C f (38)

where

2
eff

tΛ
= +K M K (39)

1

2
n n t− ∆
= −f {C} ([M] [K]) (40)

Chloride diffusion follows Fick’s second law when the concrete is fully saturated in concrete,
whereas diffusion is not only a transport mechanism but also other absorption mechanism in
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non-saturated concrete. The author proposed convection-diffusion models to predict chloride
transport in unsaturated concrete. The convection-diffusion equation for divergence-free velocity
field is given by (Da Costa et al. 2013)

2

2

C C C
D

t xx
µ

∂ ∂ ∂
= −

∂ ∂∂
(41)

K is different from Eq. (37) and other parameter is the same in unsaturated concrete.

0
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5. Numerical examples

Applications of RPIM and EFG are illustrated using four examples that deal with chloride
diffusion in concrete. MATLAB codes are developed to obtain EFG and RPIM results, and FEM
results are obtained using COMSOL Multiphysics 4.3 software.

5.1 1D Chloride diffusion in full saturated concrete

The first example is a 0.15 m×0.15 m concrete slab. The left boundary of the slab is subjected
to a chloride concentration of 5% (by mass of NaCl). The top and bottom walls are isolated. The
initial chloride concentration is 0. In this problem, the diffusion coefficient is assumed in the first
example to be a constant D=1.5768×10−12 m2/s, and in the second example to be a time-dependent

function 0
0( ) ( )mt

D t D
t

= (Luping and Gulikers 2007). D0 is the diffusion coefficient at some

reference time t0, and m0 denotes the material constant. In this problem, D=1.5768×10-12×(0.1/t)0.1

m2/s. For the purpose of convergence studies, the root-mean square (RMS) error is defined as:

*

1

1
( ) ( )

n

I I
I

R C x C x
n =

= −∑ , where n is the number of sample points. C(x1) is the calculation with

meshless methods, and C*(x1) denotes the analytical solution.

5.1.1 Coefficient D is a constant in 1D
The analytical solution for 1D diffusion behavior of chloride ions in concrete is

( , ) (1 ( ))
2

s

x
C x t C erf

Dt
= − (43)

where erf (.) is the error function and Cs=5%. To implement the meshless method, the slab is
discretized into 31 nodes at exposure time t=20 years. Table 1 gives a numerical comparison of the
RMS errors for different radial basis functions. Notably, minimum error occurs when using MQ
function and q=0.98; thus, we choose MQ function and q=0.98 in the numerical simulation that
follows.
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Table 1 RMS(%) error of different radial basis functions at nodes=31 exposed time t=20 years

MQ(αc=2.0) TPS

q Error (%) η Error (%)

-0.50 0.0786 1.05 0.2102

0.50 0.0762 1.25 0.1689

0.98 0.0727 1.50 0.1290

1.01 0.0728 1.75 0.1002

1.20 0.0732 1.95 0.0847

Table 2 Results of RPIM, EFG, FEM and exact at a few specific locations (31nodes, t=20years)

Location (m) Chloride concentration (%)

x RPIM EFG FEM Exact

0.01 4.1120 4.1132 4.1174 4.1129

0.03 2.5106 2.5067 2.5110 2.5058

0.05 1.3168 1.3134 1.3096 1.3112

0.07 0.5865 0.5855 0.5800 0.5826

0.09 0.2201 0.2207 0.2182 0.2180

0.11 0.0693 0.0702 0.0690 0.0682

0.13 0.0189 0.0196 0.0186 0.0178

0.15 0.0081 0.00087 0.007637 0.0039

Fig. 1 Variation of chloride concentration with depth

Table 2 shows a comparison of the chloride concentration by using the RPIM, EFG, and FEM
methods and the exaction solution at a few specific locations among the 31 nodes at t=20 years.
The same number of nodes was used in all methods. Table 2 shows that the results of the meshless
methods are very closer to the analytical solutions than FEM, although all errors are very small.

Chloride concentration change with depth at exposure times of 1, 10, and 20 years is shown in
Fig. 1. In this figure, C1R, C1E, C1F and C1a denote the chloride concentration from RPIM, EFG,
FEM and the analytical solution after one year’s exposure employing 31 nodes. Results of the
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Table 3 Chloride concentration RMS error at time t=20 years (D is a constant)

Number of nodes RPIM EFG

RMS (%)
16 0.1773 0.1766

31 0.0727 0.0622

Fig. 2 Chloride concentration-depth at time=20 years (at nodes=31)

Table 4 The initiation period of corrosion by different methods

D is a constant

Number of nodes
initiation period

(year)

RPIM EFG FEM Exact

16 9.10 9.20 9.30 9.20

31 9.25 9.25 9.35 9.20

D is a time-
dependent function

16 initiation period
(year)

12.05 13.55 13.75 -

31 12.50 13.65 13.85 -

RPIM, EFG and FEM are nearly identical with the analytical results. By decreasing the number of
nodes to 16, the error of numerical methods at time t=20 years is illustrated in Table 3.

5.1.2 Coefficient D is a time-dependent function in 1D
In the second example, when the coefficient D is a time-dependent function, the analytical

solution is represented by (Suryavanshi et al. 2002)

(1 ( )
2s a

C x
erf

C D t
= −

⋅
(44)

where 1 10 0 0 0[(1 ) ( ) ]( )
1

m m m
a

D t t t
D

m t t t
− −= + −

−
.

The transient chloride diffusion in concrete is shown in Fig. 2. Results shown in Fig. 2 indicate
good agreement among the RPIM and EFG methods and the analytical solution. The RMS error
was 0.9215% between the RPIM and the analytical result, and the RMS error of the EFG method
was 0.0865% when t=20 years and 31 nodes were used. The accuracy of the EFG is higher than
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Fig. 3 2D square concrete

that of RPIM, but the error of RPIM is still poor in an actual engineering application. Selecting the
critical chloride ion content (Ct) of 0.5% and a depth of 5 cm, the initiation period of corrosion for
the start of rebar is shown in Table 4. It is clear that prediction of the initiation periods of corrosion
in different methods are very close to the exact.

From these results of two examples, RPIM and EFG are effective in predicting chloride
diffusion in concrete whether D is a constant or not.

5.2 2D problems in full saturated concrete

The rate of chloride diffusion in an actual reinforced concrete structure is very slow, so
measuring diffusion is a slow and time-consuming process. In addition, studies that deal with
chloride diffusion over long periods are few. In this section, a concrete plate of 0.15 m×0.15 m was
used as an example in actual engineering (Fig. 3). The left and bottom boundaries of the plate were
subjected to a chloride concentration of 0.6% as Dirichlet’s boundaries, and the right and top
boundaries were isolated. The initial chloride concentration was 0 similar to that reported in (Guo
et al. 2012).

5.2.1 Coefficient D is a constant in 2D
A regular distribution of 31×31 nodes was selected in the Ω domain for all methods. Given the 

2D characteristic of the example, when the diffusion coefficient D is a constant (D=9.38×10−12 

m2/s), the analytical solution is as follows (Luping and Gulikers 2007)

( , , ) [1 ( ) ( )]
2 2

s

x y

x y
C x y t C erf erf

D t D t
= − (45)

Here, the selected exposed time t is 3, 5, and 10 years. Variations of chloride concentration
from the lower-left corner to the upper-right corner and the analytical solution at the same position
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Fig.4 Variations of chloride concentration at diagonal points

(a) RPIM (b) EFG

(c) FEM

Fig. 5 Distribution of chloride concentration in (a), (b) and (c) methods after exposed time t=20 years

on the plate are shown in Fig. 4. The relative error of the chloride concentration at diffusion depth
of 50 mm, for instance, is about 0.48%, 0.20%, and 0.19% after 3, 5, and 10 year’s exposure in
RPIM, respectively.
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Table 5 The initiation period of corrosion by different methods

Initiation period (year) RPIM EFG FEM Exact

D is a constant 7.50 7.45 7.45 7.46

D is a time-dependent function 23.00 22.00 18.20 -

Fig. 6 Variations of chloride concentration at diagonal points

5.2.2 Coefficient D is a time-dependent function in 2D
To verify the efficiency of the RPIM, concrete coefficient D is chosen as a time-dependent

function D=9.62×10−12×(0.1/t)0.2 m2/s. Other conditions are the same as the previous 2D problem.
Fig. 5 shows the distribution of chloride concentration at an exposure time of t=20years with the
RPIM, EFG, and FEM methods. Results from RPIM and EFG are roughly the same with FEM and
the direction of chloride diffusion is consistent. Chloride concentration increases significantly near
the two exposed surface and diagonal points.

If we choose Ct=0.3% and assume that a rebar exists at a depth of 7 cm, then a critical
concentration on the rebar surface is reached in about 3 years. The initiation period for the start of
rebar corrosion is shown in Table 5. These results show good agreement among the meshless
RPIM, EFG, and FEM methods.

5.3 Chloride diffusion in unsaturated concrete

In most real situations, chloride transport is not attributed exclusively to a diffusion mechanism
(Conciatori et al. 2008). Some authors propose convection-diffusion models to predict chloride
transport in unsaturated concrete. The experimental data are from 25 years of service life in marine
environments. Fig. 6 shows that the RPIM method solution fitted to the experiment given in (Da
Costa et al. 2013). Results obtained from the RPIM for the prediction of chloride transport in
unsaturated concrete is stable and accurate.

5.4 Chloride diffusion in real concrete

Experimental results of 18 RC blocks exposed in the splash zone on the southeast coast of
England (Thomas and Bamforth 1999) are compared with numerical results from RPIM and EFG
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(a) 0.5 year (b) 3 year

Fig. 7 Distribution of chloride concentration with penetration depth after (a) 0.5 (b) 3 year’s exposure

methods. Fig. 7 for PC shows the variation of chloride concentration at t=0.5 and 3 years. Result
indicates that the RPIM and EFG of numerical method better agree with the experimental results
as time increases.

6. Conclusions

RPIM and EFG are meshless methods based on the discretization of the governing equation in
Galerkin weak form. These methods can effectively solve chloride diffusion in concrete. The
implementation of these methods is simple and similar to each other. Results obtained using RPIM
and EFG were compared with FEM and the analysis shows that RPIM results obtained using the
proposed MQ function and EFG results are in good agreement with those obtained using FEM.
The practical applicability of the RPIM is demonstrated with two experimental cases. 1D and 2D
simulations demonstrated that the accuracy of RPIM is lower than EFG, but the error is still small
in practical engineering. RPIM is still applicable to chloride transport in the unsaturated concrete.
From these examples, it looks good to indicate that meshless numerical approaches compared with
an analytical solution whose parameters are fitted to measured chloride profile. It also shows a
good agreement among the RPIM, EFG methods and the analytical solution when the boundary
conditions are constant in all examples. This work can be also extended for chloride diffusion of
3D structures.
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