
 

 

 

 

 

 

 

Computers and Concrete, Vol. 16, No. 4 (2015) 569-585 

DOI: http://dx.doi.org/10.12989/cac.2015.16.4.569                                           569 

Copyright ©  2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=cac&subpage=8         ISSN: 1598-8198 (Print), 1598-818X (Online) 
 
 
 

 
 
 
 

Nonlinear structural modeling using multivariate adaptive 
regression splines 

 

Wengang Zhang and A.T.C. Goh 
 

School of Civil & Environmental Engineering, Nanyang Technological University, 
Block N1, Nanyang Avenue, 639798, Singapore 

 
(Received November 26, 2012, Revised June 26, 2015, Accepted October 22, 2015) 

 
Abstract.  Various computational tools are available for modeling highly nonlinear structural engineering 

problems that lack a precise analytical theory or understanding of the phenomena involved. This paper 

adopts a fairly simple nonparametric adaptive regression algorithm known as multivariate adaptive 

regression splines (MARS) to model the nonlinear interactions between variables. The MARS method 

makes no specific assumptions about the underlying functional relationship between the input variables and 

the response. Details of MARS methodology and its associated procedures are introduced first, followed by 

a number of examples including three practical structural engineering problems. These examples indicate 

that accuracy of the MARS prediction approach. Additionally, MARS is able to assess the relative 

importance of the designed variables. As MARS explicitly defines the intervals for the input variables, the 

model enables engineers to have an insight and understanding of where significant changes in the data may 

occur. An example is also presented to demonstrate how the MARS developed model can be used to carry 

out structural reliability analysis. 
 

Keywords:  multivariate adaptive regression splines; structural analysis; nonlinearity; basis function; 

neural networks 

 
 
1. Introduction 
 

Many empirical and semiempirical methods expressed in the form of equations, tables or 

design charts, are commonly used in structural analysis and design. This is usually because of an 

inadequate understanding of the phenomena involved in the problem, as well as the complicated 

nonlinear multivariate nature of the problem. A typical example is the analysis of the behavior of 

deep Reinforced Concrete (RC) beams which has been the subject of numerous experimental and 

analytical studies. Deep beams have depths that are comparable to their span lengths. Because of 

the significant number of factors (parameters) that affect the behavior of deep beams and the 

complexity of behavior of these beams when subjected to shear failure, to date, the understanding 

of deep beam behavior is still limited.  

For problems involving a large number of design (input) variables and nonlinear responses, 

particularly with statistically dependent input variables, an increasingly popular modeling 
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technique is the use of neural networks. By far the most commonly used neural network model is 

known as the Back-propagation neural network (BPNN) algorithm (Rumelhart et al. 1986). A 

neural network has a parallel-distributed architecture with a number of interconnected nodes, 

commonly referred to as neurons. The neurons interact with each other via weighted connections. 

Each neuron is connected to all the neurons in the next layer. In the BPNN algorithm, neural 

network “learning” involves presenting a data pattern to the input layer, passing the signal through 

the intermediate layer where the input data is transformed via a nonlinear transfer function and 

determining the output (dependent variable). The processing of the inputs through the intermediate 

(hidden) neurons enables the network to represent and compute complicated associations between 

patterns. The main objective in “training” the neural network is to modify the connection weights 

to reduce the errors between the actual output values and the target output values through the 

minimization of the defined error function (e.g., sum squared error) using the gradient descent 

approach. Validation of the performance of the neural network is carried out by “testing” with a 

separate set of data that was never used in training the neural network, to assess the generalization 

capability of the trained neural network model to produce the correct input-output mapping even 

when the input is different from the examples used to train the network.  

Neural networks have been successfully applied to a number of structural engineering problems 

including RC squat walls, RC deep beams and RC columns. Tsai (2010) proposed hybrid high 

order neural network model for predicting the strength of squat walls. A number of studies 

including Goh (1995), Sanad and Saka (2001), Jenkins (2006), Yang et al. (2008), Arafa et al. 

(2011) have demonstrated the feasibility of using neural networks to evaluate the ultimate shear 

strength of RC deep beams based on experimental results. These studies indicated that the 

predictions using neural networks were more accurate than those determined from conventional 

methods. Chuang et al. (1998) adopted a neural network model to predict the ultimate capacity of 

pin-ended RC columns under static loading. Oreta and Kawashima (2003) applied neural networks 

to predict the confined compressive strength and corresponding strain of circular concrete 

columns. Caglar (2009) developed a neural network model to determine the shear strength of 

circular RC columns. Alacali et al. (2011) established a neural network model to validate the 

empirical equations that are commonly used for prediction of the lateral confinement coefficient in 

RC columns.  

One drawback of the BPNN is that it is computationally intensive. Typically training of the 

neural network to perform correctly requires thousands of iterations. A time-consuming trial-and-

error approach is usually also necessary to find the optimal network architecture. Another 

limitation is the lack of model interpretability of the optimal network connection weights. Apart 

from the commonly used neural networks, other soft computing techniques applied in structural 

engineering problems include the genetic programming, the hybrid neuro-fuzzy approach, the 

hybrid coupling neural networks and simulated annealing method, etc. These related studies can be 

found in Gandomi et al. (2009), Gandomi et al. (2013), Alavi and Gandomi (2011).  

This paper explores the use of an alternative procedure known as multivariate adaptive 

regression spline (MARS) (Friedman 1991) to model the nonlinear and multidimensional 

relationships. Previous applications of MARS approach in civil engineering include predicting 

doweled pavement performance (Attoh-Okine et al. 2009), modeling shaft resistance of piles in 

sand (Lashkari 2012), estimating deformation of asphalt mixtures (Mirzahosseinia et al. 2011), 

analyzing shaking table tests of reinforced soil wall (Zarnani et al. 2011), deriving undrained shear 

strength of clay (Samui and Karup 2011), and inferring ultimate capacity of driven piles in 

cohesionless soil (Samui 2011), uplift capacity of suction caisson in clay (Samui et al. 2011), 
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cavern serviceability limit state design (Zhang and Goh 2014), seismic liquefaction assessment 

(Zhang and Goh 2015) and lateral spreading induced by soil liquefaction (Goh and Zhang 2014). 

Zhang and Goh (2013) carried out extensive comparisons on the predictive performance between 

BPNN and MARS through six practical examples in geotechnical engineering.  

The main advantages of MARS are its capacity to find the complex data mapping in high-

dimensional data and produce simple, easy-to-interpret models, and its ability to estimate the 

contributions of the input variables. A number of examples are then presented to demonstrate the 

function approximating capacity of MARS and its efficiency in a noisy data environment, 

including three practical examples in structural engineering. An example is also presented to 

demonstrate how the MARS developed model can be used to carry out structural reliability 

analysis using Monte Carlo simulation. 

 
 
2. MARS methodology 
 

MARS is a nonlinear and nonparametric spline-based regression method that makes no specific 

assumption about the underlying functional relationship between the input variables and the 

output. The underlying idea behind MARS is to allow potentially different linear or nonlinear 

polynomial functions over different intervals. The end points of the intervals are called knots. A 

knot marks the end of one region of data and the beginning of another. The resulting piecewise 

curve (spline), gives greater flexibility to the model, allowing for bends, thresholds, and other 

departures from linear functions. An adaptive regression algorithm is used for selecting the knot 

locations. MARS models are constructed in a two-phase procedure. The first (forward) phase adds 

functions and finds potential knots to improve the performance, resulting in an overfit model. The 

second (backward) phase involves pruning the least effective terms. An open source code on 

MARS from Jekabsons (2011) is used in carrying out the analysis presented in this paper.  

Let y be the target output and X=(X1, , XP) be a matrix of P input variables. Then it is 

assumed that the data are generated from an unknown ‘true’ model. In case of a continuous 

response this would be 

1( , ) ( )py f X X e f e   X                        (1) 

in which e is the distribution of the error. MARS approximates the function f by applying basis 

functions (BFs). BFs are splines (smooth polynomials), including piece-wise linear and piece-wise 

cubic functions. For simplicity, only the piece-wise linear function is expressed. Piece-wise linear 

functions are of the form max(0, x−t) with a knot occurring at value t. The equation max(.) means 

that only the positive part of (.) is used otherwise it is given a zero value. Formally 

,
max(0, )

0,

x t if x t
x t

otherwise

 
  


                         (2) 

The MARS model, f(X), is constructed as a linear combination of BFs and their interactions, 

and is expressed as 

 
0

1

( ) ( )
M

m m

m

f X X  


                            (3) 

where each λm is a basis function. It can be a spline function, or the product of two or more spline 

571



 

 

 

 

 

 

Wengang Zhang
 
and A.T.C. Goh 

functions already contained in the model (higher orders can be used when the data warrants it; for 

simplicity, at most second order is assumed in this paper). The coefficients β are constants, 

estimated using the least-squares method. 

The MARS modeling is a data-driven process. To fit the model in Eq. (3), first a forward 

selection procedure is performed on the training data. A model is constructed with only the 

intercept, β0, and the basis pair that produces the largest decrease in the training error is added. 

Considering a current model with M basis functions, the next pair is added to the model in the 

form 

^ ^

1 2( )max(0, ) ( )max(0, )M Mm j m jX X t X t X                     (4) 

with each β being estimated by the method of least squares. As a basis function is added to the 

model space, interactions between BFs that are already in the model are also considered. BFs are 

added until the model reaches some maximum specified number of terms leading to a purposely 

overfit model. To reduce the number of terms, a backward deletion sequence follows. 

The aim of the backward deletion procedure is to find a close to optimal model by removing 

extraneous variables. The backward pass prunes the model by removing terms one by one, deleting 

the least effective term at each step until it finds the best sub-model. Model subsets are compared 

using the less computationally expensive method of Generalized Cross-Validation (GCV). The 

GCV equation is a goodness of fit test that penalize large numbers of BFs and serves to reduce the 

chance of overfitting. For the training data with N observations, GCV for a model is calculated as 

follows (Hastie et al. 2009) 

2

1

2

1
[ ( )]

( 1) / 2
[1 ]

N

i ii
y f x

NGCV
M d M

N





  




                        (5) 

in which M is the number of BFs, d is the penalizing parameter and N is the number of data sets, 

and f(xi) denotes the predicted values of the MARS model. The numerator is the mean square error 

of the evaluated model in the training data, penalized by the denominator. The denominator 

accounts for the increasing variance in the case of increasing model complexity. Note that (M−1)/2
 

is the number of hinge function knots. The GCV penalizes not only the number of model’s basis 

functions but also the number of knots. A default value of 3 is assigned to penalizing parameter d 

(Friedman 1991). At each deletion step a basis function is removed to minimize Eq. (5), until an 

adequately fitting model is found. MARS is an adaptive procedure because the selection of BFs 

and the variable knot locations are data-based and specific to the problem at hand.  

After the optimal MARS model is determined, by grouping together all the BFs that involve 

one variable and another grouping of BFs that involve pairwise interactions (and even higher level 

interactions when applicable), this procedure called the analysis of variance (ANOVA) 

decomposition (Friedman 1991) can be used to assess the contributions from the input variables 

and the BFs. 

 

 

3. Analyses using MARS 

 
Some examples are presented to illustrate the application and accuracy of MARS. The cowboy 
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hat surface function has been widely used for validating the performance of regression and neural 

network models. The RC squat wall example tests the predictive capacities of MARS model in 

estimating the peak shear strength. The deep beam example is used to examine the capabilities of 

MARS for prediction of shear strength. The RC column example models the ultimate capacity 

under static loading. For the deep beam example, it is also demonstrated that the MARS developed 

model can be used to carry out structural reliability analysis. 

MARS predictions are compared with the neural networks, including conventional BPNN and 

Evolutionary Bayesian Back-propagation (EBBP) proposed by Chua and Goh (2003). The EBBP 

is a modification of the Bayesian back propagation neural network proposed by Mackay (1991) 

and Neal (1992) which simplifies the network architecture selection by constraining the size of the 

network parameters through a regularizer that penalizes the more complicated weight functions in 

favor of simpler functions by adding a penalty term to the sum squared error. The main 

enhancement in the EBBP is the incorporation of the genetic algorithms search technique to 

determine the optimal weights.  

 
3.1 Cowboy hat surface 

 
Fig. 1 shows a cowboy hat surface function that has been widely used for validating the 

performance of regression and neural network models. Both x1 and x2 are limited to [-3, 3]. A set of 

data points consisting of 500 training data and 300 testing data were randomly generated using 

uniform distributions for x1 and x2, respectively. The values of z are then calculated from the 

Equation z=sin  2

2

2

1 xx  . Chua (2001) found that the EBBP predicts well in terms of MSE 

especially for the testing phase. 

To evaluate the accuracy of MARS, the same problem is considered. In the first (forward) 

phase, a maximum number of 70 BFs of linear spline function with second-order interaction were 

specified and subsequently 28 BFs were pruned from the final MARS model in the second 

 

 

 

Fig. 1 Cowboy hat surface 
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Table 1 Comparison of results from EBBP and MARS for fitting cowboy hat 

Methods Training phase Testing phase 

EBBP 

MSE (10
-3

) 0.4 0.7 

the coefficient of determination R
2
 0.9991 0.9985 

MARS 

MSE (10
-3

) 0.6 0.8 

the coefficient of determination R
2
 0.9974 0.9964 

 

  
(a) training data (b) testing data 

Fig. 2 Prediction of cowboy hat function by MARS and EBBP 

 

 

(backward) phase. The execution time is 37.30s. The summary of the predictions is shown in Table 

1. Fig. 2 shows the predictions given by MARS and EBBP. Generally, MARS performs as well as, 

if not better than the EBBP in terms of MSE especially for the testing phase. In addition, MARS is 

computationally efficient in terms of processing speed. 

 

3.2 RC squat wall analysis 
 

Short (squat) reinforced concrete walls are walls with a ratio of height to length of less than two 

and generally grouped by plan geometry, namely, rectangular, barbell, and flanged. Accurate 

modeling of the peak shear strength of squat walls is important because they would provide much 

or all of a structure’s lateral strength and stiffness to resist seismic effects and wind loadings. Tsai 

(2011) developed a weighted genetic programming approach to study the squat wall strength and 

the results demonstrated that the proposed method provided accurate predictions and formula 

outputs. In this paper, the extensive experimental database compiled by Gulec (2009) was used to 

determine the peak shear strength of squat walls with barbell and flanged cross-sections.  

The database adopted in this study consisted of 284 experimental cases. A total of nine input 

variables comprising the geometric and reinforcement parameters, material properties and loading 

types are assumed in this study. A summary of the input variables and outputs is listed in Table 2. 

Of the 284 experimental test results, 213 samples were randomly selected as the training data 
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Table 2 Statistical parameters of input and output variables for RC squat walls 

Variable Parameters Physical meaning Ranges 

1 tw (m) thickness of wall web 0.05-0.2 

2 hw (m) height of wall 0.40-2.62 

3 lw (m) length of wall 0.51-3.96 

4 M/Vlw moment-to-shear ratio 0.06-1.9 

5 v (%) vertical web reinforcement ratio 0-2.8 

6 vall (%) ratio of total area of vertical reinforcement to wall area 0.44-5.91 

7 h (%) horizontal web reinforcement ratio 0-2.8 

8 fc
'
 (kPa) compressive strength of concrete 10005-104004 

9 T 
Loading type: 1 for cyclic; 2 for monotonic; 3 for 

dynamic; 4 for repeated; 5 for blast 
1-5 

Output Vpeak (kN) the peak shear strength of squat walls 85-7060 

 

  
(a) training data (b) testing data 

Fig. 3 Performance of MARS model for predicting the peak shear strength 

 

 

and the remaining 71 data samples were used for testing. The data sets used for training and testing 

can be referred to Gulec (2009). Based on a trial-and-error approach, the derived optimal BPNN 

model consisted of five hidden neurons. 

Using the same training samples, the MARS model consisted of 10 BFs of linear spline 

functions with second-order interaction. The execution time of 1.05s indicates that MARS model 

is computationally efficient in terms of processing speed. A plot of the BPNN and MARS 

predicted Vpeak values versus the measured values for the training and testing patterns are shown in 

Fig. 3. Comparison between BPNN and MARS shows that the BPNN model is only slightly more 

accurate than the MARS model for the training patterns. For the testing results, the MARS model 

performs slightly better than the BPNN model. Therefore, both MARS and BPNN can serve as 

reliable tools for the prediction of the peak shear strength. 

Table 3 displays the ANOVA decomposition of the developed MARS models. The first column 

in Table 3 lists the ANOVA function number. The second column gives an indication of the 

importance of the corresponding ANOVA function, by listing the GCV score for a model with all  
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Table 3 ANOVA decomposition of the developed MARS model for RC squat walls 

Functions GCV STD #basis variable(s) 

1 772099 319.6 1 tw 

2 689686 496.9 1 lw 

3 128393 241.9 1 M/Vlw 

4 265117 154.8 1 v 

5 254180 269.5 1 fc
'
 

6 113740 223.3 1 tw vall 

7 158896 240.2 2 lw fc
'
 

8 377393 502.1 1 M/Vlw fc
'
 

9 62587 83.5 1 v vall 

 

 

Fig. 4 Relative importance of the input variables selected in the MARS model 

 

 

BFs corresponding to that particular ANOVA function removed. This GCV score can be used to 

evaluate whether the ANOVA function is making an important contribution to the model, or 

whether it just marginally improves the global GCV score. The third column provides the standard 

deviation of this function. The fourth column gives the number of BFs comprising the ANOVA 

function. The last column gives the particular input variables associated with the ANOVA function. 

Fig. 4 shows the plots of the relative importance of the input variables, which is evaluated by the 

increase in the GCV value caused by removing the considered variables from the developed 

MARS model. It can be observed that the thickness of the wall tw is the most important parameter, 

followed by the wall length lw and the vertical web reinforcement ratio v. 

Table 4 lists the BFs of the MARS model and their corresponding equations. For the expression 

of BFs 7-10, F’c is normalized between 0.1 and 0.9 through F’c=0.1+(f’cf’cmin)/(f’cmax 

f’cmin)0.8. The interpretable MARS model to predict the peak shear strength is given by 

 
5

5

( ) 2552 10014 1 866.2 2 303.2 3 2.23 10 4

6187 5 122.5 6 4563 7 449.6 8 3840 9 2.1 10 10

peakV kN BF BF BF BF

BF BF BF BF BF BF

          

           
 (6) 
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Table 4 Basis functions and their corresponding equations for RC squat walls 

Basis function Equation 

BF1 max(0, 0.15  tw) 

BF2 max(0, 2.30  lw) 

BF3 max(0, 2  v) 

BF4 max(0, tw  0.15) × max(0, 0.84  vall) 

BF5 max(0, 0.34  M/Vlw) 

BF6 BF3 × max(0, vall  1.04) 

BF7 max(0, 0.316  F’c) 

BF8 BF2 × max(0, F’c  0.319) 

BF9 BF2 × max(0, 0.319  F’c) 

BF10 max(0, F’c  0.316) × max(0, 0.55  M/Vlw) 

 

 

Fig. 5 Deep beam configuration 

 

 

3.3 Deep beam analysis 
 

Deep beam design is of considerable importance in structural engineering. Deep beams have 

depths that are comparable to their span lengths. The behavior of deep RC beams has been the 

subject of numerous experimental and analytical studies. Due to a great number of factors 

influencing the behavior of deep beams and the complexity of behavior of these beams when 

subjected to shear failure, the understanding of deep beam behavior is limited. Several design 

methods have been proposed, each based on differing assumptions and concepts. It is beyond the 

scope of this paper to discuss these conventional design methods. The basic parameters of the deep 

beam are shown in Fig. 5. 

In this example, the experimental database used in the EBBP analysis by Goh and Chua (2004) 

was reanalyzed using MARS. The database consisted of 90 observations for training and 38 

observations for testing. The EBBP architecture consisted of six input neurons, six hidden neurons 

and one output neuron representing the ultimate shear strength vu. The range of the six input 

parameters is summarized in Table 5. 

The deep beam analysis using MARS adopted 16 BFs of linear spline functions with second- 
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Table 5 Statistical parameters of input variables for deep beams 

Parameters Physical meaning Range 

a (mm) shear span 121.9-1292 

d (mm) effective depth 215.9-950 

f

c (MPa) cylinder compressive strength of concrete 12.3-39.0 

ρht (%) reinforcement ratio of the total horizontal steel 0.012-3.36 

ρh (%) reinforcement ratio of the horizontal tensile steel 0-2.45 

v (%) reinforcement ratio of the transverse steel 0-2.45 

 

  
(a) training data (b) testing data 

Fig. 6 Predicted versus measured values for deep beams 

 

 

order interaction. The execution time for MARS was 1.31s. A plot of the EBBP predicted and 

MARS predicted vu values versus the measured values for the training data patterns is shown in 

Fig. 6a. Most of training data fall within the ±10% error line. As shown in the plot of the testing 

data in Fig. 6b, the MARS predictions are as accurate as the EBBP. The ratios of the predicted 

strength to the measured strength of the 38 testing patterns for MARS are shown in Table 6 

together with EBBP predictions. The results clearly demonstrate the accuracy of MARS except for 

three cases italicized in the table (test No. 18, 37 & 38). Both MARS and EBBP do not give good 

predictions for these three data points possibly because of actual measurement errors. 

The ANOVA parameter relative importance assessment indicates that the two most important 

variables are f

c (the compressive strength of concrete) and a (the shear span). For brevity, the 

ANOVA decomposition data has been omitted. Table 7 lists the BFs and their corresponding 

equations. It is observed from Table 7 that of the 16 basis functions, 10 BFs with interaction terms 

are integrated in this optimal model (BF6, BF7, BF8, BF9, BF10, BF12, BF13, BF14, BF15 and 

BF16), indicating that the model is not simply additive and that interactions play an important role. 

The MARS developed equation for predicting the ultimate shear strength of deep beams vu is 

5

( ) 6.63 0.0093 1 0.0714 2 1.382 3 0.1016 4

1.5744 5 0.6919 6 6.3877 7 1.2 10 8 2.5629 9

0.0034 10 1.8505 11 0.0793 12 1.0761 13 6.6 14

0.0014 15 0.0045 16

u MPa BF BF BF BF

BF BF BF BF BF

BF BF BF BF BF

BF BF





        

          

         

   

     (7) 
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Table 6 Predicted shear strength results for deep beam testing data 

Testing No. 
Measured strength / Predicted strength 

EBBP MARS 

1 1.244 1.174 

2 1.060 0.976 

3 0.762 0.843 

4 0.891 1.033 

5 1.036 0.991 

6 1.014 0.994 

7 1.043 1.011 

8 1.062 1.026 

9 1.043 0.988 

10 1.030 0.978 

11 1.108 0.963 

12 0.968 0.978 

13 0.943 0.980 

14 0.838 0.901 

15 1.224 1.171 

16 1.148 1.119 

17 0.766 1.000 

18 1.384 1.364 

19 0.996 0.998 

20 0.971 1.023 

21 0.961 0.960 

22 1.036 0.965 

23 0.979 0.927 

24 0.999 0.955 

25 0.922 0.870 

26 1.007 0.985 

27 0.903 0.858 

28 0.946 0.875 

29 0.989 0.930 

30 0.962 0.930 

31 1.083 1.097 

32 0.919 0.905 

33 0.932 0.920 

34 0.961 1.142 

35 1.029 1.039 

36 1.103 1.114 

37 0.763 0.671 

38 0.737 2.059 

Average 0.994 (1.000, if No. 37 & 38 omitted) 1.019 (1.007) 
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Table 7 Basis functions and their corresponding equations for deep beams 

Basis function Equation 

BF1 max(0, a  216.54) 

BF2 max(0, 216.54  a) 

BF3 max(0, f

c  30.13) 

BF4 max(0, 30.13  f

c) 

BF5 max(0, ρht  0.94) 

BF6 BF3 × max(0, v  0.09) 

BF7 BF3 × max(0, 0.09  v) 

BF8 BF1 × max(0, d  550) 

BF9 BF5 × max(0, 0.77  v) 

BF10 BF5 × max(0, 600  a) 

BF11 max(0, 0.56  v) 

BF12 BF11 × max(0, 234.7  a) 

BF13 max(0, 0.94  ρht) × max(0, v  0.02) 

BF14 BF11 × max(0, 0.94  ρht) 

BF15 BF3 × max(0, a  588) 

BF16 BF3 × max(0, 525  d) 

 

 

Fig. 7 Implementation of MARS model into MCS for reliability analyses 

 

 

With the determination of the performance function Eq. (7), reliability assessment of the 

ultimate shear strength can be performed using Monte Carlo Simulation (MCS), as shown in Fig. 

7. Failure occurs if the predicted ultimate shear strength vu is smaller than the applied shear stress 

defined as V/bwd, in which bw is the breadth of the beam. The MCS starts with the characterization 

of the probability distributions (assumed as lognormals in this example) of the random variables 

(the applied load, the compressive strength of concrete and the reinforcement ratios), followed by 

the generation of predetermined sets of random samples. The statistical information of the input  
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Fig. 8 Influence of COV of V on Pf 

 
Table 8 Statistical parameters of input and output variables for RC columns 

Variable No. Parameters Physical meaning Ranges 

1 b (mm) width of the cross section 25-400 

2 h (mm) depth of the cross section 10-251 

3 d/h relative depth of tension steel reinforcement 0.7-0.94 

4 100 the reinforcement ratio 0.5-5.61 

5 fcu (MPa) concrete cube strength 16.7-55 

6 fy (MPa) steel yield strength 206-530 

7 e/h relative load eccentricity 0-3.2 

8 L/h relative overall length 8.8-60 

Response Nu (kN) column ultimate capacity 9.8-2040 

 

 

variables is listed in Fig. 8. 

For illustrative purposes, the effect of the coefficient of variation (COV) of the applied load V 

ranging from 0.1 to 0.4 is investigated. The Pf in Fig. 8 is the probability that the predicted 

ultimate shear strength vu is smaller than the shear stress induced by the applied load V. The results 

indicate that both the COV and the average value of load V significantly influence the Pf.  
 

3.4 Modeling behavior of RC columns 
 

For the RC column analysis to determine the ultimate capacity of pin-ended RC columns under 

static loading using MARS, the results are compared with the neural network (BP8) analysis 

carried out by Chuang et al. (1998). The network structure of BP8 is three-layered with 12 hidden 

neurons in the hidden layer. The input layer consists of eight neurons representing eight parameters 

as shown in Table 8. The geometrical properties of the concrete column are illustrated in Fig. 9. 

The output layer consists of one neuron representing the ultimate capacity of the column Nu. Table 

8 summarizes the range of values for all the parameters in the experimental database. A total of 45 

of the 226 tests were selected as the testing data, and the remaining 181 tests were for model 

training. 
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Fig. 9 Typical geometry of RC columns 

 

  
(a) training data (b) testing data 

Fig. 10 Predicted versus measured values for RC columns 

 

 

The pin ended RC column analysis using MARS adopted 22 BFs of linear spline functions with 

second order interaction. The execution time of 3.73s shows that MARS is computationally very 

fast. A plot of BP8 and MARS predicted values versus the measured values for the training and 

testing data patterns is shown in Fig. 10. Comparison with the measured testing data in terms of R
2
 

shows that the ultimate capacity of reinforced concrete columns predicted by BP8 and MARS 

models are reasonably accurate.  

 The ANOVA parameter relative importance assessment indicates that the two most significant 

variables are h (depth of the cross section) and b (width of the cross section). For brevity, the 

ANOVA decomposition data has been omitted. Table 9 lists the BFs and their corresponding 

equations. It is noted from Table 9 that of the 22 basis functions, 19 BFs with interaction terms are 

integrated in this model (excluding BF1, BF8 and BF15), indicating that the model is not simply 

additive and that interactions play a significantly important role. The interpretable MARS model is 

given by 
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Table 9 Basis functions and their corresponding equations for RC columns  

Basis function Equation 

BF1 max(0, 76  h) 

BF2 max(0, h  76) × max(0, e/h  0.25) 

BF3 max(0, h  76) × max(0, 40  L/h) 

BF4 BF1 × max(0, L/h  21.9) 

BF5 BF1 × max(0, 21.9  L/h) 

BF6 max(0, h  76) × max(0, 182  b) 

BF7 BF1 × max(0, 0.25  e/h) 

BF8 max(0, 70  b) 

BF9 max(0, b  70) × max(0, 3.25  100) 

BF10 max(0, b  70) × max(0, h  178) 

BF11 max(0, 0.25  e/h) × max(0, h  152) 

BF12 max(0, h  76) × max(0, 0.87  d/h) 

BF13 max(0, e/h  0.25) × max(0, 29.4  L/h) 

BF14 max(0, b  70) × max(0, 0.25  e/h) 

BF15 max(0, 24.1  fcu) 

BF16 max(0, 0.25  e/h) × max(0, L/h  23.8) 

BF17 max(0, fcu  24.1) × max(0, 12.6  L/h) 

BF18 max(0, h  76) × max(0, d/h  0.84) 

BF19 max(0, h  76) × max(0, 0.84  d/h) 

BF20 max(0, h  76) × max(0, 2  100) 

BF21 max(0, h  76) × max(0, 2.5  100) 

BF22 max(0, b  70) × max(0, 15  L/h) 

 

 

( ) 103.7 7.533 1 5.337 2 0.117 3 0.192 4

0.578 5 0.052 6 31.147 7 12.537 8 0.39 9

0.017 10 38.11 11 106.35 12 3.85 13 11.4 14

17.156 15 32.7 16 6.1 17 95.82 18

uN kN BF BF BF BF

BF BF BF BF BF

BF BF BF BF BF

BF BF BF BF

        

         

         

        113 19

3.7 20 3.059 21 0.237 22

BF

BF BF BF

 

    

        (8) 

 

 

4. Conclusions 
 

This paper demonstrates the viability of using MARS for nonlinear structural modeling 

involving a multitude of design variables. Major findings obtained in this research include: 

• MARS is capable of capturing the nonlinear structural relationships involving a multitude of 

variables with interaction among each other without making any specific assumption about the 

underlying functional relationship between the input variables and the response. 

• The MARS technique is able to provide the relative importance of the input variables. Since it 
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explicitly defines the intervals for the input variables, the developed MARS models enables 

structural engineers to have better insights and understanding of where significant changes in the 

data may occur. 

• The developed MARS model gives predictions that are just as accurate as other soft 

computing techniques. Nevertheless, with regard to the developed model interpretability, MARS 

outperforms other soft computing techniques. 

It should be noted that since the built MARS models make predictions based on the knot values 

and the basis functions, thus interpolations between the knots of design input variables are more 

accurate and reliable than extrapolations. Consequently, it is not recommended that the model be 

applied for values of input parameters beyond the specific ranges in this study.  
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