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Abstract.  1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected 

for prediction on concrete properties. A new database platform (Compos) has been developed, by which 

the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs 

have been applied respectively to identify correlations between the concrete properties (strength, 

workability, and durability) and the dosage and/or quality of raw materials’. The results showed obvious 

nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using 

linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic 

compressive strength have the best results, because the minimum average relative error (MARE) for 

60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete 

workability takes the second place in which the MARE is less than 15%. Forecasting on concrete 

durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been 

certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial 

slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in 

this study. 
 

Keywords:  concrete; mix proportioning; prediction; database; linear regression; artificial neural 

network 

 
 
1. Introduction 

 

For a modern commercial ready-mixed concrete production, a timely accurate performance 

prediction is very important, which can not only enhance the production efficiency, but also save 

cost. Forecast technology can be at least applied in two aspects, i.e., (i) the concrete mixtures can 

be optimized according to the performance prediction, and (ii) in a concrete plant, forecasting can 

be carried out real-timely according to the actual material consumption for each pallet, thereby 

improve quality control and prevent quality accident.  
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It has been confirmed by a large number of tests that there is a strong linear relationship in 

ordinary four component concrete (cement, water, fine aggregate and coarse aggregate) between 

its cement-water ratio and compressive strength. However, when the mineral additives and 

chemical admixtures such as fly ash, slag and water reducing agent, were added into the concrete, 

the situation becomes relatively complex (Atici 2011, Chu et al. 2013). In many cases, the Bolomy 

formula was unable to fit the operational accuracy request especially for HSC (high strength 

concrete) and HPC (high performance concrete). Thus, a new comprehensive empirical 

relationship must be established (Chen et al. 2005, Huang et al. 2013). In this study, 1078 sets of 

mixtures have been collected that the raw materials had different sources. As a reference, the 

SMLR (linear regression) method has been used for concrete property prediction firstly, and then 

BP ANNs (back-propagation artificial neural networks) model have been adopted for nonlinear 

prediction because it is easy to trace the change of fittings and errors, though the other method of 

SVMs (support vector machines) may be more robust (Cheng et al. 2012). The selected concrete 

properties include 3-day, 7-day, 28-day, and 60-day (56-day) cubic compressive strength, the initial 

slump and slump flow, and the 28-day and 56-day electric flux. 

 
 

2. Data collection and pre-processing 
 

8 kinds of raw material have been mixed into sample concrete including water, cement, fly ash, 

slag, silica fume, fine aggregate, coarse aggregate, and water reducing agent. According to the 

study of Dias et al. (2001), the optimum models can be obtained from raw data but the 

non-dimensional ratio does not bring about a good model. In this study, the dosages of the raw 

materials have been selected as independent variables respectively, and then their key quality 

indicator (KQI) have also been identified and selected. The number of selected independent 

variable upto 18 which shown in Table 1. However, not all the selected variables are equally 

important for different concrete properties; therefore, a rough sets (RS) method (Slowinski 1992) 

has been adopted for reducing independent variables.  

It should be noted that this study followed Chinese civil codes and all the aggregates were 

taken with absolute dry condition. 

Data about the 20-120MPa 28-day cubic compressive strength as well as the 20-270mm initial 

slump have been measured based on 1078 sets of mixtures. In all the samples, the fine aggregate 

are natural sand, and the coarse aggregate are crushed stone with nominal maximum size 10-40mm. 

The solid and liquid content of water reducing agent have been converted to the dosage of fine 

aggregate and water separately. For convenience to follow-up work, the independent variables are 

numbered as shown in Table 2. 

 

 
Table 1 Selected independent variables 

Raw material Selected KQI Raw material Selected KQI 

Cement 
3-day and 28-day compressive 

strength 
Fine aggregate 

fineness modulus and silt 

content 

Fly ash water demand ratio Coarse aggregate 
nominal maximum size, crush 

index and elongated particles 

Slag 7-day and 28-day activity index water reducer Air entraining content 

Silica fume - water - 
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Table 2 Number of variables 

Variable name No. Variable name No. Variable name No. 

3-day compressive 

strength of cement 
x1 Dosage of coase aggregate x7 7-day activity index of slag x13 

28-day compressive 

strength of cement 
x2 

Nominal maximum size of coase 

aggregate 
x8 

28-day activity index of 

slag 
x14 

Dosage of cement x3 Crush index of coarse aggregate x9 Dosage of slag x15 

Fineness modulus of 

fine aggregate 
x4 

Elongated particles of coarse 

aggregate 
x10 Dosage of silica fume x16 

Silt content of fine 

aggregate 
x5 Water demand ratio of fly ash x11 Dosage of water x17 

Dosage of fine 

aggregate 
x6 Dosage of fly ash x12 

Air entrained content of 

water reducer 
x18 

 
Table 3 Number of samples for different concrete properties 

Property of 

concrete 

3-day 

strength 

[MPa] 

7-day 

strength 

[MPa] 

28-day 

strength 

[MPa] 

60-day 

Strength 

[MPa] 

Initial 

slump 

[mm] 

Slump 

flow 

[cm] 

28-day 

Electric 

flux[C] 

56-day 

Electric 

flux[C] 

No. of 

samples 
424 798 923 287 1078 324 246 350 

 

 
Among the 1078 sets of mixtures, the samples with 28-day compressive strength and/or initial 

slump are abundant, and the samples with 28-day and 56-day electric flux are relatively fewer. The 

distribution of different type samples are shown in Table 3. In follow-up analysis, 2/3 of the 

samples are randomly selected for fitting, and the rest 1/3 are for forecasting. The data used for 

forecasting are independent from that used for fitting. 

 
 

3. Stepwise multiple linear regressions 
 
The method of SMLR is relatively simple. The regression coefficients and R2 value are both 

shown in Table 4. 

As shown in Table 4, there is a certain linear relationship between the concrete properties and 

dosage and/or quality of raw materials’, but the correlationship coefficient is generally low. The 

maximum values of R2 are 0.8863 and 0.8682, while the minimum values are only 0.3719 and 

0.2809. The values probably could be enhanced if different nonlinear models had been introduced. 

 

 

4. Simulation and prediction with BP ANNs method 
 

4.1 Artificial neural networks 
  

As a kind of statistical learning algorithms, the artificial neural network (ANNs) primarily is a 

mimic of biological neural networks. Because of the adaptive nature of interconnected “neurons” , 

the artificial neural networks can be used to compute values from a large number of inputs and  
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Table 4 Fitting results using multiple linear stepwise regressions for concrete properties 

No. of 

Vars 

Regression coefficient 

3-day 

strength 

7-day 

strength 

28-day 

strength 

60-day 

strength 

Initial 

slump 

Slump 

flow 

28-day Electric 

flux[C] 

56-day Electric 

flux[C] 

const. 42.2147 7.0068 -5.0692 52.8175 -172.11 101.720 12837.79 587.358 

x1 -0.1467 -0.0455 -0.3287 0 0 -0.6860 -3.4322 0 

x2 0.2009 0.3751 0.4765 0 0.0518 0.2530 0 0 

x3 0.1285 0.1439 0.1548 0.1277 0.2621 0.0324 -8.4832 -0.3672 

x4 0 3.0533 3.7909 1.2527 0 0 0 0 

x5 0 -0.2606 -0.2351 0 0 0 0 0 

x6 -0.0201 0.0081 0.0060 -0.0339 0.2596 0.0017 -10.7437 -2.1282 

x7 -0.0157 0.0026 -0.0010 -0.0047 -0.1111 -0.0316 -4.4804 -0.0268 

x8 -0.0135 -0.1562 -0.1009 -0.5847 0 0.0443 0 0 

x9 -0.2375 -0.3334 -0.3687 -0.8111 -0.9954 -0.5553 -1.6908 0 

x10 0.1598 0.1544 0.1180 0.6432 -0.0582 -0.5974 0 0 

x11 0.0715 -0.0372 -0.0495 -0.1535 0.0356 -0.3304 50.8840 22.5659 

x12 0.0530 0.0547 0.0939 0.0925 0.4570 0.0846 -13.4862 -2.3255 

x13 0 -0.0438 0 0 0.5909 0.4253 0 0 

x14 0.0056 0.2260 0.2376 0.4248 -0.3010 -0.3244 0 -4.4098 

x15 0.0751 0.1137 0.1482 0.1354 0.4004 0.0489 -13.1425 -3.7636 

x16 0.2215 0.2329 0.2376 0.2382 0.2210 0.2198 -32.1425 0 

x17 -0.0718 -0.1186 -0.0641 -0.1749 -0.2492 0.0263 7.6766 6.9126 

x18 -0.2359 -0.3005 -0.2833 -0.1745 0.6537 0.0110 2.8741 3.2909 

R2 0.8199 0.8682 0.8636 0.8863 0.5857 0.3719 0.6063 0.2809 

 

 

Fig. 1 A typical three-layer back-propagation ANN model 

 

 

then estimate functions generally unknown, so that it capable of pattern recognition as well as 

machine learning. Among the ANNs approaches, the back-propagation artificial neural networks 

(BP ANNs) (Werbos 1974) should be the most popular one, which calculates the gradient of a loss 

… … 

Output Layer Hidden Layer 

Input Output 

Input Layer 

… … 
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function with respects to all the weights in the network, then the gradient is fed to update the 

weights, in an attempt to minimize the loss function. 

Over the past two decades, the ANNs have been applied in the concrete technology. A number 

of studies were focused on the feasibility that introduces ANNs to predict concrete properties, and 

have already got some good results, for example, Dias (2001) pointed out that the neural network 

models, which can easily incorporate additional model parameters, result in less scatter in 

predicted values than those given by the multiple regression models. Several different BP network 

structures have been tested also for prediction of the concrete strength and slump, and it has been 

found that a 3-layer neural network would give better performance and require less training time, 

with 18 neuron in the hidden layer (Liu 1997). While the ANNs have been improved by other 

intelligent method, its efficiency and precision can be enhanced furthermore, for example, while 

Genetic Algorithm (GA) was used to optimize the weights and thresholds of BP-ANN, a better 

performance than regression models and BP ANN may be feasible (Yuan 2014). ANN model with 

the MLP/BP algorithm provides better prediction for shear strength has been reported as well 

(Amani 2012). 

The work of this study mainly focused on the experimental verification, the database 

application and the development of software platform, The improvement of ANNs algorithm is not 

the research focus, so that a common three-layer feed-forward ANNs has been adopted, as shown 

in Fig. 1. While the ANNs have been applied to concrete properties forecasting, a mass data 

processing is necessary. Most of the previous researchers use commercial software with relatively 

less sample sets and restricted experiment conditions (Yurdakul 2013). In this study, all the 1078 

sets of mixtures come from different concrete plants without any requirements for the origin of 

raw materials and experiment conditions. A database platform (Compos) has been developed 

which dedicate to the statistic analysis of concrete mixtures. Carry out comparison or trace the 

fitting process is convenient by using Compos, and ports for further application has been reserved 

as well. 

In the BP ANNs, The initial quantities were normalized to a range of 0 to 1 via Eq. (1), and 

then fed into input layer neurons, which in turn pass them on to the hidden layer neuron. The 

weighted inputs received from each input neuron were added up in hidden layer neuron and 

associated with a bias, if any, and then the results were passed on through a nonlinear transfer 

function. The output neuron did the same operation as that of the hidden neuron. 

   iiiii xxxxX min,max,min,                       (1) 

Where ixmax,  and ixmin,  are the maximum and minimum values of the ith node in the input 

layer for all the feed data vectors, respectively. The weights were assigned a random value 

between -1 and 1. 

Before it has been applied to any problems, the network should be trained first. The difference 

between the target output and the calculated model output at each output neuron is minimized by 

adjusting the weights and biases through some training algorithms. During the training, a neuron 

receives inputs from a previous layer, weights each input with a prearranged value, and combines 

these weighted inputs. The combination of the weighted inputs is represented as 

 ijij vxnet                           (2) 
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Where netj is the summation of the weighted inputs of the jth neuron, xi is the input from the ith 

neuron to the jth neuron, and vij is the weight from the ith neuron in the previous layer to the jth 

neuron in the current layer. 

The netj is passed through a transfer function to determine the level of activation. If the 

activation of a neuron is strong enough, it produces an output that is sent as an input to other 

neurons in the successive layer. In this study, sigmoid function is employed as an activation 

function in the training of the network: 

   jef j

net
11net


                         (3) 

The learning of ANNs is accomplished by a back-propagation algorithm where information is 

processed in the forward direction from the input layer to the hidden layer and then to the output 

layer. The objective of a back-propagation network is, by minimizing a predetermined error 

function, to find the optimal weights that would generate an output vector  
pyyyY ,,, 21   as 

close as possible to target values of output vector  
ptttT ,,, 21   with a selected accuracy. 

A predetermined error function has the following form 

  
P P

ii tyE
2

                        (4) 

Where yi is the component of an ANN output vector Y, ti is the component of a target output 

vector T, p is the number of output neurons; and P is the number of training patterns. 

The least square error method, along with a generalized delta rule, is used to optimize the 

network weights. The gradient descent method, along with the chain rule of derivatives, is 

employed to modify network weights as 

ij

old

ij

new

ij
v

E
vv




                          (5) 

 

 
Table 5 Average relative error for concrete properties prediction using different network structure 

No. of 

Hidden 

units 

Test 

Serial 

No. 

3-day Str. 7-day Str. 28-day Str. 
60-day 

Str. 

Initial 

Slump 

Slump 

Flow 

28-day 

Electric 

flux 

56-day 

Electric 

flux 

6 

1 0.128 0.104 0.091 0.080 0.143 0.099 0.226 0.274 

2 0.136 0.111 0.089 0.085 0.142 0.106 0.229 0.279 

3 0.147 0.129 0.089 0.081 0.143 0.099 0.215 0.285 

9 

1 0.150 0.112 0.089 0.080 0.141 0.108 0.224 0.272 

2 0.137 0.109 0.090 0.084 0.142 0.105 0.223 0.280 

3 0.145 0.118 0.091 0.080 0.137 0.107 0.231 0.314 

18 

1 0.122 0.109 0.088 0.082 0.137 0.100 0.211 0.293 

2 0.139 0.109 0.089 0.079 0.137 0.102 0.212 0.285 

3 0.145 0.110 0.087 0.079 0.140 0.105 0.213 0.287 

36 

1 0.146 0.110 0.089 0.083 0.137 0.100 0.206 0.307 

2 0.130 0.117 0.090 0.085 0.139 0.104 0.202 0.285 

3 0.140 0.113 0.090 0.084 0.137 0.099 0.206 0.284 
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(a) 3-day strength (b) 7-day strength 

  

(c) 28-day strength (d) 60-day strength 

  

(e) Initial slump (f) Initial slump flow 

  

(g) 28-day electric flux (h) 56-day electric flux 

Fig. 2 Typical fit-forecasting hydrograph for BP networks 

 
 
Where δ is the learning rate that used to increase the opportunities for avoiding training process 

be trapped in a local minima but not a global minima. 

 
4.2 Training and testing of neural network models 
 

The training efficiency of neural network and the forecasting precision are mainly determined 

by the network structure, particularly the number of middle layer (Akkurt et al. 2003). There is no 

theoretically mature method to determine the suitable number of middle layer so that it is mainly 

rely on experience at present. The optimum number of hidden layer units is related to the number 

of input and output units, and the capacity of training sets has obvious effect as well. In this study, 

different middle layer with 6, 9, 18 and 36 units have been applied respectively as shown in Table 

5. Three times repeat have been conducted for every kind of structures to assure the prediction 

stability of BP network. 
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Fig. 3 Contrast of forecasting results using two different methods 
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Table 6 Forecasting precisions contrast for two models 

Concrete properties 
2R  MARE 

Qualified points 

(and Percentage) 

SMLR BP ANNs SMLR BP ANNs SMLR BP ANNs 

3-day strength 0.812 0.906 0.167 0.121 78(55.3%) 182(68.4%) 

7-day strength 0.868 0.911 0.123 0.110 166(62.4%) 171(64.3%) 

28-day strength 0.864 0.884 0.086 0.089 197(64.2%) 283(92.2%) 

60-day strength 0.886 0.940 0.089 0.082 54(56.8%) 68(71.6%) 

Initial slump 0.586 0.740 0.170 0.140 200(64.3%) 234(75.2%) 

Slump flow 0.372 0.579 0.098 0.105 67(62.0%) 83(76.8%) 

28-day electric flux 0.606 0.927 0.383 0.213 22(33.3%) 36(54.5%) 

56-day electric flux 0.281 0.784 0.441 0.287 16(25.0%) 32(50.0%) 

 

 

Fig. 4 The interface of compos platform 

 

 

From Table 5 it could be found that even if the network structure remains the same, the optimal 

number of training and the forecasting error are unpredictable. The reason largely attribute to the 

randomness of initial value of weights. Another unsolved problem of BP ANNs is over-fitting 

which means although the fitting accuracy enhanced unceasingly, but the prediction accuracy did 

not improve actually. The cause of over-fitting might be the indiscriminately fitting of special or 

even wrong information for each individual sample. In this study, a skill named “error-tracking 

tactics” has been used. First of all, the first round of training and forecasting have been carried out, 

and its predicting error has been taken as initial value of optimal model, then after every training, 

the prediction are immediately done, if the MARE is less than the initial value, it will be taken as 

the next round optimal value and record the location, and so on back and forth until the training 

… … 
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error or training times reaches a presented value. The typical fit-forecasting processes are shown in 

Fig. 2, in which the maximum training times and minimum average relative error  of every 

models is 50000 and 0.03 respectively, except for the 56-day electric flux where both optimized 

points cannot be reached, therefore a maximum training times of 100000 has been used . 

It can be found in Table 5 and Fig. 2 that (i) there is no obvious improvement on forecasting 

accuracy along with the increase of the hidden layer units; 18 units are usually enough for hidden 

layer. This finding is in accordance with Liu (1997); (ii) the compressive strength have the best 

prediction results because the MARE for 60-day cubic compressive strength is merely 8%, and its 

forecast accuracy can rise along with the increasing of age. Forecasting precision for concrete 

workability takes the second place with its MARE is less than 15%. The forecasting precision for 

concrete durability is lowest which might be related to the insufficient sample combinations; (iii) 

the fitting and forecasting results of BP ANNs have shown some uncertainty as it is easy to be 

trapped into local optimal solution. This situation mainly caused by the random selection of initial 

network weights. In fact, this problem still does not find a good solution; and (iv) the phenomenon 

of over-fitting is one of the ubiquitous problems in BP ANNs. 

The problem of over-fitting can be partly solved by N-fold cross-validation method(Oh et al. 

1999), which just splits data into N roughly-equal partitions, and then performs N times analysis 

which applied on all partitions except for the Kth for each running, at last the optimal train times 

can be obtained by averaging the N times of parameter estimations. 

 

 

5. Comparison of the prediction effect between two models 
 
The forecasting precisions of the two methods have been compared in Table 6, where the 

forecasting errors within 5 MPa, 25 mm and 15% for compressive strength, initial slump, and 

other properties respectively have been thought tolerable and then be covered by the safety margin. 

Table 6 showed that most of times the BP ANNs model has higher precision and less prediction 

errors than linear regression model. The contrast of two methods can also be seen in Fig. 3, where 

the forecasting results of 28-day cubic compressive strength, initial slump, and 28-day electric flux 

have been plotted respectively. 

 

 

6. A further verification in a ready-mixed concrete plant 
 

Cixi Mingfeng Building Materials Co. Ltd. is a commercial ready-mixed concrete manufacturer 

particularly on strength grade C15-C35 pump concrete. A concrete properties prediction and 

optimization system (Compos) has been developed, as shown in Fig. 4. A concrete performance 

prediction has been carried out during June to October, 2009. Seven kinds of raw materials have 

been added into the production, including (i) cement; (ii) fine aggregate; (iii) coarse aggregate; ( 

iv) fly ash; (v) slag; (vi) plasticizer; and (vii) water. Several KQIs are also selected, thereby the 

total independent variables up to 12. Only three concrete properties—7-day, 28-day cubic 

compressive strength and initial slump have been considered according to the actual production 

requirements. There are a total of 163 data sets have been conducted, within them the first 123 sets 

have been used for modeling and the last 40 sets for predicting. A five-fold cross validation has 

been used for the BP network modeling. The outcomes of prediction are summarized in Table 7 

and Fig. 5. 
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Table 7 Verification results for production test 

Concrete 

properties 

2R  MARE 
Qualified points 

(and Percentage) 

SMLR BP ANNs SMLR BP ANNs SMLR BP ANNs 

7-day strength 0.861 0.882 0.094 0.075 40(100%) 40(100%) 

28-day strength 0.910 0.901 0.073 0.061 35(88%) 37(92%) 

Initial slump 0.250 0.922 0.106 0.074 25(62%) 36(90%) 

 

 

 

 

Fig. 5 Contrast of forecasting results using two different methods for production samples 
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Table 7 and Fig. 5 showed higher forecasting precision for all kinds of concrete performances 

when the nonlinear method has been used, and the qualified points of prediction are all beyond 

90%. It can also be noticed that BP ANNs showed obviously better simulation results in all kinds 

of prediction indicators than linear method. 

 

 
Table 8 The summary list of data source projects  

No. Lead of test project Sources 
Time 

(year) 

1 Zheng, Z.Q. 
Haimen coal steam-electric plant project, Shantou city, 

china 
2003 

2 You, Z.P Xiamen post telecom hotel project, china 2004 

3 Zhang, S.C. Xiamen Haichang bridge project, china 2005 

4 Zhou, J.Q. Xingguang bridge project in Guangzhou city, china 2006 

5 
Cai, Y.Z., Wang, W.X. 

and Bo, X.Z. 

Construction of box girder in the Hangzhou bay bridge 

project, china 
2006 

6 Shu, Z.P 
Construction of box girder in the Hangzhou bay bridge 

project, china 
2006 

7 Sun, J.Q. Bingzhou Yellow river bridge project, china 2006 

8 
Lin, Z.B. Gao, S. and 

Liu, W.F. et al. 

Construction of  basement in People's hospital of Jiangdu 

city, china 
2007 

9 

Wang, J., Wang, Z.Y., 

Li, Y.F. and Wang, 

Y.K. 

Ningbo museum project, china 2008 

10 Zhang, X.W. 
Shijiazhuang-Taiyuan passenger transport line project, 

china 
2009 

11 
Yu, C.X., Shi, W.K. 

and Song, Y.X. 
New CCTV building project, china 2009 

12 Liu, X.L. 
Yingde casting yard for Wuhan-Guangzhou passenger 

transport line project, china 
2009 

13 
Chang, J.G., Wang, 

S.D. and Zhang, J.H. 
Jiaxing-Shaoxing river-crossing bridge project, china 2010 

14 
Chen, B.L. and Zhang, 

J.F. 
Beijing-Shanghai high speed railway project, china 2010 

15 Wan, J.C. Baidu-city project, Weihai city, china 2010 

16 Li, X. Jinlong modern square project, Anxi city, china 2011 

17 Wang, Z.P 
Construction of Xijiang river grand bridge in 

Guangzhou-Zhuhai railway project, china 
2011 

18 

Yu, B.T., Wang, Q.C., 

Zhou, L.X. and Zhang, 

F.Q. 

The 2nd double line project of Lanzhou-Xinjiang railway, 

china 
2012 

19 

Luo, Z.Q., Zhang, 

X.S., Chen, L. And 

Wu, J. 

Yujiabao financial&business district project, Tianjing city, 

china 
2012 

20 
Wang , J., Cheng, B.J. 

and Luo, Z.Q. et al. 
“117“ building project, Tianjing city, china 2012 

21 Wu, C.H. 
Construction of tunnels and bridgeworks in Harbin-Dalian 

high speed railway project, china 
2013 
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7. Conclusions 
 
The following conclusions can be drawn from this work: 

 For the concrete with multi-admixtures, there is clearly nonlinear relationship between its 

compressive strength, workability, and the dosage and/or quality of raw materials’. And the 

forecasting precision by using nonlinear model is higher than using linear model.  

A new concrete properties prediction system based on database (Compos) has been developed, 

by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP 

ANNs) programs have been applied respectively to identify correlations between the concrete 

properties. As mentioned above, Compos can be extending with more applications for concrete 

quality control, e.g. a typical application is the concrete mixture optimization based on the 

established prediction model (Yeh 1999). It would be expected to reduce the cost of manufacture. 

 There is no obvious improvement on forecasting accuracy of concrete properties along with 

the increase of the hidden layer units; 18 units are usually enough for hidden layer. 

While “error-tracking tactics” were used, the training of network can be ended at an appropriate 

point, so that over-fitting of network can be avoided to some extent. 

 The forecasting precision for concrete compressive strength rise along with the increasing of 

age as the average relative error for 60-day is usually smaller than 3-day, 7-day and 28-day 

strength. 

In this study, the minimum average relative error (MARE) for 60-day cubic compressive 

strength was less than 8%. The MARE for concrete workability is less than 15%, and the MARE 

for durability has even reached 30%. 

The Compos platform with BP ANNs method, supported by the “error-tracking tactics” can be 

used for concrete performance prediction. Although its forecasting results generally displayed 

certain fluctuations, it can match the demand of actual production. 
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