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Abstract.  This article presents a computing procedure developed to predict the torsional strength of 
axially restrained reinforced concrete beams. This computing procedure is based on a modification of the 
Variable Angle Truss Model to account for the influence of the longitudinal compressive stress state due 
to the axial restraint conditions provided by the connections of the beams to other structural elements. 
Theoretical predictions from the proposed model are compared with some experimental results available 
in the literature and also with some numerical results from a three-dimensional nonlinear finite element 
analysis. It is shown that the proposed computing procedure gives reliable predictions for the ultimate 
behaviour, namely the torsional strength, of axially restrained reinforced concrete beams under torsion. 
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1. Introduction 

 
In current structural procedures, the design of common Reinforced Concrete (RC) beams is 

usually carried out neglecting the effect of the axial restraint provided by the connections to other 
structural elements (beams, columns, walls, etc.) which composes the structure in which the beams 
are inserted (Fig. 1). If the loading and the associated internal stress state of the beam induces an 
axial positive deformation (elongation), then an additional longitudinal compressive stress state 
due to the axial restraint will be generated. The magnitude of this stress state will depend on the 
loading level of the beam (related with the behavioral stage) and also on the level of the axial 
restraint provided by the stiffness of the connections to the other structural elements. 

Experimental results show that, in cracked stage, RC beams under torsion suffer a notable 
longitudinal elongation (for instance: Hsu 1968 for plain beams, Bernardo and Lopes (2009) for 
hollow beams). Such longitudinal elongation increases until maximum torque is reached. Then, if 
beams are axially restrained it is expected that a variable longitudinal compressive stress state will 
act in addition to the pure shear stress state due to torsion. 

It is known that shear strength of RC beams increases due to the influence of a simultaneous 
and longitudinal compressive stress state. Current codes of practice (for instance, Eurocode 2 2010) 
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usually provide clauses in order to account for such favorable effect when calculating shear 
strength. Therefore it is expected that torsional strength of RC beams also increases due to the 
influence of longitudinal compressive stress states, since high shear stresses also exist. So far, 
current codes of practice don´t include clauses in order to account for this favorable effect when 
calculating the torsional strength. 

Since the original Space-Truss Analogy (STA) proposed in the beginning of last century by 
Rausch (1929), several further versions have been developed to lead to theoretical models for RC 
beams under torsion. The STA as a high historical value and constitutes the base for torsion design 
of the European Model Code (since 1978) and also the American Code (since 1995). One of the 
STA developments most used in research is the Variable Angle Truss-Model (VATM) (Hsu and 
Mo 1985a). This theory uses a nonlinear softened stress () – strain () relationship for the 
concrete in the struts instead of a conventional  -  relationship for uniaxial compression. VATM 
is able to predict the global behaviour of RC beams under torsion throughout the entire loading 
history, although very good results are observed only for high loading levels (Bernardo et al. 
2012a). For such levels of loading, the concrete is extensively cracked, so in this stage the 
theoretical model approaches the real model. 

VATM was already extended to Prestressed Concrete (PC) beams under torsion (with 
longitudinal centered prestress) (Hsu and Mo 1985b). Recently VATM was also modified to 
predict the global behaviour of RC beams under torsion, including for low loading levels 
(Bernardo et al. 2012b). 

Other recent and alternative theoretical models were proposed by several authors in order to 
compute the torsional strength of RC and PC beams (for instance, Jeng and Hsu 2009, Jeng et al. 
2010, Cevik et al. 2012). However, the mathematical treatment of such models is somehow 
complex for practical use and they hardly provide a simple concept of how a RC or PC beam 
behaves under torsion after cracking. VATM is recognized as a model which provides a simple 
physical understanding of the torsion phenomenon in RC and PC beams. 

If rationally applied, longitudinal prestress increases the resistance to cracking of a RC element 
subject to shear or torsion. In fact, prestress induces a compressive stress which, in combination 
with the shear stress induced by shear or torsional moment, results in a biaxial stress state (shear + 
compression). This biaxial stress state delays the cracking of the concrete. Furthermore, since the 
tensile strength of concrete don´t increase in the same proportion as compressive strength increase, 
it is not possible to reach the full potential of concrete in structures in which resistance is governed 
by tensile stresses, such as those induced by shear or torsion forces. Therefore, prestress can also 
increase the torsional strength. 

 
 

 
Fig. 1 Examples of current structures with axially restrained beams 
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From this point of view, the behaviour of axially restrained RC beams under torsion should be 
similar to PC beams under torsion and the extension of VATM for PC beams could be considered 
valid for axially restrained beams. However, the longitudinal compressive stress state in axially 
restrained beams under torsion is different to the same one in PC beams. In these latter, after the 
decompression of concrete, the initial compressive stress due to prestress disappears and the beam 
behaves like a common RC beam (prestress steel behaves like additional ordinary reinforcement 
steel). In axially restrained beams, the longitudinal compressive stress will only appear after the 
cracking of the concrete and will increase until the maximum torque is reached. This is because 
beam´s elongation (in the longitudinal direction) only occurs in the cracked stage due to the high 
tensile stresses in the longitudinal reinforcement in the crack zones (in non-cracked stage, 
experimental results show that the beam´s elongation is negligible since the participation of the 
longitudinal reinforcement is very scarce). Furthermore, the longitudinal compressive stress state 
is due to the axial restraint provided by the connections to the other structural elements. For this 
reason, the behaviour of axially restrained RC beams under torsion cannot be directly extrapolated 
from the behaviour of PC beams under torsion and VATM should be specifically modified for 
axially restrained RC beams. 

 
 

2. Research significance 
 
Very few studies focused on axially restrained RC beams were found in the recent literature. 

These studies only focus simply supported beams with rectangular section and under flexure. For 
instance, in the study from Lou et al. (2011), the axial restraint was experimentally simulated with 
external reinforcement located in the tensile zone of the cross section. When compared with RC 
beams without axial restraint, axially restrained RC beams show higher flexural strength and 
higher flexural stiffness in cracked stage. This observation shows the favorable influence of the 
axial restraint on the flexural resistance of RC beams. However, it was also observed that flexural 
ductility is slightly reduced. No influence of axial restraint on cracking bending moment and on 
flexural stiffness in non-cracked stage was observed. This is obviously because the beam´s 
elongation (in the tensile zone of the cross section) is only relevant after the cracking of the 
concrete. The study of Lou et al. (2011) also shown that the tensile force in the external 
reinforcement increases linearly, from the cracking bending moment up to the failure of the beam. 

No studies (theoretical or experimental) specially focused on axially restrained RC beams 
under torsion where found in the consulted literature. 

As previously referred in Section 1, it is expected that torsional strength of RC beams also 
increases due to axial restraint. For torsion design, the current codes of practice don´t incorporate 
specific clauses to compute the favorable effect due to longitudinal compressive stresses. 
Furthermore, a theoretical and reliable model still does not exist to predict the ultimate behaviour, 
namely the effective torsional strength, of axially restrained RC beams under torsion. These 
aspects make this study particularly important, because a simple calculus procedure will allow to 
optimize the design of RC beams under torsion. 

This article presents a computing procedure developed to predict the torsional strength of 
axially restrained RC beams. This computing procedure is based on a modification of the VATM 
to account for the influence of the variable longitudinal compressive stress state due to the axial 
restraint conditions provided by the connections of the beams to other structural elements. As 
previously referred, it was observed that the axial restraint modifies the post-cracking stage 
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behavior of RC beams under flexure. Based in this observation and in its physical explanation, 
similar effects should be expected for RC beams under torsion. Since this study is mainly focused 
in the ultimate behaviour of beams under torsion, then VATM will be used to be modified to 
account for the influence of the axial restraint (VATM provides very good results for high loading 
levels). It is expected that the modification of VATM will allow to compute the effective ultimate 
behaviour, namely the torsional strength, of axially restrained RC beams under torsion. 

It should be noted that this article only deals with RC beams with rectangular sections (plain or 
hollow). For such kind of sections, torques are essentially resisted through a circulatory flow of 
tangential stresses due to torsion (circulatory torsion or St. Venant torsion). Some warping can also 
exists, mainly in zones when the out of plane deformation of the section is restrained (for instance 
due to the connection to other structural elements or due to the presence of diaphragms in hollow 
sections). Several parameters control the response of the member to warping, such as the wall´s 
thickness, dimensions and height to width ratio of the cross section, structural model of the 
member and loading type (Waldren 1988). The incorporation of the effects of warping is not easy 
to account and some complicated models exist for RC Members (CEB 1995). 

For RC members with rectangular sections (plain or hollow) in non-cracked stage, warping, if 
restrained, can locally increase the stiffness of the members. This can affect the torsional capacity 
of the member (Waldren 1988). However, in cracked stage, and mainly in the ultimate behavior, 
the effects of warping can be highly reduced. This is because the cracks somewhat release the 
initial restriction and allow the out of plane deformation of the section (Waldren 1988). This 
explains why satisfactory and simplest design methods for the ultimate limit state to consider the 
effect of warping in current RC members are not yet incorporated into codes of practice. 

The referred above is also stated in important codes of practice such as European codes 
(Eurocode 2, Model Code 1990, Model Code 2010). In fact, these codes state that for current RC 
sections (plain or hollow), the effect of warping can be neglected for the design for the ultimate 
limit state. 

In this article the principal purpose is to study the ultimate behaviour of axially restrained RC 
beams under torsion (with rectangular plain and hollow sections). In this stage the beams are fully 
cracked. For these reason, the influence of warping was not explicitly considered in this study. 

Finally, it should be also pointed out that this study deals exclusively with pure torsion. In 
actual structures, the interaction between torsion and other internal forces is a common situation. 
However, the behaviour of members under pure torsion needs to be well known and theoretical 
and reliable models for pure torsion are still need. Such models can be very useful to be applied in 
other studies focused in more complex situations with members under interaction forces (for 
instance, Belarbi et al. 2009, Valipour and Foster 2010). 

 
 

3. Modification of the VATM for RC axially restrained beams 
 
This section describes the steps that lead to the modified formulation of the VATM for axially 

restrained RC beams under torsion. The general steps that lead to the modified equilibrium 
formulation of the VATM follow in a very similar way some of the steps used by Hsu and Mo 
(1985a, 1985b). In these studies the authors derived the VATM for RC beams and when they 
modified the VATM for PC beams (longitudinal uniform prestress) under torsion, and also some 
of the steps used by Hsu 1984 when he modified the VATM in order to include “torsion + 
longitudinal axial force” interaction. In such studies, the axial force was considered as an “external 
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force” to be equilibrated by the longitudinal reinforcement. In the present study the influence of 
the axial force due to axial restraint for equilibrium is considered in the same way as the one 
presented by the referred articles, in order to modify the formulation of VATM for axially 
restrained RC beams under torsion. It should be also stated that the general steps that lead to 
modify the compatibility formulation of the VATM follow in a similar way some of the steps used 
by Hsu and Mo (1985b). In this study the authors derived the VATM for PC beams (longitudinal 
uniform prestress) under torsion and also some of the steps used by Bernardo et al. (2012b) to 
extend the VATM for low level loading stages, in order to consider the initial deformation state 
due to initial and longitudinal compressive stresses.  In this article, only the parts specifically 
related with the behaviour of axially restrained RC beams are presented in detail. More details 
about the unchanged parts of the VATM, valid for axially restrained RC beams, are not presented 
here in order to not be repeated and to not overload the article, these can be found in the referenced 
articles. 

As it will be presented and explained in Section 4, only some experimental results with PC 
beams under torsion were found in the consulted literature, which are able to be used as beams 
with axial restraint for comparison purpose. For this reason, in this article the modified VATM 
include the extension for PC beams under torsion (only longitudinal uniform prestress will be 
considered). It should be noted that VATM for RC beams constitutes a particular case of VATM 
for PC beams, when neither prestress force nor prestress reinforcement exists. 

 
3.1 Methodology to incorporate the influence of axial restraint 
 
Fig. 2(a) shows a general case of a RC beam under torsion incorporated into a simple frame and 

rigidly connected to columns. After the cracking of the concrete, the beam´s length tends to 
increase. The elongation of the beam mobilizes the flexural stiffness of the columns, which in turn 
will restrain the free elongation of the beam. The level of axial restraint will depends on the level 
of beam´s elongation and also on the level of flexural stiffness of the columns. 

In this study, it is assumed that the total free elongation of the beam (without axial restraint), l, 
can be computed from the tensile strain in the longitudinal reinforcement, l . In other words, it is 
assumed that the total free elongation of the beam is equal to the total elongation of the 
longitudinal reinforcement. This hypothesis can be state from earlier experimental observations 
(Hsu 1968). In this study, it is also assumed that the tensile strain in the longitudinal reinforcement, 
computed from the VATM, can be considered constant in all the beam´s length (l). This 
hypothesis is acceptable since the torsional cracks pattern in fully cracked RC beams, as observed 
in experimentally studies (Bernardo and Lopes 2009), shows multiple helical cracks in all the 
beam´s length. Then, it can be state that all the sections of the beam are in cracked stage. It should 
be noted that this hypothesis is consistent with VATM assumption, which assumes that the beam is 
fully cracked. Then, the tensile strain in the longitudinal reinforcement can be computed directly 
from the VATM. 

Based on the above, the total elongation of the beam (without axial restraint) can be computed 
from (Fig. 2(b)) 

ll l                                                               (1) 

In the beam´s model illustrated in Fig. 2(b) (isolated beam), the influence of the axial restraint 
provided by the flexural stiffness of the columns can be simply simulated with linear springs 
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located in the top sections of the beam (Fig. 2(c)). Due to the springs´ stiffnesses (assumed here to 
be different and equal to 1k   and 2k ), an axial and centered force (Fc) will be applied in the beam 
as the result of the beam´s elongation. This force will be proportional to the free beam´s elongation 
(l) and to the stiffnesses of the connection in the top sections ( 1k   and 2k ), and will reduce the 
free beam´s elongation (Fig. 2(c)). Then, in order to study the torsional behaviour of axially 
restrained RC beams, an interaction force situation (Fc + T) must be considered. From Fig. 2(c), 
being 1 2k k , then 1 2l l    (being 1 2l l l     ). From longitudinal equilibrium, the 

restoring forces from the springs 1 1 1cF k l    and 2 2 2cF k l   must be equal. This force is called 

cF  and is computed as follows 

1 1 2 2cF k l k l                                                         (2) 

In this study, the stiffnesses at the top sections of beams will be considered as an initial input 
data for the calculus procedure presented in sections below. These parameters should be 
previously defined by the user and should be computed as a function of the real characteristics of 
the beam´s connection to the other structural elements. A constant value can be assumed for the 
stiffnesses, or even a non-constant value (function of l) if a nonlinear analysis is assumed (for 
instance to account for the cracking of the concrete in the other structural elements). 

 
3.2 Beam element under shear, bending and compressive axial force 
 
As previously referred, to study the torsional behaviour of axially restrained RC beams, an 

interaction force situation (Fc + T) must be considered. Fig. 3 shows a simply supported beam with 
a thin section (t), under a concentrated force at mid span and also an axial compressive force Fc 
due to the axial restraint. Fig. 3 also shows an internal beam element under a constant shear force 
V, a variable bending moment M and the axial compressive force Fc (general equilibrium situation). 
In this section, the force Fc will be considered as an external force to be equilibrated by the 
internal forces V, D and N . 

VATM assumes that all the longitudinal steel is concentrated in the top and bottom stringers 
(Hsu 1984 and Hsu and Mo 1985a). The distance between the stringers is dv. The longitudinal 
length of the beam element, vd cotg  , corresponds to the horizontal projection of a crack 

inclined at an angle . In the right face, the shear flow / vq V d  induced by the shear force V is 

illustrated. The internal forces (V, D and N ) in the concrete are illustrated in the left face of the 
beam element. The compressive force D in the diagonal concrete strut is applied on an inclined 
transversal section with width t and height vd cos   (Fig. 3). 

From the force triangle illustrated in Fig. 3, the shear force V can be divided into two 
components: the total force in the longitudinal reinforcement N  and the compressive force D. 
The force N  should be taken equally by the top and bottom longitudinal steel and must also 
account for the external compressive axial force Fc 

cN V cotg F                                                     (3) 

The compressive force D and the corresponding stress d in the diagonal concrete strut are 
given as follows (from the original VATM, Hsu 1984) 
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V
D

sin 
                                                              (4) 

d
v

D

t d cos



                                                          (5) 

All the remaining equations from VATM for a beam element under a constant shear force V 
and a variable bending moment M (Hsu 1984) remain unchanged for beams with axial 
compressive force Fc due to the axial restraint. These equations are not presented here because 
they are not necessary for the next sections. 

 
3.3 Hollow beam element under torsion 
 
Fig. 4 shows a rectangular hollow beam element (with symmetrical ordinary longitudinal 

reinforcement in the corners and with symmetrical prestress longitudinal reinforcement in the 
walls) under a torsional moment T and an additional external axial compressive force Fc due to the 
axial restraint. VATM states that, in each internal section, two forces are observed: the forces in 
the longitudinal bars and the forces in the diagonal concrete struts with an angle  to the horizontal 
(Hsu 1984). The resultant of these two forces is the shear flow q in the transversal section plane, 
which coincides with the center line of the effective wall thickness, td, and which can be related 
with the torsional moment T and the area Ao limited by the center line of the flow of shear stresses 
(which coincides with the center line of the wall thickness, td) from Bred´s Thin Tube Theory (Hsu 
1984)  

o2

T
q

A
                                                            (6) 

In each wall of the hollow beam, the shear force V is defined as the resultant force of the shear 
flow q along the length of each wall lq (defined as the length of the center line of the flow of shear 
stresses, see Fig. 4) 

qV q l                                                            (7) 

The shear force V from Eq. (7) is similar to the shear force acting on the thin section of the 
beam element of Fig. 3, so it is assumed that each wall of the hollow section behaves like the 
referred thin section under the shear force V. Then, from Eq. (3), it can be state that, for each wall 
of the hollow beam of Fig. 4 and assuming that the external compressive axial force Fc is equally 
distributed by the longitudinal reinforcement in each wall, the total force in the longitudinal 
reinforcement is 

 4
c

q

F
N ql cotg  

                                               (8) 

In Eq. (8), the external force Fc is divided by the 4 walls of the hollow beam. 
From Fig. 4, it can be also state that the longitudinal compressive force Fc only modifies the 

equilibrium equations in the longitudinal direction and must be supported by the longitudinal 
reinforcement. Defining N N   as the total longitudinal force in the longitudinal 
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reinforcement in the overall section and o qp l as the perimeter of the center line of the flow 

of shear stresses, from Eq. (8) it can be state that 

 o cN qp cotg F  
                                                  (9) 

After the decompression of concrete, a PC beam under torsion behaves like a common RC 
beam. Thus, prestress only influence equilibrium equations in the prestress direction (longitudinal). 
Then, total longitudinal force in the reinforcement should include both ordinary and prestress 
reinforcement (Hsu and Mo 1985b). For PC beams with longitudinal prestress, the total 
longitudinal force in the reinforcement is 

l l pl plN A A                                                   (10) 

Where: 
Al; Apl = total area of the ordinary and prestress longitudinal reinforcement, respectively; 
l; pl = stress in the ordinary and prestress longitudinal reinforcement, respectively. 
Equating Eq. (9) to Eq. (10) and substituting q from Eq. (6) leads to: 

2
o

l l pl pl c
o

T p
A A cotg F

A
                                          (11) 

Computing the theoretical T -  curve from the original VATM for PC beams under torsion 
(without Fc) requires the three following equilibrium equations to compute the torque, T, the 
effective thickness of the concrete struts, td, of the equivalent tubular section and the angle of the 
concrete struts, , from the longitudinal axis of the beam (Hsu and Mo 1985b) 

2   d dT A t sin cos                                                 (12) 

2 l l pl pl

d d

A A
cos

p t

 





                                              (13) 

l l pl pl t t
d

d d

A A A
t

p s

  
 


                                               (14) 

Where 
At = area of one leg of the transversal reinforcement; 
t = stress in the transversal reinforcement; 
s = longitudinal spacing of the transversal reinforcement. 

Eq. (12) comes from Eqs. (4) and (5) and also from Eq. (6). Then, Eq. (12) remains valid for 
beams with axial restraint. Eqs. (13) and (14) are written as function of the longitudinal force in 
the reinforcement ( l l pl plA A  ), then they must be corrected in order to incorporate the external 

compressive axial force Fc. Substituting Eq. (12) into Eq. (11), gives Eq. (15) that must replace Eq. 
(13) in order to be used for beams with axial restraint. 

2 l l pl pl c

d d

A A F
cos

p t

 



 

                                            (15) 
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Following the same previous reasoning, Eq. (12) must be replaced by Eq. (16) in order to be 
used for beams with axial restraint. 

l l pl pl c t t
d

d d

A A F A
t

p s

  
 

 
                                               (16) 

Computing the theoretical T -  curve from the original VATM for PC beams under torsion 
(without Fc) also requires the three following compatibility equations to compute the strain of the 
longitudinal reinforcement, l, the strain of the transversal reinforcement, t, and the twist,  (Hsu 
and Mo 1985b) 

2 1

  2
d

l ds

A

p T cotg





 


 

  
 

                                               (17) 

2 1

  2
d

t ds

A

p T tg





 


 

  
 

                                                 (18) 

 2
ds

dt sin cos




 
                                                      (19) 

Since Eq. (17) to Eq. (19) are not written as function of the longitudinal force in the 
reinforcement ( l l pl plA A  ), then they should remain valid for beams with axial restraint. 

However, for axially restrained RC beams the compressive strain in the outer fiber of the concrete 
strut ds (Fig. 4) must be replaced by the effective compressive strain ds,ef to account for the axial 
restraint. Parameter ds,ef will be estimated as follows. 

As illustrated in Fig. 2, the longitudinal force Fc will reduce the free beam´s elongation, then 
the effective strain in the concrete strut in axially restrained RC beams is lesser that the same one 
in free beams. From Eq. (2) the axial force Fc can simply be estimated from the elongation L 
(being 1 2l l l     ) of the free beam (without axial restraint). If the beam is prestressed, the 
initial force in concrete due to the longitudinal prestress (Fci, see Eq. (21)) induces an initial 
shortening in the beam. Then, Fci must also be considered in addition to Fc. 

Under Fc (or Fc + Fci for PC beams), the free beam will suffer a longitudinal shortening. This 
shortening can be computed by following the same reasoning and assumptions from Hsu and Mo, 
1985b when they derived the VATM for PC beams (longitudinal uniform prestress) under torsion 
and also the same ones used by Bernardo et al. (2012b) to extend the VATM for low level loading 
stages, in order to consider the initial deformation state due to initial and longitudinal compressive 
stresses. 

As previously referred in Section 3.2, it is assumed that the beam´s shortening (due to Fc) is 
equal to the shortening of the longitudinal reinforcement l,c. This latter can simply be estimated 
from 

   ,
c c ci c ci

l c
c c ch c c h sll cp s

F F F F

E E A E A EAA A E


   

 






                        (20) 

ci pi plF A                                                          (21) 
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Where: 
Ach = equivalent area of concrete (homogenized concrete section); 
Ec; Es = Young´s Modulus for concrete and ordinary reinforcement, respectively; 
c = concrete compressive stress due to Fc; 
Ac = area limited by the outer perimeter of the section; 
Ah = hollow area (for plain sections: 0hA  ). 

The shortening of the beam also induces a shortening in the outer fiber of the diagonal concrete 
strut, ds,c. This latter can be calculated from l,c (Eq. (22) and Fig. 5). 

,
,

l c
ds c cos





                                                        (22) 

For each level of the longitudinal axial force Fc, the effective compressive strain ds,ef is 
computed as follows 

, ,ds ef ds ds c                                                       (23) 

In Eqs. (17) to (19), the compressive strain in the outer fiber of the concrete strut, ds, must be 
replaced by the effective compressive strain, ds,ef, in order to account for the axial restraint. 

As referred latter (Section 3.5), the methodology previously presented to correct the 
compressive strain in the concrete strut to account for the axial restraint allow to maintain the 
original structure of the iterative calculation procedure of VATM. 

The strain at the surface of the diagonal concrete strut, ds (Fig. 4), and at the centre line of the 
flow of shear stresses, / 2d ds   (Fig. 4), can be computed from (Hsu and Mo 1985a) 

 2
   d

ds t d

p t
tg sin cos

A




                                      (24) 

The procedure to compute the strain in the longitudinal prestress reinforcement, pl, to compute 
subsequently the stress pl, is the following one (Hsu and Mo 1985b) 

,pl dec l l                                                         (25) 

, ,dec l pi l li                                                       (26) 

, , /pi l pi l pE                                                     (27) 

   
,pl pi l

li

l s c c h pl c

A

A E E A A A E


 

   
                                   (28) 

Where 
dec,l = strain in the longitudinal prestress reinforcement at decompression; 
li = inicial strain in the longitudinal ordinary reinforcement; 
pi,l = inicial strain in the longitudinal prestress reinforcement; 
pi,l = initial stress in the longitudinal prestress reinforcement; 
Ep = Young´s modulus of the longitudinal prestress reinforcement. 
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Prestress reinforcement in tension ( f): 
(Ramberg-Osgood 1943, Hsu and Mo 1985b) 

0.1% 0.1%           /p p p p p p pf E if f E      

(41)

0.1%1
4.38 4.38

           

1

p p
p p p

p p

pt

E
f if

E

f


 



 
  
       

 

(42) 
 

The stress of the concrete struts, d, is defined as the medium stress of a non-uniform diagram 
(Fig. 4) 

1d ck f                                                        (29) 

Where: 
 = reduction coefficient for the stress to account for the softening effect; 
k1 = ratio between the medium stress (B, see Fig. 4) and the maximum stress (A, see Fig. 4); 

cf   = average concrete compressive strength. 

The k1 parameter is an average stress and it can be obtained by integrating the  -  relationship 
of the compressive concrete in the struts (Eqs. (31) and (32) in Table 1). In this study, parameter k1 
will be calculated by numerical integration. 

 
3.4 Nonlinear stress () – strain () relationships for the materials 
 
Usually, theoretical models for the behaviour of cracked RC elements under shear consider the 

independent behaviour of the concrete and of the reinforcement through their average  –  
relationships. For concrete in compression in the struts, the average nonlinear  –  relationships 
usually account for the softening effect (influence of the transversal tension strains) by 
incorporating reduction factors. For reinforcement in tension, some average (smeared) nonlinear 
 –  relationships account for the stiffening effect (interaction between reinforcement and 
concrete in tension between cracks). Other simplified  –  relationships (bilinear) do not 
incorporate this interaction and are defined from uniaxial tensile tests. 

In the last two decades, several  –  relationships for concrete in compression and for ordinary 
reinforcement in tension were proposed by authors. For this reason, Bernardo et al. (2012a) tested 
several  –  relationships for the materials in order to compute the ultimate behaviour of RC 
beams under torsion by using VATM formulation. Among the tested models and based on several 
comparative analyses with experimental results, the authors found one theoretical model that 
provides very good predictions for the torsional strength. This theoretical model incorporates the 
 –  relationship for compressed concrete in struts proposed by Belarbi and Hsu (1991) with 
softening factors proposed by Hsu and Zhang (1997) and Zhang and Hsu (1998). These  –  
relationship will also be used in this study. It should be noted that this  –  relationship for 
concrete in compression was meant for fixed-angle truss-model theories. However, several authors 
further incorporated in their models, based on variable angle truss-models, the same, or similar 

pl

fpl0.1%

pu  pl

Proportional limit

p0.1%
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versions, o the  –  relationship for concrete in compression employed in this study (for instance, 
Hsu and Zhang 1997, Zhang and Hsu 1998, Hsu and Zhu 2002, Jeng and Hsu 2009, Bernardo et al. 
2012b, Bernardo et al. 2014). In these studies the authors found that such  –  relationship was 
shown to be adequate also for models based on variable angle truss-models. 

Table 1 presents the mathematical equations for the  –  relationship for concrete in 
compression in struts (Eqs. (31) and (32)) as well as the mathematical equations for the reduction 
factors for stress () and strain () (Eqs. (33)-(36)). The meanings of the principal parameters in 
Table 1 for the  –  relationship for concrete are:   is the strain corresponding to the pick stress 

( cf  ), c1 is the principal tension strain ( 1c l t d      , Hsu 1984), c = c2 is the compression 

strain in the principal direction of the compression stress (fc = fc2) and  represents the ratio 
between the resisting forces in the longitudinal and transversal reinforcement. 

For PC beams, parameter  should also account for the resistance force in the longitudinal 
prestressed reinforcement (Eq. (30)). 

0.1% 0.1%

/
l sly pl pl l sly pl pl

t sty t sty

f f A f A f

f uA f s

 



 

                                 (30) 

Where: 
l;t = longitudinal and transversal ordinary reinforcement ratio ( /l sl cA A    an / ( )t st cA u A s     

with cA xy , being x and y the external dimensions of the rectangular section); 

pl = longitudinal prestress reinforcement ratio ( /pl pl cA A  ); 

u = perimeter of the transversal ordinary reinforcement ( 1 12 2u x y  with x1 and y1 the minor and 
major dimension of the hoop); 

fsly;fsty = yielding stress of the longitudinal and transversal ordinary reinforcement, respectively; 
fpl0.1%  = conventional stress of the longitudinal prestress reinforcement. 

In their comparative analyzes Bernardo et al. (2012a) also tested several  –   relationships 
for the reinforcement in tension. Among the tested models the authors found that the best  –   
relationship for the reinforcement in tension to compute the ultimate behaviour of RC beams under 
torsion by using VATM formulation, is the average  –  relationship for ordinary rebars under 
tension proposed by Belarbi and Hsu (1994). This relationship accounts for the tensile stress that is 
absorbed by concrete in tension between cracks (stiffening effect). For this reason, the theoretical 
model used in this study also incorporates this average  -  relationship for the tensile steel bars 
embedded in concrete (ordinary reinforcement). 

To characterize the prestressing steel in tension, a tensile  –  relationship for bare 
prestressing strands can be used since the decreased stress in embedded tendons compared with 
bare strands is less significant than in embedded mild steel compared with bare steel bars (Wang 
2006). Then, a  –  relationship based on the equation of Ramberg-Osgood (1943) can be used. 
Hsu and Mo 1985b showed that this relationship is adequate for current prestressing steel. The 
strain in the longitudinal prestressing steel should be computed considering the initial stress due to 
prestressing (Eqs. (25) to (28)). The previously referred  –  relationship for prestress steel in 
tension is also used in this study. 

Table 1 presents the mathematical equations for the  –  relationship for ordinary 
reinforcement in tension (Eqs. (37) to (40)) and for the  –  relationship for prestress 
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reinforcement (Eqs. (41) and (42)). The meanings of the principal parameters in Table 1 for the 
 –  relationships for reinforcement are: fs and fp are the tensile stress, fsy is the yielding stress, 
fp0.1% is the stress correspondent to the conventional strain p0.1% = 0.1%, fst and fpt are the tensile 
strength, fcr is the tensile strength of the concrete,  is the reinforcement ratio, s and p are the 
tension strain, sy is the yielding strain at the end of the elastic behaviour, su and pu are the 
ultimate strain. 

 
3.5 Computation of the Torque (T) - Twist () Curve 
 
The computation of the T -  curves based on VATM requires an iterative computation 

procedure since the variables td,  and  =  are initially unknown and interdependent. In the 
original VATM the input variable is ds (Hsu and Mo 1985a, Bernardo et al. 2012). In order to 
maintain the structure of the original and efficient iterative calculus procedure from VATM, ds 
should remain the input variable. The iterative procedure for the modified VATM in order to 
include axially restrained RC beams and PC beams under torsion is presented in Fig. 6. In a first 
step, for each ds input value, the original VATM calculus procedure is used to compute the 
response of the RC or PC beam under torsion without axial restraint (free beam´s condition), 
namely to compute the strain in the longitudinal reinforcement, l. Based on this value, the beam´s 
elongation L and the longitudinal force Fc (due to the axial restraint) are computed. Then, the 
effective compressive strain in the outer fiber of concrete strut ds,ef is computed and the calculus 
procedure for the modified VATM is started. 

Based on the global calculus procedure presented in Fig. 6, a computing tool based on VATM 
and previously developed with the help of the computing programming language Delphi to 
compute the T -  curve for RC and PC beams under torsion (Andrade et al. 2011) was modified in 
order to include axially restrained RC beams under torsion. For RC beams, parameters Apl and fpi,l 
must be considered null. In order to account for the distinction between the behavior between PC 
beams and axially restrained RC beams under torsion, as explained in Section 1 and Sections 3.1 
to 3.4 the computing tool previously developed by the authors for RC and PC beams under torsion, 
and extended in this study to include axially restrained RC beams, includes an option for the user 
in order to choose what type of beams is to be calculated: RC beam, PC beam, axially restrained 
RC beams or axially restrained PC beams. 

The theoretical results obtained with this computing tool will be compared with some 
experimental results of test beams under pure torsion which are available in the literature and able 
to be used as axially restrained RC beams (Section 4) and also with some numerical results from 
nonlinear finite element analysis (Section 5). The comparative analysis will focus on the ultimate 
behaviour of the beams, namely on the torsional strength. 

The theoretical failure of the sections was defined from the conventional maximum strains of 
the materials (concrete and steel). Either the strain of the concrete struts, ds (Fig. 4), reaches its 
maximum value (cu) or the steel strain, s, reaches the usual maximum value of s = 100/00. In this 
study,    and cu are calculated from EC2 2010. 

 
 

4. Comparative analysis with experimental results 
 
In this section, a comparative analysis mainly focused on the ultimate behaviour will be carried 
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out with the help of some experimental results. In the consulted literature, experimental studies 
focused on axially restrained RC beams under torsion were not found. However, in PC beams 
(with uniform longitudinal prestress) if external longitudinal prestress reinforcement is used, then, 
in addition to the initial compressive stress due to the prestress force, a compressive stress state 
arises due to the axial restraint provided by the axial stiffness of the prestress reinforcement. Such 
beams can be studied as axially restrained PC beams under torsion. In this case, the stiffness k to 
calculate the compressive force is defined as follow 

p pl

p

E A
k

l
                                                        (43) 

Where lp is the length of the external longitudinal prestress reinforcement between anchorage 
heads. 

In the consulted literature, only two beams were found with the conditions explained previously. 
Such beams, D1 and D2 from Bernardo 2003 (with 5.9 meters long), have a rectangular hollow 
cross section and were subjected to pure torsion until failure. The geometry and detailing of the 
beams are presented in Fig. 7. External prestressing was applied through three (Beam D1) and four 
(Beams D2) 0.6 inches wires centered in the section (Fig. 7). The ordinary reinforcement used in 
Beams D1 and D2 were ribbed bars (diameters of 10 and 16 mm) sold commercially as A500 
Class. For the elastic modulus of the steel, Es, the typical value given by different codes was used: 
200 GPa. The prestress reinforcement used in Beams D1 and D2 were wires belonging to Class 
S1670/1860. The modulus of elasticity, Ep, was assumed to be the one indicated by the producer: 
195 GPa. 

From Fig. 7 it can be state that the axial and centered force of the beams due to the axial 
restraint provided by the external prestressing reinforcement along all the beam´s length is 

cF k L  , with k computed from Eq. (43). Eq. (2) cannot be directly used to compute cF k L   
because the model of the beam is different from the one illustrated in Fig. 2. 

Table 2 summarizes the geometrical and mechanical properties of the PC beams D1 and D2, 
namely: the external width (x) and height (y) of the rectangular cross hollow sections, the thickness 
of the walls (t), the distances between centerlines of legs of the closed stirrups (x1 and y1), the total 
area of longitudinal reinforcement (Asl), the distributed area of one leg of the transversal 
reinforcement (Ast / s, where s is the spacing of transversal reinforcement), the total area of 
longitudinal prestress reinforcement (Apl), the longitudinal and transversal ordinary reinforcement 
ratio (l and t), the average concrete compressive strength ( cf  ), the average yielding stress of 

longitudinal and transversal reinforcement (fly and fty), the proportional conventional limit stress to 
0.1% (fp0,1%), the initial stress in the prestressing reinforcement (fpi) and the average stress in the 
concrete due to prestressing (fcp). Young´s Modulus of concrete (Ec), concrete strain correspondent 
to peak stress (  ) and ultimate compressive concrete strain (cu) were calculated from EC2 2010. 

Ultimate tensile reinforcement value (su) was considered equal to 1% (usual conventional value). 
The axial stiffness k provided by the external longitudinal prestress reinforcement is computed 
from Eq. (43), with lp = 7.12 m being the distance between anchorage heads (Fig. 7). 

By using the computing tool based on the calculus procedure presented in Fig. 6, and based on 
the properties of the experimental beams D1 and D2 presented in Table 2, the theoretical T -  
curves for the test beams were calculated. Such curves are presented in Figs. 8(a) and 8(b). Each 
figure includes two theoretical T -  curves and one experimental T -  curve. This latter was 
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(a) (b) 

Fig. 8 T -  curves: (a) Beam D1 - (b) Beam D2 
 

Table 2 Properties of experimental PC hollow beams D1 and D2 (Bernardo 2003) 

Beam 
x ; y 

cm 

t 

cm 

x1 

cm 

y1

cm

Asl 

cm2 

Ast/s 

cm2/m 

Apl 

cm2

l

%

t

%

cf 

MPa

fly 

MPa

fty

MPa

fp0,1%

MPa

fpi

MPa

fcp

MPa 
Ec

(1) 
 (1)

 

%
 

cu
(1) 

%
 

k 

kN/m

D1 60 11.4 54.3 54.2 23.8 11.2 4.2 0.66 0.68 80.8 724 715 1670.5 640 1.79 41.2 0.21 0.30 11503

D2 60 11.5 55.5 55.5 23.8 11.2 5.6 0.66 0.69 58.8 724 715 1670.5 1100 3.08 37.4 0.20 0.35 15337

(1) Calculated from EC2 2010 
 
Despite of the previously referred with respect to Beams D2, Fig. 8 shows that the modified 

VATM proposed in this study slightly improve the previsions of the T -  curves for the ultimate 
behaviour of Beams D1 and D2, when compared with the same ones computed from VATM. The 
slight differences between the theoretical T -  curves are probably due to the low level of axial 
restraint provided by the longitudinal prestress reinforcement. In fact, the reinforcement area (Apl) 
is not very high. Nevertheless, some axial restraint effect exists and the theoretical T -  curves 
from the modified VATM are closer to the experimental ones. 

Since only two test beams were used to validate the modified VATM proposed in this study, 
the obtained results cannot be considered conclusive. For this reason, a comparative analysis with 
numerical results is presented in the next section. 

 
 

5. Comparative analysis with FEM 
 
In the present section, a comparative analysis will be carried out with the help of some 

numerical results from a three-dimensional nonlinear finite element analysis by using LUSAS 
software (LUSAS 2010). The comparative analysis will be focused on the ultimate behaviour, 
namely the torsional strength, of a RC hollow beam under torsion. 
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5.1 Experimental beam 
 
For the purpose of the present section, the tested RC hollow beam A2 (or A-47.3-0.76) from 

Bernardo and Lopes (2009) will be simulated under torsion and until failure with different levels 
of axial restraint. Among all the tested beams from Bernardo and Lopes 2009, Beam A2 was the 
one with the highest torsional ductility, so it will be interesting to study also the influence of the 
axial restraint level on this important property. This beam was also chosen because hollow 
sections are a current solution when high torsional forces exist. 

The geometry (similar to Beams D1 and D2, Fig. 7) and detailing of Beam A2 is presented in 
Fig. 9. The ordinary reinforcement used in Beam A2 (A500 Class) were ribbed bars (diameters of 
8, 10 and 12 mm). Elastic modulus of the steel, Es, was assumed to be 200 GPa. Table 3 
summarizes the geometrical and mechanical properties of the experimental Beam A2. In Bernardo 
and Lopes (2009), Beam A2 was subjected to pure torsion until failure with no axial restraint. 

 
5.2 Finite element model 
 
The numerical model used in this study is a nonlinear tridimensional finite element model (3D 

FEM) developed with LUSAS software (LUSAS 2010). This numerical model aims to simulate 
the global behaviour of the RC Beam A2 under torsion and under several axial restraint levels. The 
experimental results of Beam A2 (without axial restraint) are used to validate the FEM. This latter 
consisted of thick steel plates in the tops of the beam (section under torsional loading and section 
with bearing supports), and RC walls composing the hollow section, as illustrated in Figs. 10 and 
11. 

The concrete walls and steel plates of the beam were modeled by eight-node solid elements 
with 3 degrees of freedom (translations) in each node (HX8 element, Fig. 12(a)). The steel 
reinforcement was modeled using a 3D isoparametric bar with two nodes and 3 degrees of freedom 
(translations) in each node (BRS2 element, Fig. 12(b)). HX8 and BRS2 are compatible with each 
other and also with nonlinear analysis. Perfect bond was considered between concrete and 
reinforcement bars (no slip exists), so solid and bar steel elements share the same nodes. The sizes 
of the mesh in the RC walls were conditioned by the small spacing between longitudinal and 
transversal bars (Fig. 10). The thick plates on top sections of the beam act as a force transfer 
element and were modeled with rigid HX8 elements and tied to the top sections of the beam. The 
model was subjected to a binary of imposed displacements in one of the top section in order to 
simulate the applied torque. The opposite top section was simply supported in several nodes in 
order to simulate a fully restrained twist condition (Fig. 10). Axial restraint was simulated with a 
longitudinal and external tie (steel cable modeled with BRS2 elements, Fig. 12(b)) linked to the 
steel plates at the top sections of the beam (Fig. 10). The transversal area of this element is 
variable, depending on the axial restraint level to be simulated. The FE model for Beam A2 add a 
total of 5540 nodes, 2978 bar elements and 4044 solid elements. 

 
5.3 Material models 
 
A plastic-damage-contact model, called Multi-Crack (LUSAS 2010), was used to model the 

concrete both in compression and tension. This distributed fracture model is based on the Craft 
model from Jefferson 2003 and uses planes of degradation that can undergo damage and 
separation but which can regain contact according to a contact state function. The model is able to 
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simulate the type of delayed aggregate interlock behaviour exhibited by fully open crack surfaces 
that subsequently undergo significant shear movement. To simulate the nonlinear behaviour for 
the concrete in compression the model has a fully integrated plasticity component that uses a 
smooth triaxial yield surface and frictional hardening-softening functions. For concrete in tension, 
a softening curve as shown in Fig. 13 is used. The loss of tensile strength is related with the degree 
of concrete crushing in compression. The model was validated with experimental data related to 
reinforced concrete under shear (Jefferson 2003), so it can be applied to elements under torsion. A 
more detailed characterization of the Craft model can be found in Jefferson 2003. 

In addition to the uniaxial concrete compressive strength ( cf  ) and concrete Young´s Modulus 
(Ec) from Table 3, Table 4 presents the assumed values for the other several concrete properties 
parameters incorporated into the Multi-Crack model. For the strengths, average values where used. 
Since the cross section is hollow, the effect of confinement in concrete due to the transversal 
reinforcement was neglected. 

For ordinary reinforcement, the average  –  relationship from Belarbi and Hsu (1994) was 
used (Table 1). Figure 14 presents the  –  relationship (continuous curves and simplified curves) 
for the longitudinal and transversal reinforcement. Such curves were computed from equations 
presented in Table 1, using steel properties presented in Table 3 and described in Section 5.1. 
Poisson´s coefficient for the reinforcement was assumed to be 0.3. 

For the external tie (steel cable) and thick plates, a linear  –  relationship was assumed with 
no upper limit for stress. A Young´s Modulus of 200 GPa was assumed for the external tie. 

 
5.4 Convergence criteria and validation 
 
For the nonlinear analysis, a solution procedure was adopted in which the total required load is 

applied in a number of automatic increments. In this study, the torsional load was simulated with a 
binary of imposed displacements (Fig. 10), so displacement incrementation was used. The starting 
load factor was assumed to be 1 mm and the maximum change in load factor was fixed to 2 mm. 
The incremental-iterative solution was based on modified Newton-Raphson iterations. In order to 
improve convergence characteristics, namely for high level loading, the constant load control 
method switched to arc-length method by imposing a stiffness ratio limit. Automatic increment 
reductions were also used when an increment fails to converge. 

The convergence criterions used were the residual force norm, displacement norm and the 
external work norm. The solution termination was specified by limiting the maximum applied load 
factor. The chosen initial value was based on the maximum experimental twist observed for Beam 
A2. 

In order to validate the numerical model, Fig. 15 presents the T-  curves for Beam A2. Both 
experimental and numerical T-  curves are presented. For each converged point, the numerical 
torsional moments and twists were computed from the reaction forces in the supports and from the 
imposed displacements at the top sections of the model (Fig. 10), respectively. Comparison 
between experimental and finite element analysis shows that, generally, good agreement exists 
until the maximum torque is reached. After this point, numerical convergence was difficult to 
achieve. So the maximum applied load factor was reduced in order to allow computing only the 
initial part of the descending branch of the T-  curve (to be sure that maximum torque was 
reached). 

 

87



 
Fig

Luís F.A. Be

. 9 Geometry 

ernardo, Cátia

and detailing 

Fig. 10 3D 

 
 
 
 
 

a S.B. Taborda

of test Beam 

FEM for Bea

a and Jorge M

A2 (Bernardo

m A2: Mesh

M.A. Andrade 

o and Lopes 20

 

009) 

 

 

88



 

 

Fig.
 

 
 

Fig. 1

. 12 Finite elem

X

Y

Z

Ultimate t

11 3D FEM fo

(a) 

ments model:

Fig

torsional beha

or Beam A2: (

(a) 8-node el

. 13 Tensile so

 
 
 
 
 
 

aviour of axia

(a) Concrete +

ement (HX8) 

oftening curve

lly restrained 

+ Steel plates –

– (b) 2-node 

e (Jefferson 2

RC beams 

– (b) Reinforc

(b) 

element (BRS

003)

(a) 

(b) 

cement 

 

S2) (LUSAS 22010)

89



Fi
 
 

 

ig. 14 Averag

Luís F.A. Be

ge  –  relatio

T
(k

N
m

)

ernardo, Cátia

onships: (a) lo

Fig. 15 

0

50

100

150

200

250

300

0.0

T
(k

N
m

)

 
 
 
 
 

a S.B. Taborda

(a) 

(b) 

ongitudinal rei

T –  curves f

0.5 1.0 1

a and Jorge M

inforcement –

for Beam A2

1.5 2.0 2.

θ

A2 (Exp.)

FEM

M.A. Andrade 

(b) transversa

5 3.0

(⁰ /m)

)

al reinforcemeent 

90



Fig. 16

 

T
(k

N
m

)

(a)

(b)

(c

(d)

6 FEM results
tensile stress

0

50

100

150

200

250

300

350

400

0.0 1.0

T
 (k

N
.m

)

Ultimate t

)           

)      

)  

) 

s: (a) deform
s in reinforcem

(a)  

Fig. 17 T – 

0 2.0 3.0

torsional beha

      

ation – (b) cr
ment 

 curves for Be

X

Y

Z

0 4.0 5.0

θ (⁰ /m)

k=0

k=10000

k=20000

k=30000

k=40000

k=50000

k=60000

k=70000

k=80000

 
 
 
 
 
 

aviour of axia

racking – (c) 

 

eam A2: (a) m

0

5

10

15

20

25

30

35

40

T
(k

N
.m

)

lly restrained 

principal com

modified VAT

0

50

00

50

00

50

00

50

00

0.0 0.

RC beams 

mpressive stre

(b)  

TM – (b) FEM

5 1.0

 

 

 

 

ress in concre

M 

1.5

θ (⁰ /m)

k=0

k=1000

k=2000

k=3000

k=4000

k=5000

k=6000

k=7000

k=8000

ete – (d) 

 
2.0

)

00

00

00

00

00

00

00

00

91



 
 
 
 
 

Luís F.A. Bernardo, Cátia S.B. Taborda and Jorge M.A. Andrade 

 

(a)  (b) 

Fig. 18 Comparative analysis between modified VATM and FEM results 
 
 

Table 3 Properties of experimental RC hollow beam A2 (Bernardo and Lopes 2009) 

Beam 
x ; y 
cm 

t 
cm 

x1 
cm 

y1 
cm 

Asl 
cm2 

Ast/s
cm2/m

l 
% 

t 
% 

cf   
MPa

fly 
MPa

fty 
MPa

Ec
(1) 

(1)

 
% 

cu
(1) 

% 

A2 60 10.7 53.8 53.1 14.0 6.3 0.39 0.37 47.3 672 696 36.1 0.20 0.35
(1) Calculated from EC2 2010 

 
 

Table 4 Concrete properties 

Poisson´s ratio -  0.2 
Uniaxial tensile strength – ft (MPa) 1.8(1) 
Strain at peak uniaxial compression – c  0.002(2)

Strain at effective end of softening curve for distributed fracture – o  0.07(3)

Fracture energy per unit area (foro > 0) – Gf  0 
Biaxial to uniaxial peak principal stress ratio – r  1.15 
Initial relative position of yield surface – Zo  0.6 
Dilatancy factor giving plastic potential slope relative to that of yield surface –   -0.1 
Constant in interlock state function – mg  0.425 
Contact multiplier on o for 1st opening stage – mhi  0.5 
Final contact multiplier on o – mful  10 
Shear intercept to tensile strength ratio for local damage surface – r  1.25 
Slope of friction asymptote for local damage surface –   1 
Angular limit between crack planes (Rad)  1 
(1) Calibrated to adjust for the cracking torque 
(2) Calculated from EC2 2010 
(3) Calibrated to adjust for the maximum torque 
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Table 5 Axial stiffness values provided by the steel cable 

Axial restraint level 
Ap 

(cm2) 
k 

(kN/m) 
Axial restraint level

Ap 
(cm2) 

k 
(kN/m) 

1 0 0 6 14.75 50000 
2 2.95 10000 7 17.70 60000 
3 5.90 20000 8 20.65 70000 
4 8.85 30000 9 23.60 80000 
5 11.80 40000    

 
Fig. 15 shows that, along the twist axis, the “position” of the FEM T-  curve between cracking 

torque and maximum torque does not match very well with the experimental T-  curve, although 
the inclination (tangent torsional stiffness in cracked stage) is very similar. This is probably due to 
the high value considered for the strain o = 0.07 at effective end of softening curve for concrete in 
tension (Table 4 and Fig. 13). As previously referred (note (3) in Table 4), this value was chosen in 
order to calibrate the model to adjust for the maximum torque. For lower values, it was observed 
that the FE program prematurely stopped the calculations because the final point of the softening 
curve for concrete in tension was reached. Since o is relatively high, higher influence of the 
tensile concrete after cracking torque exists (as o increases, the area of the softening curve 
illustrated in Fig. 13 between t and o also increases), so the secant torsional stiffness of the beam 
also increases. 

From Fig. 15, it can be also observed that the descending branch of the FEM T-  curve, after 
the maximum torque is reached, starts somewhat prematurely when compared with the 
experimental T-  curve. Thus, the torsional plastic capacity (inelastic deformation) of Beam A2, 
after maximum torque is reached, is not perfectly foreseen by FEM. This is probably due to the 
assumed hypothesis that perfect bond exists between concrete and reinforcement bars, as 
previously explained in Section 5.2. It is known that in the inelastic stage, high slip can exists 
between bars and concrete, so the inelastic deformations would be higher. 

Another reason for the discrepancies previously observed is also probably related to the fact 
that the eight nodded solid elements (with 3 translational Degree of freedoms per node) used to 
model the concrete walls of the beams are usually associated with a problem of shear locking. 
Reduced integration or incompatible modes are generally used as remedy to overcome shear 
locking. In this study none of these methods has been adopted to overcome the problem of shear 
locking. 

Since the comparative analysis in this section is mainly focused on the torsional strength, it is 
considered that the previously observed discrepancies in Fig. 15 are less important. This is because 
for design purpose of RC sections under torsion, the torsional strength is the most important 
parameter for safety. So, the FEM was accepted for the purpose of this study and no additional 
calibrations were performed. 

Fig. 16 shows some numerical results from FEM, namely: the deformed mesh (Fig. 16(a)), the 
cracking pattern (Fig. 16(b)), the principal compressive stress in concrete (Fig. 16(c)) and the 
stress in the reinforcement for the maximum torque (Fig. 16(d)). 

 
5.5 Comparative analysis 
 
In this section, a comparative analysis focused on the ultimate behaviour of Beam A2 with 

several axial restraint levels will be carried out. The results from the FEM and the modified 
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VATM will be compared. Since the axial restraint in the FEM is simulated by incorporating an 
external steel cable (Fig. 10), as explained in Section 5.2, Table 5 resumes the range of values 
considered for the axial stiffness k provided by the steel cable and calculated from Eq. (43). The 
length lp of the steel cable and the Young´s Modulus of the material were fixed to constant values 
(5.90 m and 200 GPa, respectively,), so only the area of the cross section (Ap) varied. 

Fig. 17 presents the T-  curves for Beam A2 with several axial restraint levels computed from 
the modified VATM (Fig. 17(a)) and from the FEM (Fig. 17(b)). The T-  curves from the two 
models were not incorporated into one unique graph because they are relative to very different 
models for low level of loading. In fact, VATM consider the element fully cracked from the 
beginning of the loading, whereas FEM consider the participation of tensile concrete. So, torsional 
behaviour for low to medium level loading is very different for each model (see Fig. 17). 

Fig. 17 seems to show that the last portion of the T-  curves (ultimate behavioral part) from 
Modified VATM and FEM are in good agreement. It can be also state that the maximum torque 
and the torsional stiffness in cracked stage increase as the axial restraint level increases. However, 
it can be also state that the inelastic deformations decreases as the axial restraint level increases. 
Then, torsional failure becomes more fragile as the axial restraint level increases. This is due to the 
influence of the compressive longitudinal stress state in the concrete struts associated to the axial 
restraint. 

Fig. 18(a) presents the evolution of the torsional strength (maximum torque, Tr) for the several 
axial restraint levels (k) considered in this study. Fig. 18(a) shows that modified VATM and FEM 
give very similar values for Tr (see values in graph). The observed tendency lines for Tr (linear 
regression) are also very similar. The maximum difference observed between Tr values from 
modified VATM and FEM is only 6.6%. So, it can be state that FEM validates the modified 
VATM in order to compute the torsional strength of axially restrained beams. It should be also 
noted that the increase in the torsional strength, as the axial restraint level increases, is notable. In 
average, for each increment of k = 10000 kN/m, torsional strength increases 4.5% (this value is the 
same for both models). This clearly shows the benefice in torsional strength due to axial restraint. 

Despite the discrepancies previously observed for the twists in Fig. 15, Fig. 18(b) presents the 
evolution of the twists corresponding to torsional strength (Tr). For FEM, the ultimate twist was 
taken as the maximum twist value before T-  curves begins to fall. Fig. 18(b) shows that Tr 
values from FEM are lower when compared with the same ones from Modified VATM. As 
previously explained, VATM assumes a fully cracked stage from the beginning of loading. Then, 
the corresponding twists for high level loading are generally overestimated when compared with 
other models incorporating the participation of tensile concrete. Another reason for the 
discrepancies observed and related with the low ultimate twist values obtained from FE analysis, 
when compared to analytical predictions, is probably related with the problem of shear locking 
previously referred in Section 5.4. 

Despite of this, both models shows that the ultimate twist decreases as axial restraint level 
increases. This shows that some negative influence of axial restraint exists on ultimate deformation 
capacity. So, torsional ductility decreases as axial restraint level increases. 
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6. Conclusions 
 

In the first part of this article, a new and simply computing procedure, based on a modification 
of the VATM, to predict the ultimate behaviour of axially restrained RC beams was presented. In 
the second part, the theoretical predictions from the proposed theoretical model were compared to 
some experimental results available in the literature and also with numerical results from a 
three-dimensional nonlinear finite element analysis. 

From this study, the following conclusions can be drawn: 
 The proposed model, called modified VATM, is able to predict the ultimate behaviour of 

axially restrained RC beams under torsion; 
 When compared to some experimental results available in literature (PC hollow beams with 

external and centered longitudinal prestress reinforcement), it was shown that the proposed model 
(modified VATM) improves the previsions for the T -  curves for high level of loading (ultimate 
behaviour), when compared with VATM (without axial restraint); 

 When compared to some numerical results from nonlinear 3D FEM (RC hollow beam under 
several axial restraint levels), it was shown that the proposed model (modified VATM) gives 
reliable values for the torsional strength; 

 From the two previous conclusions, it can state that the modified VATM can be used for 
torsional design and allows for optimized design; 

 It was also shown that torsional strength and torsional stiffness at cracked stage increases as 
the axial restraint level increases, approximately with a linear variation. Such observation shows 
the benefice of the axial restraint in the torsional strength and in the torsional stiffness in cracked 
stage; 

 Some negative influence of the axial restraint on the ultimate behaviour of beams under 
torsion was also observed. In fact, the ultimate deformation decreases as axial restraint level 
increases. This aspect can negatively influence the ductility of beams under torsion and, therefore, 
should be take into account in design procedures. 

It should be noted that the main results of this study were obtained from analyses carried out 
using RC and PC hollow beams under torsion (with squared section) as study model. For plain 
sections, it is well known that the concrete core has no influence in the ultimate torsional 
behaviour of the beams (Hsu 1968) and also that VATM gives good previsions regardless of the 
section type (plain or hollow) (Hsu and Mo 1985a 1985b, Bernardo and Lopes 2009, Bernardo et 
al. 2012a). For rectangular sections, the height to width ratio, if within current range values, has no 
notable influence as variable study (Hsu 1968) and VATM still gives good predictions (Bernardo 
and Lopes 2009, Bernardo et al. 2012a). So, the results of this study can also be extended to plain 
sections and quadrangular sections with current height to width ratios. 

Finally, it should be also referred that the results obtained in this study were based on 
comparative analyzes performed between theoretical results and experimental results of only two 
specimens, complemented with some numerical results from a three-dimensional nonlinear finite 
element analysis. Despite of this limitation, the results indicate that the proposed analytical method 
(modified VATM) for axially restrained RC beams seems to be reliable. However, new projects 
aiming to testing axially restrained RC beams under torsion would be very useful for further 
analyses. 
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