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Abstract.    This paper proposes an innovative method for selection of measurement sets in static parameter 
identification of concrete or steel bridges. This method is proved as a systematic tool to address the first 
steps of Structural System Identification procedures by observability techniques: the selection of adequate 
measurement sets. The observability trees show graphically how the unknown estimates are successively 
calculated throughout the recursive process of the observability analysis. The observability trees can be 
proved as an intuitive and powerful tool for measurement selection in beam bridges that can also be applied 
in complex structures, such as cable-stayed bridges. Nevertheless, in these structures, the strong link among 
structural parameters advises to assume a set of simplifications to increase the tree intuitiveness. In addition, 
a set of guidelines are provided to facilitate the representation of the observability trees in this kind of 
structures. These guidelines are applied in bridges of growing complexity to explain how the characteristics 
of the geometry of the structure (e.g. deck inclination, type of pylon-deck connection, or the existence of 
stay cables) affect the observability trees. The importance of the observability trees is justified by a statistical 
analysis of measurement sets randomly selected. This study shows that, in the analyzed structure, the 
probability of selecting an adequate measurement set with a minimum number of measurements at random 
is practically negligible. Furthermore, even bigger measurement sets might not provide adequate SSI of the 
unknown parameters. Finally, to show the potential of the observability trees, a large-scale concrete 
cable-stayed bridge is also analyzed. The comparison with the number of measurements required in the 
literature shows again the advantages of using the proposed method. 
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1. Introduction 
 

The structural response of a bridge is traditionally based on simplistic physically based models 
(e.g. Finite Element Models, FEMs). Actual parameters of built structures (such as axial stiffness, 
EjAj, flexural stiffness, EjIj, area, Aj or inertia, Ij) might differ from those assumed in these FEMs. 
For this reason, calibration of the models is required for accurate and reliable estimation of stress 
distribution and deformations of built structures (see Turker et al. 2014). One way to approach this 
need is by using measurements from health monitoring system (see Ni et al. 2011). This process is 
known as Structural System Identification (SSI) (see ASCE 2011).  

Adeli and Jiang (2006) classified the SSI methods as parametric (see Sanayei and Saletnik 
1996), in which the set of equations has a physical meaning, and non-parametric (see Erdogan and 
Bakir 2013), in which it has not. According to the type of excitation, the SSI methods can also be 
classified as input-output methods or only output methods. The main difference between both 
groups refers to the information of the excitation loads. In the input-output method, the excitation 
loads might be assumed known while in the output-only methods they are unknown. Multiple 
examples of input-output methods have been presented in the literature for dynamic (see Arslan 
and Durmus 2013), static (see Lakshmanan et al. 2008, Ubertini et al. 2013) or mixed (see Lee et 
al. 2010) excitation. Static methods can identify only stiffness parameters and are not able to 
capture any changes in mass and damping parameters, while dynamic methods can identify 
changes in all structural parameters. Nevertheless, many applications require only element 
stiffness identification for condition assessment. In these cases, static methods can prove simpler 
and more adequate for economical and computational time reasons (see Sanayei et al. 1997).  

In any SSI method, different measurement sets can be used to calculate the desired estimates. 
Often the number of deflections that can be measured in a structure is limited due to available 
funds, equipment, and/or accessibility conditions. Therefore, a key pretest decision for the SSI 
method is the selection of the minimum number of measurement points and their location for 
successful parameter estimation. Several authors have presented heuristic methods to select 
near-optimal measurement set from non-destructive static (see Sanayei et al. 1992) and dynamic 
(see Pothisiri and Hjelmstad 2002) structural responses. Meo and Zumpano (2005) compared 
different optimal sensor placement techniques. Zhang and Ohsaki (2011) proposed an optimization 
problem to search for the optimal set of locations for measurement of member forces to have the 
highest identification accuracy. Raich and Liszkai (2012) optimized both the number and location 
of dynamic sensors. Recently, Joshua and Varghese (2013) used decision trees to select the 
location of accelerometers in bricklayers.  

Lozano-Galant et al. (2013a, 2014a) proposed the novel application of observability techniques 
to SSI in trusses, beams and frame structures and the validation of this methodology to deal with 
the peculiarities of cable-stayed bridges. This technique can be applied regardless of the load type. 
This comes from the fact that the observability technique is applied in the system of equations 
coming from the stiffness matrix method. The only restriction of the load test used in the 
observability technique is that it needs to excite the parameter to be estimated. For example, it is 
clear to notice that the flexural stiffness of one horizontal beam cannot be estimated when only a 
horizontal load is introduced, as this load does not excite the flexural mechanism. A hitch that 
impeded a practical application of the observability method was the fact that the measurement set 
selection was carried out by trial and error analysis, that is, without a systematic procedure. It is 
important to highlight that this selection is a crucial step in the SSI. Nevertheless, and despite its 
importance, no adequate procedure for measurement set selection by observability techniques has 
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been found in the literature. To fill this gap, the major contribution of the current paper is based on 
the definition of a systematic procedure for measurement set selection in SSI by observability 
techniques. The new systematic method presented in this paper corresponds with the observability 
trees technique.  

The observability trees show graphically how the estimates are successively calculated 
(observability flow) throughout the recursive process of the observability analysis. The trees are 
defined by two different elements: tree nodes (unknown variables that correspond with unknown 
estimates, as stiffness, areas or inertias) and tree branches (information measured at the nodes of 
the structure, such as rotations or deflections). The aim of the method is to define an observability 
flow that enables the connection of the pursued tree nodes. To initiate an observability flow in 
these trees, the measured deflections must fulfill a set of requirements regarding both, deflection 
type and location. Finally, to propagate adequately the flow, the measured deflections must provide 
adequate connectivity to these nodes. Observability trees can also be used to look for alternative 
measurements if required.  

It is important to highlight that the observability trees technique presented in this paper is a 
symbolic and parametric procedure in which the obtained results do not depend on the numerical 
values. For this reason, and in order to avoid unnecessary data, the numerical analyses have been 
intentionally omitted in the analyzed examples.  

This paper is organized as follows. In Section 2, the concept of observability tree is presented 
for beam structures. After analyzing the effects of the structural redundancy and the beam 
inclination, an algorithm is described for measurement set selection in beams. In Section 3, the 
application of the observability trees in cable-stayed bridges is presented. A set of simplifications 
are provided to facilitate the representation of the observability trees of cable-stayed bridges. From 
these simplifications, a set of guidelines to make observability tress in cable-stayed bridges is 
presented. These guidelines are applied for measurement set selection of cable-stayed bridges of 
growing complexity. Furthermore, the effectiveness of random measurement set selection is also 
analyzed. Finally, in Section 4, some conclusions are drawn. 
 
 
2. Observability trees 
 

The observability trees are graphical representations that illustrate the connectivity of the 
unknown parameters (such as EjAj, EjIj, Ej, Aj or Ij) into the system of equations of the stiffness 
matrix method as well as the recursive process described in Lozano-Galant et al. (2013a, 2014a) 
and Castillo et al. (2014). These trees can be used for systematic measurement set selection in SSI 
by observability techniques.  

In orthogonal grids, axial and flexural structural resistant mechanisms can be studied separately. 
Therefore, two different observability trees, referring to the axial (TN) and flexural (TM) resistant 
mechanism, can be analyzed independently of each other. On the contrary, in those cases where 
both resistant mechanisms are coupled together, as in inclined beams, these trees are joined in a 
common tree (TN-M). Any observability tree is composed of two different elements: the tree nodes 
(represented by the unknown estimates, see Fig. 1) and straight lines called tree branches that 
connect the tree nodes (see Fig. 1). These branches represent the equation or equations that link 
unknown estimates in the stiffness matrix method. They also include the deflections and/or 
rotations measured at the corresponding nodes of the structure. 

In horizontal beams, information of the axial resistant mechanism depends on the horizontal 
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deflections in nodes, uk, while information of the flexural resistant mechanism depends on the 
vertical deflections, vk, and the rotations, wk, in structural nodes k. On the other hand, in vertical 
beams the role of the horizontal and vertical deflections is exchanged or swapped. The shape of the 
tree depends on the connectivity and beam elements inclination, the structural redundancy, the 
known and unknown structural parameters and the measured deformations.  

To illustrate the definition of the observability trees from the stiffness matrix, the TN and TM 
trees of a horizontal continuous beam without boundary conditions are summarized in Fig. 1. The 
FEM of this beam includes 4 nodes and 3 beam elements (bars) L1, L2 and L3 long, respectively. 
The contribution of each bar to the stiffness matrix of the structure is highlighted by a dashed line. 
The mechanical properties of the beam elements, that is, A1, A2, A3, I1, I2 and I3, are assumed as 
unknown. The Young’s modulus, the length of all the beam elements and the forces in nodes (Hk, 
Vk and Mk) are assumed as known. The system of equations of the stiffness matrix includes 3 
equations for each node of the structure. With k being the node number, the equations of the kth 
node are located between the row 3(k-1) + 1 and the row 3k of the stiffness matrix. The 
contribution of each structural node into the system of equations has been framed in the vectors of 
forces and displacements of Fig. 1. In this case, the axial resistant mechanism of the structure is 
represented by the horizontal deflections, u. This is to say, in the first equation of each node. These 
4 equations are framed with continuous lines in Fig. 1. From these equations, the axial 
observability tree, TN, can be directly represented. This tree includes three tree nodes (unknown 
areas in beam elements, A1 to A3) and four branches that refer to the 4 equations that link the tree 
nodes. These branches include information of the corresponding horizontal node deflections (u1 to 
u4). The flexural observability tree, TM, can be obtained from the equations that represent the 
bending resistant mechanism of the structure. These equations are highlighted by a dotted line in 
Fig. 1. In this case, the TM tree also includes three tree nodes (unknown inertias in beam elements, 
I1 to I3) and four branches. Each of these branches involves the two different equations that 
correspond to the equilibrium of vertical forces and moments in the corresponding node of the 
structure. Therefore, these branches might include information on the vertical deflections and/or 
rotations in the structural nodes (v1 to v4 and w1 to w4). 

The observability trees can be used to define measurement sets with a minimum number of 
measurements. The number of required deflections, ND, to estimate a structure with NA unknown 
Areas or Axial stiffnesses and NI unknown Inertias or bending stiffnesses can be expressed as 

Nୈ ൌ N  N୍                              (1) 

One of the advantages of identifying a minimum measurement set is that if this is done, a 
consistent system of equations is obtained. It is true that the estimates obtained in this system 
depend, to a great extent, on the accuracy of the monitored data. Nevertheless, either additional 
measurements or measurement repetitions might provide different consistent systems with 
different values of the estimates. Analysis of these estimates can be used to minimize the errors in 
estimates. It is remarked that if a minimum measurement set is not defined, an inconsistent system 
of equations can be obtained. This type of system cannot be appropriately solved with 
observability techniques. This proves the interest and the importance of the method presented in 
this paper. 

In addition to the number of measurements, the type of deflection and its location are of 
primary importance. In fact, when the deflection types or the locations are not properly selected, 
even a higher number ND does not enable the observability of the unknown estimates. The location 
and the type of measurement required to obtain the minimum set of deflections can be obtained by 
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The observability flow starts when some parts of the structure include enough information to 
evaluate one or several unknown estimates. To propagate adequately the flow, the measured 
deflections in tree branches must provide adequate connectivity to the tree nodes. In this way, 
observed estimates together with measured deflections can be used to solve some equations in 
adjacent beam elements. 

To illustrate the concept of observability flow and its role in the solution of the system of 
equations of the stiffness matrix method, let’s focus on Fig. 2. This Fig. includes the system of 
equations of the stiffness matrix method for the continuous beam analyzed in Fig. 1. The 4 
equations that govern the axial behavior of the structure are framed with a continuous line and 
numbered from (1) to (4) in Fig. 1. 

To show how the connectivity of the beams links the equations of the axial resistant mechanism, 
equations are rewritten at the bottom of Fig. 2. In these equations, the terms referring to the axial 
stiffness of each beam are represented with a different color. For example, the axial stiffness of bar 
1 appears in the equilibrium equations of its both nodes (Eqs. (1) and (2) of Fig. 1) while the axial 
stiffness of bar 2 appears in Eqs. (2) and (3) of Fig. 1. If the Young’s modulus, the length of the 
bars and the horizontal forces in nodes (H1 to H4) are assumed as known and the areas of the bars 
are assumed as unknown, the equations of the axial resistant mechanism include 7 unknown 
variables (A1 to A3 and u1 to u4). Furthermore, unknown horizontal deflections and areas are 
multiplied making the problem nonlinear. To estimate the unknown areas (objective of the SSI), a 
set of horizontal deflections at the structural nodes is first measured. Measuring horizontal 
deflections of all structural nodes (that is, u1 to u4) leads to a system with more equations than 
unknown variables, which can be solved directly (assuming that one equation is redundant). 
Nevertheless, we can take advantage of the connectivity of the unknown estimates in the system of 
equations to reduce the number of deflections to be measured. In this procedure, the equations of 
the system are solved one by one. In this way, once an unknown area is calculated from the 
equilibrium equation of one of its nodes, this area might contribute to solve new unknowns in the 
equilibrium equations of other nodes. For example in the case of the continuous beam in Fig. 2, 
when u1 is measured, A1 can be obtained from (1) of Fig. 1. Then, calculated A1 and measured u2, 
they can be used to obtain A2 from (2) of Fig. 1. Finally, calculated A2 and measured u3, they can 
be used to obtain A3 from (3). This very simplified example shows that A1, A2 and A3 can be 
obtained by measuring deflection in three conveniently selected nodes (u1, u2 and u3). This way of 
solving the system of equations illustrates the recursive process of the observability analysis and it 
represents the concept of observability flow.  

In the structure presented in Fig. 2, an observability flow (flow 1) is initiated in Eq. (1) when 
A1 is calculated. Then, the observability flows towards the rest of equations and the new areas are 
successively calculated. To enable the calculation of an estimate from the observability flow, it is 
necessary to connect conveniently the tree branches. With this aim, the branches must include 
information that (together with the calculated estimates) can be used to solve new equations. The 
observability flow 1 is represented in the right hand side of the equations of the axial resistant 
mechanism, in the main diagonal of the stiffness matrix and in the axial observability tree, TN, by a 
continuous arrow in Fig. 2. The required measurement set obtained by the flow consists of u1, u2 

and u3. The observed estimates are colored in green color. An alternative observability flow (flow 
2) might be initiated when A3 is obtained from Eq. (4) after introducing the measured vale u4. In 
this case, to observe all cross sectional areas it is necessary to measure an alternative set of 
deflections (u4, u3 and u2). The observability flow 2 is represented by a dashed arrow in Fig. 2. 
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(u), vertical deflections (v), rotation (w), horizontal reactions (H), vertical reactions (V), and 
moments (M) followed the positive direction of axes presented in Fig. 4.  

The observability of the unknown estimates in eight different measurement sets (cases 1.1 to 
1.8) is summarized in Fig. 4. Differences between the analyzed cases refer to the beam inclination, 
αj, (horizontal beam, αj=0, in cases to 1.1 to 1.6 and inclined beam, αj്0, in cases 1.7 and 1.8) and 
to the boundary conditions (simply supported in cases 1.1 to 1.3 and clamped-supported in cases 
1.4 to 1.8). For each case, Fig. 4 summarizes the measured deflections introduced into the 
observability analysis (left hand side) and the axial (TN) and flexural (TM) observability trees (right 
hand side). In the observability trees, observed parameters are in bold green color. Unobserved 
parameters are in italics red color. Circled nodes indicate restrictions by boundary conditions. 
Green arrows show the observability flow through the recursive process. Dashes in branches 
(disconnected branch) indicate that no information is measured in the corresponding node of the 
FEM. 

Cases 1.1 to 1.3 correspond with a horizontal and simply supported beam. In case 1.1, 8 
measured deflections and rotations (w1, u2, v2, u3, v3, u4, v4 and u5) are introduced into the 
observability analysis. In this case, all the variables can be observed. On the one hand, the TN 
observability tree shows that all the areas are observed after an observability flow (initiated in A4) 
flows from right to left in the tree. On the other hand, the TM observability tree shows that the 
inertias can also be observed. In the initial observability analysis (number of recursive Step i=1), 
the location of the measurements in beam element 1 enables the observation of I1 and an 
observability flow is initiated. As the branches of the tree are conveniently connected the 
observability flows from left to right and the rest of inertias can be successively observed in three 
more steps. The observed parameters throughout the recursive process are summarized in Table 1. 
It is important to highlight that the number of observed variables in each recursive step, N.obsi, 
presented in this table includes not only areas and inertias, but also unknown deflections. Case 1.2 
shows that all areas and inertias but A4, I3 and I4 are observed when five deflections (u2, v2, u3, v3 

and u4) and one rotation (w3) are measured. The TN observability tree shows a disconnection 
(discontinuous red line) in edge branch as no horizontal deflection is measured at node 5. This 
illustrates that A4 cannot be observed unless u5 is measured. The TM observability tree shows how 
the flow can be initiated at an inner node (I2) and to flow to edge nodes when adequate 
connectivity is provided. Nevertheless, when adjacent nodes of the tree are not conveniently 
connected, (e.g. when neither vertical deflection nor rotation in node 4 is measured) the 
observability cannot flow. This is the case of the right hand side of TM in which, I3 and I4 cannot be 
observed. In case 1.3, A3, A4, I1 and I4 can be observed when five deflections (v2, u3, u4, v4 and u6) 
and two rotations (w2 and w5) are measured. This example shows that separated parts of the trees 
can be observed when a branch is disconnected. The TM tree illustrates that different observability 
flows can be initiated at different parts of the structure when requirements to initiate the flows are 
adequately satisfied. Nevertheless, when a branch is disconnected, the mechanical properties of the 
adjacent nodes of the trees (such as A1, A2, I2 and I3) cannot be observed. 

Cases 1.4 and 1.5 correspond to a horizontal clamped-supported beam. This beam is statically 
indeterminate in the axial and flexural resistant mechanism. In case 1.4, neither any A nor I can be 
observed when 7 deflections and rotations (u2, v2, u3, v3, u4, v4 and w5) are introduced. In the TN 

observability tree, the absence of observed areas can be explained by the fact that no observability 
flow can be initiated. The analysis of the TM indicates that an additional condition arises in 
clamped-supported beams. In these structures, the observability of the inertia that connects the 
clamped node (I1 in this case) is compulsory. To observe this inertia, it is necessary to relocate the 
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measured deflections. In this way, defections might be measured at the proximities of the clamped 
edge at an intermediate point of the beam. This is illustrated in case 1.5, where w5 is substituted to 
the vertical deflection at the intermediate node 7. The horizontal deflection u7 is also introduced. A 
summary of the observed parameters throughout the recursive process in case 1.5 is presented in 
Table 1. 

Unlike horizontal and vertical beams, the axial and flexural structural behavior of inclined 
beams (αj്0) cannot be treated independently unless the horizontal and vertical forces and the 
deflections can be determined in the local axes of the beam. In simple structures, forces and 
deflections in global axes (e.g. determined by topography) can be projected into local axes of the 
beam. Nevertheless, in structures with a large number of elements with different local axes, this 
change of axes is discouraged. For this reason, this section analyzes the effects of the inclination of 
the beam when measurements in global axes (uk and vk). In this case, both deflections include 
information of both resistant mechanisms and therefore, the observability flow can only be 
represented by a common observability tree, called TN-M. This tree links the axial (TN) and flexural 
(TM) structural behavior of the beam.  

To illustrate the peculiarities of the TN-M observability tree, cases 1.6 to 1.8 are analyzed. The 
beam used in these cases only differs with that presented in cases 1.4 and 1.5 in the fact that it has 
an inclination α. In case 1.6, all the estimates are calculated when 8 deflections (u2, v2, u3, v3, u4, v4, 
u7 and v7) are measured. The TN-M observability tree shows that, thanks to the information 
measured at the intermediate node 7, observability flows are initiated in both resistant mechanisms 
(at nodes A1 and I1). The connectivity of the branches of the tree enables the observability of all 
the estimates. This observability flow corresponds with the sum of the separated observability 
flows for the equivalent horizontal beam presented in case 1.5. In the following case, a 
disconnection in the horizontal deflections is introduced at the branch joining the mechanical 
characteristics of the beam elements 2 and 3 (v3). The analysis of the observability tree of these 
two cases shows that in inclined beams a disconnection at any resistant mechanism also affects the 
observability of the other one. A summary of the observed parameters throughout the recursive 
process in case 1.7 is presented in Table 1. Finally, in case 1.8, no area can be observed because no 
observability flow can be initiated. Furthermore, as the node 1 is clamped, the observability of 
beam 1, I1, is compulsory. Nevertheless, the disconnection of the branch that connects structural 
parameters in bars 1 and 2 (u7) makes that any flexural stiffness can be observed. 

 
 

Table 1 Number of observations (N.obsi) including deflections, observed areas and inertias in cases 1.1, 1.5 
and 1.7 throughout the steps (i) of the recursive process 

 Case 1.1 Case 1.5 Case 1.7 

Step (i) N.obsi Areas Inertias N.obsi Areas Inertias N.obsi Areas Inertias

1 10 A1 to A4 I1 12 A1 to A4 I1 10 A1, A4 I1 

2 12 A1 to A4 I1, I2 14 A1 to A4 I1, I2    

3 14 A1 to A4 I1, I2, I3 16 A1 to A4 I1, I2, I3    

4 18 A1 to A4 I1 to I4 18 A1 to A4 I1 to I4    
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2.2 Algorithm 
 
Input: Geometry, boundary conditions and unknown mechanical properties (NI flexural and NA 

axial stiffnesses). 
Output: For each analysis direction (forward or backward), different sets of minimum 

measurements clustered in matrices [MF] and [MB] can be obtained. On the one hand, [MF] defines 
the required measurements obtained by a forward observability flow while [MB] defines those 
measurements obtained by a backward flow. 

Step 1: Creating a FEM to be analyzed: From the geometry of the beam an adequate FEM is 
defined. This FEM includes nodes to separate the structural beam elements with different unknown 
mechanical properties and to represent the boundary conditions.  

Step 2: Evaluating the flexural resistant mechanism from a forward direction１: The nodes are 
looked over from left to right. A vertical deflection or a rotation is available when the following 
two conditions are fulfilled: (1) The measurement is not null due to boundary conditions and (2) it 
has not been previously selected. The vertical deflection or the rotation of each node is selected 
when at least one of them is available. Else the vertical deflection or the rotation of the next node 
is selected if available. Otherwise, an additional node is created to measure either its vertical 
deflection or its rotation. The NI selected values are saved in [MF]. 

Step 3: Evaluating the flexural resistant mechanism from a backward direction２: The nodes are 
look over from right to left. The vertical deflection or the rotation of each node is selected when at 
least one of them is available. Else, the vertical deflection or the rotation of the next node is 
selected if available. Otherwise, an additional node is created to measure either its vertical 
deflection or its rotation. These NI selected values are saved in [MB]. 

Step 4: Evaluating the axial resistant mechanism from a forward direction３: The nodes are 
looked over from left to right. The horizontal deflections of each node are selected when they are 
available. Else, the horizontal deflection of the next node is selected if available. Otherwise, an 
additional node is created to measure its horizontal deflection. These NA selected values are saved 
in [MF]. 

Step 5: Evaluating the axial resistant mechanism from a backward direction: The nodes are 
looked over from right to left. The horizontal deflections of each node are selected when they are 
available. Else, the horizontal deflection of the next node is selected if available. Otherwise, an 
additional node is created to measure its horizontal deflection. All these values are saved in [MB]. 

Step 6: Correction to substitute rotations for deflections４: If we want to define an alternative 

                                                       
1The NI measurements required to define the NI unknown flexural stiffnesses are selected to assure an 
adequate connectivity of the NI tree nodes. In a horizontal beam these measurements might be both vertical 
deflections and rotations. To define the possible measurement sets, the structure is analyzed forwards (from 
left to right) and available measurements are selected. 
2To define the NI measurements the structure is analyzed backwards. In this way, the measurements are 
selected from right to left. 
3The NA measurements required to define the NA unknown axial stiffnesses are selected to assure an 
adequate connectivity of the NA tree nodes. In a horizontal beam these measurements correspond with 
horizontal deflections. To define these deflections the structure is analyzed forwards and available 
measurements are selected. 
4This step is presented because usually the rotations are difficult to be measured in actual structures. For this 
reason, rotations might be replaced by vertical deflections. 
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measurement set without rotations, the rotations in matrices [MF] and [MB] are replaced by vertical 
deflections at their corresponding nodes if available, or at next node if available, or at an 
intermediate node. Otherwise, go to step 7.  

Step 7: Correction in clamped-supported beams with different mechanical properties and 
without intermediate supports: If the structure is clamped-supported and it includes different 
mechanical properties without intermediate supports, the measurement set that does not start at the 
clamped node is replaced for the other measurement set. Otherwise, go to Step 8.  

Step 8: Correction in doubled clamped beams with different mechanical properties and without 
intermediate supports: If the structure is doubled clamped with different mechanical properties and 
without intermediate supports, an additional measurement is required. This additional information 
might correspond with an extra vertical deflection or rotation at any available node or at any 
intermediate node. Otherwise go to step 9. 

Step 9: Results report: The matrices [MF] and [MB] are provided. 
It is noted that in both vertical and horizontal beams the axial and the flexural resistant 

mechanisms can be studied separately from the measurements provided by [MF] or [MB]. 
Nevertheless, this is not the case of inclined beams with measurements in global axes as both 
resistant mechanisms have to be considered together.  

The algorithm can be developed to take into account the 3D behavior of beam elements. In 
such a case, transverse flexural stiffness and torsional stiffness have to be identified. The number 
of unknowns will be increased by NTI (unknown transverse flexural stiffnesses) and NT (unknown 
torsional stiffenesses). To define the additional required measurements new analyses must be 
carried out from a forward and a backward approach. In the case of the transverse flexural 
mechanism, these analyses are equivalent to those presented in Steps 2 and 3 for the vertical 
flexural mechanism. On the other hand, the analyses of the torsional resistant mechanism are 
equivalent to those presented in Steps 4 and 5 for the axial resistant mechanism. 

 
2.3 Application of the algorithm 
 
The algorithm presented in the preceding section has been applied for measurement set 

selection in the simply supported beam presented in case 1.1. Five of the alternative measurement 
sets obtained by the algorithm are summarized in Table 2. This table includes the measurement 
sets in the Forward, [MF], and the Backward, [MB], analysis direction. As we are aiming to get 
measurement sets including rotations in order to compare with the results presented in Section 2.1, 
Step 6 of the algorithm is intentionally skipped. However, it is to highlight that measurement set 
four includes a practical application without rotation measurements. 

 
 

Table 2 Alternative measurement sets obtained by the algorithm by the Forward, [MF], and the Backward, 
[MB], analysis direction 

 

Set [MF] [MB] 
1 u2, u3, u4, u5, w1, w2, w3, w4 u2, u3, u4, u5, w5, w4, w3, w2 
2 u7, u3, u4, u5, w1, w2, v3, v4 u7, u3, u4, u5, w5, w4, v3, v2 
3 u7, u3, u4, u6, w1, v2, w3, v4 u7, u3, u4, u6, w5, v4, w3, v2 
4 u2, u3, u4, u6, v7, v2, v3, v4 u2, u3, u4, u6, v6, v4, v3, v2 
5 u7, u3, u4, u6, v7, w2, v2, w3 u7, u3, u4, u6, v7, w4, v4, w3 
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Application of the algorithm to 2D structures is presented in the next section. The SSI using 
observability techniques might also be applied to 3D structures. Nevertheless, due to the high 
connectivity of all mechanical properties, the representation of the 3D observability trees is far 
from being intuitive. Hence, the essence of the observability trees method is lost. 
 
 
3. Measurement set selection in cable-stayed bridges 

 
The structural audacity and lightness of the current cable-stayed bridges make these structures 

very sensitive to static and dynamic loads in service (see Swenson 2012, Lozano-Galant and 
Turmo 2014a) and during construction (see Lozano-Galant et al. 2013b, 2014b and Lozano and 
Turmo 2014b). However, in many cases, especially for short and medium span bridges, dynamic 
behavior is not crucial, whereas the response under static loads is indeed. 

The structural behavior of this kind of structures is much more complicated than that of 
continuous bridges because their structural behavior depends on the interaction of the deck, the 
pylon and the stay cables. As presented in Lozano-Galant et al. (2013a), this interaction is 
especially problematic in SSI by observability techniques. 

Unless some simplifications are assumed, the interaction between the different loads bearing 
elements results in complex TN-M observability trees. In these trees the essence of the parametric 
method is lost as they are very difficult to be understood and far from being intuitive. To illustrate 
these complex trees in a cable-stayed bridge, Example 2 is analyzed. To uncouple the linkage 
produced by the stays a set of simplifications is advised. Furthermore, a set of guidelines to make 
observability trees in cable-stayed bridges is presented. Next, these guidelines are used to define 
the measurement set of cable-stayed bridges with few stay cables and different pylon-deck 
connections. The statistic analysis of the effectiveness of arbitrary measurement set selection is 
also analyzed in one of these structures. Finally, the measurement set selection of a large scale 
cable-stayed bridge is carried out. 

 
3.1 Example 2: Cable-stayed bridge with inclined pylon 
 
In this example the cable-stayed bridge with inclined pylon presented in Fig. 5 is analyzed. The 

bridge deck of this structure corresponds with the beam analyzed in Example 1. In this structure 
three stay cables are used to transfer the loads to the pylon. This element is L5 high and with an 
inclination β. The Young’s modula of all the elements of the structure are assumed as known. This 
assumption is introduced to deal with unknown areas and inertias instead of axial and flexural 
stiffnesses. Nevertheless, and without any lack of generality, the method is still applicable when 
Young’s modula are assumed as unknown.  

The observability trees of four measurements sets (cases 2.1 to 2.4) are presented in Fig. 5. In 
the first case, the mechanical properties (A and I) of the deck, the pylon and the stays are assumed 
as unknown. This produces a set of 16 unknown mechanical properties (from A1 to A8 and from I1 
to I8). To observe these estimates a minimum set of 16 deflections is required. This set includes the 
measurement of deflections at intermediate points of the stay cables. Observed estimates 
throughout the recursive process are summarized in Table 3. A simplified TN-M observability tree 
(without the measurements in the branches) of this structure is presented in Fig. 5. This tree shows 
that the resistant mechanisms of all the elements are strongly linked. This linkage complicates the 
initialization of observability flows and the observability throughout the recursive process. 
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To disconnect the resistant mechanisms of the deck from those of the stays and the pylon, it can 
be assumed that the stays behave mainly with the axial resistant mechanism. This hypothesis is 
commonly used in the literature (see SETRA 2001) and it neglects the stay inertia (Ij=0). This 
assumption is followed in case 2.2, in which the number of unknown mechanical properties is 
reduced to 13 (from A1 to A8 and from I1 to I4 and I8). To assure the observability of these elements 
a set of 13 deflections is required. As presented in the simplified observability tree of Fig. 5, the 
inertia of the stays has been removed. The parameters that can be observed throughout the 
recursive process are summarized in Table 3. 

The manufacturing process of the stays provides high confidence of the stay axial stiffness. 
Furthermore, if required, cable sag effects can be included into Ej by mean of the equivalent 
Ernst’s modulus (see Podolny and Scalzi 1986) that depends on the length of the stay, its weight 
and its force, F. Therefore, in practice, the axial stiffness EA of the stays is traditionally assumed as 
known. The effects of introducing this hypothesis into case 2.2 are analyzed in case 2.3. In this 
example the number of unknown parameters is reduced to 10 (from A1 to A4, A8, from I1to I4 and 
I8). To observe these parameters, the measurement of a minimum set of 10 deflections is required. 
Introducing the stay cable area as a known parameter into the observability analysis facilitates the 
representation of the observability tree of the structure as the resistant mechanisms of the deck and 
the pylon might be studied separately as presented in Fig. 5. The deck observability trees 
correspond with those of the equivalent horizontal beam described in case 1.5. The pylon 
observability tree corresponds with that of an inclined cantilever beam. In this case, because of the 
inclination, the resistant mechanisms cannot be separated. It is important to highlight that there are 
an infinite number of minimum measurement sets.  

For example, in case 2.3 all the mechanical properties can also be observed when a different 
measurement set substituting v2 for w2 or w3 is introduced. 

An additional hypothesis that can be added to provide more freedom in the selection of the 
measurement set consists of including the stay force F. In this way, the stay cables can be 
substituted in the observability analysis by their corresponding forces in the stay-anchorage points. 
This situation is presented in case 2.4, where the stays are replaced by their axial forces F. To show 
that the stays do no longer appear in the observability analysis, they are highlighted by a dotted 
line. In this example, to observe all the unknown estimates a new measurement set might be used. 
Compared with that presented in case 2.4, this set enables to interchange the deflections at the top 
of the pylon (node 9 in Fig. 5) with those at another point of the pylon (such as node 8 in Fig. 5) 
providing more freedom to the measurement set.  

When only the stay cable axial resistant mechanism is assumed, it is possible to link the stay 
force, F, with the axial stiffness of the stay, EA, and its elongation,	ΔL, as follows 

F ൌ EA  ΔL.                                 (2) 

This equation might provide additional information to the system in the following cases: (1) 
When F and the deflections in both stay-anchorage points are measured, the axial stiffness EA of 
the stay can be calculated. (2) When F, EA, the deformations of one stay-anchorage point and one 
of the deformations (uk or vk) of the other anchorage point are measured, the unknown deformation 
of the anchorage point can be calculated. This information might be useful to reduce the number of 
points in the deck where horizontal deflection must be measured. (3) When one of the 
stay-anchorage points corresponds with a boundary condition, F can be used to calculate the 
boundary reactions, as in the case of the backstays. 
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Table 3 Number of observations (N.obsi) including deflections, observed areas and inertias in cases 2.1 and 
2.2 throughout their recursive steps (i). 

 
 
3.2 Guidelines in cable-stayed bridges 
 
The analysis of a number of structures provides the following guidelines to determine the TN 

and TM observability trees in cable-stayed bridges: 
(1) TN-M trees in cable-stayed bridges with unknown mechanical properties in the stays: If the 

mechanical properties of the stays (A and/or I) are assumed unknown, the observability trees of the 
structures are far from being intuitive because the resistant mechanisms of all the elements (deck, 
pylon and stays) are linked (see cases 2.1 and 2.2). Furthermore, in this case the minimum number 
of required deflection usually includes deflections at both stay-anchorage points and at 
intermediate points of the stays. 

(2) TN and TM trees in cable-stayed bridges with known mechanical properties in the stays: The 
resistant mechanisms of the deck and the pylon can be separated from those of the stays by 
neglecting the stay inertia (I=0) and assuming as known the area of the stay (see case 2.3). This 
simplification facilitates the representation and understanding of the observability trees of the 
structure. In this case, the set of measurements has to include deflections in both stay-anchorage 
points. The application of these hypothesis leads to the following ideas: Additional information 
can be obtained from the axial resistant mechanisms of the stays by Eq. (2). In cable-stayed 
bridges without pylon-deck connection, the observability trees of the pylon and the deck can be 
studied separately. In this case the deck can be analyzed as a beam and the pylon as a cantilever 
beam. Both elements include a different axial TN, and a flexural, TM, observability tree that might 
be coupled together depending on the element inclination. In cable-stayed bridges with pylon-deck 
connection, the observability trees of the deck and the pylon are linked at the connection.  

(3) TN and TM trees in cable-stayed bridges without stay elements: When in addition to the 
mechanical properties of stays (A known and I=0), the axial forces of the stays, F, are included as 
data, the stays can be substituted in the observability analysis by the corresponding forces in the 
stay-anchorage points. In this case, most of the ideas referring to the representation of these trees 
presented in the above point are still applicable. Nevertheless, measuring F forces provides more 
freedom in the selection of the measurement set (as deflections in the stay-anchorage points are not 
required). Therefore, more intuitive observability trees can be obtained. 

 
3.3 Application to cable-stayed bridges with few stay cables 
 
To test the performance of the observability trees in the case of large structures, the asymmetric 

cable-stayed bridge presented in Fig. 6 is analyzed in this section. This structure is based on that 
described by Aboul-Ella (1990). The concrete cable-stayed bridge includes a 37.5 m high pylon, a 
92 m long main span and a 25 m long back span. To illustrate the influence of the pylon deck 

 Case 2.1 Case 2.2 
Step (i) N.obsi Areas Inertias N.obsi Areas Inertias

1 18 A1, A4, A5, A6, A8 I1, I8 22 A1 to A8 I1, I8 

2 23 A1, A2, A4, A5, A6, A8 I1, I2, I5, I8 24 A1 to A8 I1, I2, I8 
3 31 A1 to A8 I1, I2, I3, I5, I7, I8 26 A1 to A8 I1, I2, I3, I8 
4 35 A1 to A8 I1 to I8 28 A1 to A8 I1, I2, I3, I4, I8
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connection, two different structures (B5 and B4 in Fig. 6) are analyzed. The differences between 
both structures are as follows: (1) different number of stay cables, five stays for B5 and four for B4, 
and (2) different type of connection between the deck and the pylon, no connection in B5, and 
vertically simply supported in B4. Both structures are simulated by a FE model that includes 18 
nodes. The main characteristics of the bridge are presented in Fig. 6. 

In the analysis proposed in this section the following hypotheses are assumed: (1) In order to 
make a more general application, it is assumed that the deck could be cracked in the proximities of 
the stay cables. This assumption makes the use of different deck stiffnesses necessary. (2) To 
simplify the representation of the observability trees, and without losing any generality, the pylon 
is assumed to have constant mechanical properties. (3) Null flexural stiffness of the stay cables. (4) 
The stay axial stiffness is assumed as known. This simplification can be assumed because the 
variability of the stay material and cross section is significantly lower than in elements from decks 
and pylons made of concrete at early stages of the service life. Moreover, specific tests can be 
made to collect information about the real area and stiffness of the stays [Sumitro et al. 2002]. (5) 
In order to assimilate the axial and the flexural stiffnesses to the area and the inertia, the Young’s 
modulus of all structural elements are assumed as known. This hypothesis is followed in most of 
the methods presented in the literature (see Abdo 2012). All these hypotheses produce a set of 20 
unknown mechanical properties (from A1 to A10 and from I1 to I10). (6) The structure is assumed to 
behave linearly during the non-destructive test and therefore, the effects of geometrical 
nonlinearities have been neglected. (7) Only static element parameters are required for the 
condition assessment of the structure. (8) No dynamic loads are applied and the structure is stiff 
enough to neglect effects of the dynamic properties in the static test. This is a reasonable 
assumption that can be applied to most of the medium span cable-stayed bridges no subjected to 
earthquake loads. 

By following the guidelines provided in the preceding sections, the observability tree of B5 
results from the summation of those of two independent beams (a horizontal simply supported 
beam for the deck and a cantilever one for the pylon). One of the infinite number of minimum 
measurement sets, B5-1, is presented in Fig. 7. In this set, the required deflections (u1, u2, u5, u6, u7, 
u9, u10, u11, u1, u13, u16, v2, v4, v6, v7, v8, v9, v10, v11 and v12) are determined to provide adequate 
connectivity to the observability trees of the axial and resistant mechanisms of the structure. The 
observability flows obtained are presented in Fig. 7. This figure also includes three alternative 
measurement sets, B5-2 to B5-4, with the minimum number of measurements. 

In structure B4, due to the pylon-deck connection, the resistant mechanisms of the deck and the 
pylon are linked. This is appreciable in Fig. 8 where the corresponding TN-M observability tree is 
presented. In this case the area of the pylon, A10, is linked with the inertia in the deck at the pylon 
connection, I8, and the inertia of the pylon, I10, is liked with A8 and I8, respectively. It is important 
to highlight that I10 includes a clamped node (node 16) and therefore, that inertia has been circled 
in the tree. Application of the guidelines presented in the preceding sections can be used to provide 
one of the sets with a minimum number of measurements. The set B4-1, which is presented in Fig. 8, 
includes (u1, u2, u3, u4, u5, u6, u8, u9, u10, u11, u12, u13, v3, v4, v6, v7, v9, v10, v11 and v12). Despite of 
the fact that an infinite number of alternative measurement sets can be defined, it is noted that the 
definition of these sets is not trivial at all. In fact, these measurements cannot be arbitrarily 
selected because they rarely provide adequate identification of the unknown variables. This fact is 
illustrated by the random analysis presented in the following section. 
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on defining an adequate measurement set. Despite of its importance, the observability techniques 
presented in the literature propose the measurement set selection by trial and error. This lack of a 
systematic procedure for measurement set selection reduces significantly the applicability of the 
observability techniques. To fill this gap, this paper proposes a new and innovative method, the 
observability trees, for measurement set selection in SSI by observability techniques. This method 
also provides a deep understanding of the physical meaning and the necessity of each of the 
measurements. 

The observability trees show graphically how the unknown estimates (such as bending 
stiffness, areas or inertias) are successively calculated throughout the recursive process of the 
observability analysis. These trees can be proved as a powerful tool for measurement set selection 
in beam bridges that can also be applied in complex structures, such as cable-stayed bridges. 
Nevertheless, in these structures, the strong link among structural parameters advises to assume a 
set of simplifications to increase the trees intuitiveness. In addition, a set of guidelines are 
provided to facilitate the representation of the observability trees in this kind of structures. These 
guidelines are applied in bridges of growing complexity that are used to explain how the 
characteristics of the geometry of the structure (e.g. deck inclination, type of pylon-deck 
connection, or the existence of stay cables) affect the observability trees. From these analyses, the 
following conclusions might be obtained. Firstly, in non-inclined decks the axial and the flexural 
observability trees can be independently analyzed. Observability trees of these structures can be 
analyzed independently as a disconnection in a structural mechanism does not affect the other one. 
On the contrary, in structures with inclined decks the axial and the flexural observability trees are 
coupled for gravity loads and they need to be studied together. Secondly, in cable-stayed bridges, 
the proposed simplifications enable the calculation of the measurement sets by the algorithm for 
beams. In these structures, the pylon-deck connection plays an important role in the geometry of 
the observability trees. 

The importance of the observability trees is justified by a statistical analysis of measurement 
sets randomly selected. This study shows that, in the analyzed bridge, the probability of selecting 
an adequate measurement set with a minimum number of measurements at random is practically 
negligible. Furthermore, even higher measurement sets might not provide adequate SSI of the 
unknown parameters. Finally, to show the potential of the observability trees, a large-scale 
concrete cable-stayed bridge is also analyzed. The comparison with the number of measurements 
required in the literature by a trial an error procedure shows again the advantages of using 
observability trees.   
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