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Abstract.  In this study, a multi-layer perceptron neural network (MLPNN) prediction model for 
compressive strength of the cement mortars has been developed. For purpose of constructing this model, 8 
different mixes with 240 specimens of the 2, 7, 28, 56 and 90 days compressive strength experimental 
results of cement mortars containing fly ash (FA), silica fume (SF) and FA+SF used in training and testing 
for MLPNN system was gathered from the standard cement tests. The data used in the MLPNN model are 
arranged in a format of four input parameters that cover the FA, SF, FA+SF and age of samples and an 
output parameter which is compressive strength of cement mortars. In the model, the training and testing 
results have shown that MLPNN system has strong potential as a feasible tool for predicting 2, 7, 28, 56 and 
90 days compressive strength of cement mortars. 
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1. Introduction 
 

During the previous decades, enormous researchers evaluated the effects of the partial 
replacement of cement by various types of additions that improve cement properties have been 
used in the cement. The most frequently used additions are fly ash, silica fume, blast furnace slag, 
trass, burned clay, zeolite, volcanic tuff and metakaolin (Behnood and Ziari 2008, Kocak 2010). 
Because of economic, technical and environmental considerations, additional cementitious 
materials have become very common usage in cement and concrete technology (Fu et al. 2002, 
Subasi 2009, Worrell et al. 2000). These cement materials consist of silica fume and fly ash. 

Silica fume is produced from the reduction of high-purity quartz with coal in electric arc 
furnaces in the manufacture of ferrosilicon alloys and silicon metal (Neville 2006). Silica fume is 
used in two different ways as a cement replacement in order to reduce the cement and an additive 
to improve concrete properties (Nochaiya et al. 2010). The silica fume can result in matrix 
expansion due to the alkali–silicate reactions (Maas et al. 2007). While the resistance of concrete 
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against corrosion is increasing, the permeability of silica fume is decreasing (Jo et al. 2007, Qing 
et al. 2007). Furthermore, contributes to cement and concrete mortars compressive strength and 
durability (Song et al. 2010). 

Fly ash is a by-product of coal-fired electric power plants. It is separated from the flue gas of 
the power station burning pulverized coal. According to ASTM C618, two general classes of fly 
ash can be defined: low-calcium fly ash (class F) and high-calcium fly ash (class C). Its physical 
and chemical properties rely on the used coal quality and on burning conditions (Behnood and 
Ziari 2008). Fly ash is added to Portland cement or directly to mortars or concretes. There are a 
number of purposes to use of fly ash as a replacement addition to cement in production (Aruntas 
2006). It lowers the heat of hydration and improves the durability and blocks the alkali-silicate 
reactions when used in concrete as a cement replacement. It also contributes to cement and 
concrete mortars compressive strength by filler effects and pozzolanic (Saraswathy et al. 2003, 
Neville 2006). In addition, fly ash use partially displaces production of other concrete ingredients, 
resulting in significant energy savings, reductions in CO2 emission, conserving resources 
(Saridemir 2009). Moreover, fly ash makes substantial contributions to workability and chemical 
resistance (Garces et al. 2010, Wang et al. 2008). 

Over the last two decades, artificial neural network (ANN) has become popular and has been 
used by many researchers to solve a wide variety of problems in civil engineering applications. 
Saridemir (2009) build models two different architectures in ANN system. This model evaluated 
the effect of metakaolin and silica fume on compressive strength of concrete. In training and 
testing of ANN system are used 33 different mixtures with 195 specimens of the 1, 3, 7, 28, 56, 90 
and 180 days compressive strength results of concretes containing metakaolin and silica fume. 
Input variables are the age of specimen, cement, metakaolin, silica fume, water, sand, aggregate 
and super plasticizer; output variable is compressive strength values. The models were trained with 
130 data of experimental results and the rest of them were used for testing. The results in the 
neural network models have shown strong potential for predicting (Saridemir 2009). Ozcan et al. 
(2009) were studied both an ANN and fuzzy logic model for prediction the compressive strength 
of silica fume concrete. The ANN model consists of one hidden layer which performed using the 
available test data of 240 different concrete mix-designs. The ANN and fuzzy logic models had six 
input variables and one output variable. Both ANN and fuzzy logic model results can be used 
alternative methods for the predicting of compressive strength of silica fume concrete (Ozcan et al. 
2009). The ANN model generally focused on concrete and cement mortars properties such as 
workability, mechanical behavior and physical properties in civil engineering application 
(Ahmaruzzaman 2010, Subasi 2009, Yaprak et al. 2013, Topcu et al. 2009, Topcu and Saridemir 
2008, Atici 2011, Ashrafi Jalal and Garmsiri 2010). 

The aim of this study is to build model in a multi-layer perceptron neural network (MLPNN) 
system to evaluate the effect of FA and SF on compressive strength of cement mortars. The 
MLPNN is selected which is a special form of ANN with multiple layers. For purpose of 
constructing this model, 8 different mixes with 240 specimens of the 2, 7, 28, 56 and 90 days 
compressive strength experimental results of cement mortars containing FA, SF and FA+SF used 
in training and testing for MLPNN system were gathered from the standard cement tests. The 
model was trained with 180 data of experimental results. The MLPNN model had four input 
parameters and one output parameter. The obtained results from compressive strength tests were 
compared with predicted results. 
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2. Experimental study  
 

In this study, the PC, FA, SF standard aggregate and water were used as raw materials. The PC 
was CEM I 42.5 R in accordance with TS EN 197-1. The PC was provided by Bursa Cement Plant; 
(Turkey). The FA was participated in the production of this cement as minor additional 
components. The FA and the SF were obtained from Seyitomer Thermal power plant in Kutahya 
(Turkey) and Antalya Etibank (Turkey) elektro-ferrochrome business, respectively. The CEN 
standard aggregate that was prepared by SET Trakya Cement industry with TS EN 196-1 and 
Bursa-Kestel province tap water were prepared in the cement mortars. 

The PC being the reference is prepared a total of eight different mixtures in the study. By 
keeping constant weight, the amount of PC is reduced amount of FA by 10, 20 and 30% of the total 
weight. Similarly for SF, the amount of PC is reduced by 5 and 10% of the total weight. By 
investigating the properties of ternary mixtures, the amount of PC is reduced by 10 and 20% of the 
total weight. On the other hand, the amounts of FA and SF are substituted equally. 

The samples used in the experiments are analysed for chemical and physical properties. 
Chemical analyses are achieved on ARL 9900 X-ray workstation (XRF+XRD). Surface areas are 
evaluated as Blaine values by Toni Technik 6565 Blaine and specific weights are measured by 
Quantachrome MVP-3. The chemical composition of PC, FA and SF were shown in Table 1. The 
physical properties of PC, FA, SF and cements were presented in Table 2. 

In the preparation of cement mortar mixtures for compressive strength experiments, 450 g of 
PC, 1350 g of standard sand and 225 ml of water are used in each mortar mixture according to TS 
EN 196-1 and mixed in mortar mixer machine. Prepared cement mortars are poured into 
three-segmented rectangular prism moulds of size 40x40x160 mm. Prepared samples are waited in 
the laboratory for 24 hours. At the end of 24-hour period, the samples are taken out of the moulds 
and waited in water pools to get cured and prepared for the compressive strength experiments. 
Compressive strength of each cement mortar is measured at the end of 2, 7, 28, 56 and 90 days 
using Atom Technik device.  

 
 
 

Table 1 Chemical composition of PC, FA and SF 

Materials PC, % FA, % SF, % 
Chemical composition: wt.% 

SiO2 21.82 53.39 78.50 
Al2O3 6.49 16.07 1.22 
Fe2O3 1.93 13.05 1.27 
CaO 60.74 6.33 2.13 
MgO 1.08 5.48 5.32 
SO3 2.62 1.06 0.15 

Na2O 0.14 1.59 1.78 
K2O 0.65 1.71 4.11 
Cl- 0.012 0.005 0.036 

Loss on ignition (LOI) 1.65 1.15 4.93 
Free CaO 0.84 0.11 - 

Reactive SiO2 - 45.18 76.2 
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Table 2 Physical properties of PC, FA, SF and cements 

Mixtures 
Range dimension 
(over sieve), % 

Specific gravity, 
g/cm3 

Blaine, cm2/g 
> 90 µm > 45 µm 

PC 1.0 8.6 3.09 3830 
FA 7.0 32 2.02 4890 
SF - 0.7 2.43 22310 

10FA 1.6 10 2.88 3880 
20FA 2.4 11.4 2.73 3900 
30FA 3.4 14.8 2.59 4050 
5SF 1.0 8.5 3.00 4700 

10SF 0.9 8.2 2.98 5740 
5FA5SF 1.5 10 2.93 4790 

10FA10SF 1.4 12.6 2.85 5650 
 

 
3. Artificial neural network 

 
Artificial neural network (ANN) consisted of an arbitrary number of simple elements called 

neurons. Neurons in ANN are, as similar in human brains, interconnected (Adhikary and 
Mutsuyoshi 2006). ANN represents simplified methods of a human brain and uses new methods to 
solve problems rather than conventional methods with traditional computations which have 
difficult solution procedures (Trtnik et al. 2009). The simple ANN model layers are contained an 
input layer, one or more hidden layers and output layer. The two layers are fully interconnected by 
weight. The input layer neurons collect information from the outside environment and this 
information transfers to the neurons of first hidden layer without carrying out any calculation. 
Layers between the input and output layers are named hidden layers and may consist of a large 
number of hidden layer units. For some problems, which can be solved by a perceptron, it can be 
used with only one hidden layer. But it is sometimes more efficient to use two hidden layers. The 
output layer is generated the network predictions to the outside world (Demir 2008). 

The typical neural network is consisted of blocks scheme such as inputs, weights, sum function, 
activation function and outputs (Fig. 1) (Topcu et al. 2008, Parichatprecha and Nimityongskul 
2009). 

Then, every input is multiplied by the corresponding weight of the neuron connection. The bias 
(b) is defined as a type of connection weight with a constant nonzero value. It is added to the 
summation of inputs. The weighted sums of the input components (net)j are calculated by using Eq. 
(1) 

    bownet i

n

i
ijj 

1
)(                  (1) 

where (net)j is the weighted sum of the jth neuron for the input received from the proceeding layer 
with n neurons, wij is the weight between the jth neuron in the proceeding layer, oi is the output of 
the ith neuron in the proceeding layer (Topcu et al. 2008). Activation function is a function that 
processes the net input obtained from sum function and determines the neuron output. In general, 
the activation function for multilayer feed forward models is determined as the (f (net)j) sigmoid 
activation function. The output of the jth neuron (out)j is computed by using Eq. (2) with a sigmoid 
activation function (Topcu et al. 2009) 
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where α is constant which is used to control the slope of the semi-linear region. The sigmoid 
activates nonlinearity in every layer except in the input layer. The sigmoid function is represented 
by Eq. (2) and gives outputs between 0 and 1. When it is desired, the outputs of this function can 
be adjusted to between -1 and 1. If the sigmoid function represents a continuous function, it is 
specially used non-linear descriptions. Thus, derivatives can be determined easily with respect to 
the parameters within (net)j variable (Topcu et al. 2009). 

 
 

4. Multi-layer perceptron neural network model and parameters 
 
For training and testing of the neural network model, input variables were selected the age of 

samples, Portland cement (PC), fly ash (FA) and silica fume (SF). Similarly, output variable was 
selected compressive strength values of cement mortars (Table 3). In this study, it was used 180 
and 60 of the experimental specimens for the training and the testing of ANN model, respectively. 

The input and output variables are normalized between 0.1 and 0.9 by using Eq. (3).  

1.08.0
minmax

min 












xx

xx
x             (3) 

where x  is normalized value, x  is value to be normalized, minx and maxx values minimum and 
maximum value in the data set, respectively. 

The ANN model consists of feed-forward back propagation, two hidden layers, training 
function (Levenberg-Marquardt), adaptation learning function (learngdm), transfer function 
(tansig) and performance function (MSE-mean squared error) as demonstrated in Fig. 2.  

This ANN model is called as a multi-layer perceptron (MLPNN). The neurons are 10 and 1 at 
the first and the second layers in the system, respectively. Momentum and learning rate values 
were determined and the MLPNN model was trained according to the MSE through iterations. The 

 

Fig. 1 The artificial neuron model 
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parameter values obtained from the MLPNN model were given in Table 4. 
The trained model was tested only with the input values and the predicted results were close to 

the experimental results. The weights and bias values for our developed model were given in Table 
5. 
 
Table 3 The input and output quantities used in MLPNN model 

 Data used in training and testing the model 

Minimum Maximum 

Input variables 

Age of samples (days) 2 90 
PC, g 315 450 
FA, g 0 135 
SF, g 0 45 

Output variable Compressive strength (MPa) 11.4 63 

 
Table 4 The values of parameters used in models 

Parameters MLPNN 
Number of input layer neurons 4 

Number of hidden layer 2 
Number of first hidden layer neurons 10 

Number of second hidden layer neurons 10 
Number of output layer neuron 1 

Error after learning 2.54x10-3 
Learning cycle 32 

 

Table 5 Weight and bias values for model 
For hidden layer 1 to input layer 

Weights 

1.785 1.848 -1.540 1.681 1.671 -1.348 -1.608 -0.499 2.064 2.281 
-1.953 1.143 1.280 0.119 0.983 -1.268 -0.680 2.213 0.878 0.968 
1.128 -1.146 1.345 1.268 1.116 1.117 1.588 -0.399 0.534 -0.608 
0.500 -1.422 -0.646 -1.990 -1.669 1.161 0.974 -1.492 1.551 -1.274 

Bias -2.172 -1.714 1.734 -0.320 -0.230 -0.905 -0.206 1.325 1.675 2.454 
For hidden layer 2 to hidden layer 1 

Weights 

0.009 -0.811 0.779 0.591 -0.496 0.649 0.448 0.002 0.551 0.677 
-0.208 0.078 0.043 -0.901 -0.627 -0.431 1.559 -0.524 -0.311 -0.784 
0.098 -0.045 0.275 0.879 0.626 1.283 -0.118 -0.334 -0.686 -0.485 
0.856 0.822 0.758 -0.305 0.465 -1.197 -0.672 0.058 0.958 -0.686 
-0.466 1.183 0.246 0.818 0.604 -1.084 0.489 1.176 0.572 -0.348 
-1.236 -0.829 0.045 0.770 0.772 -0.062 0.175 0.238 -0.843 -0.224 
-0.805 0.867 -0.415 0.321 -0.417 0.659 -0.647 0.337 -0.182 0.501 
-0.588 -0.860 -0.535 0.998 -0.513 0.278 -0.261 1.068 -1.257 -0.299 
-0.782 1.395 -0.831 -0.341 0.378 0.631 -0.773 -0.553 -1.971 0.560 
-0.102 1.677 -0.928 -0.248 -0.506 -1.122 0.657 0.260 0.024 -0.809 

Bias 1.402 1.619 -0.775 -0.163 0.223 -0.074 -0.552 1.210 1.822 1.875 
For output layer to hidden layer 2 

Weights 

0.340 
1.474 
-0.664 
0.246 
-0.421 
-1.163 
0.016 
-1.071 
-1.107 
-0.195 

Bias -0.986 
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5. Results and discussion  
 

Multilayer feedforward network models which contain one and two hidden layers are used in 
order to find more reliable solutions. Determination of optimum number of the hidden layers 
neurons are very important to accurately predict the parameters used by MLPNN.  To find an 
optimum number of hidden layers, one of the best approaches starts a few numbers of neurons and 
then slightly increases the number of neurons. This process continues until the selected 
performance a criterion is observed for each hidden layer neurons.  

In this study, this model uses different neurons in the two hidden layers at the beginning of the 
process. Then, the neuron number was increased step-by-step adding 1 neuron until no significant 
improvement is noticed. The MLPNN models and experimental data compared to calculating the 
absolute fraction of variance (R2), mean absolute percentage error (MAPE) and a root-mean 
squared (RMS) error criteria. These criteria are defined by Eqs. (4)-(6) (Ozcan et al. 2009). 
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where t is the target value, o is the network output value and N is the total number of pattern.  
In the MLPNN model, 180 data of experiment results were used for training whereas 60 ones 

were employed for testing. The experimental results and results obtained from MLPNN model for 
training were given in Fig. 3. Similarly, the experimental results and results obtained from 
MLPNN model for testing were seen in Fig. 4. 

The inputs values, experimental results and results which were obtained from MLPNN model 
for testing were given in Table 6. 

For 2, 7, 28, 56 and 90 days compressive strength, the results of the compared values from the 
experimental studies and predicted values of MLPNN model for the training were given in Fig. 5. 
Similarly, testing process results were shown in Fig. 6. 

Fig. 2 The architecture used in the neural network model for compressive strength 

765



 
 
 
 
 
 

Yilmaz Kocak, Eyyup Gulbandilar and Muammer Akcay 

 

 
 
 

 
 
 

 
 
 

Fig. 3 Comparison of compressive strength experimental and training results with sample number 

Fig. 4 Comparison of compressive strength experimental and testing results with sample number 
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Table 6 Comparison of compressive strength experimental results with testing results obtained from 

MLPNN 

Data used in the model 
construction 

Compressive 
strength, MPa 

Data used in the model 
construction 

Compressive 
strength, MPa 

As, 
days 

PC, g FA, g SF, g Exp. MLPNN
As, 
days

PC, g FA, g SF, g Exp. MLPNN

2 450 0 0 28.7 29.3 28 450 0 0 57.5 57.6 
2 315 135 0 9.8 11.4 28 360 45 45 52.8 52.2 
2 450 0 0 30.2 29.3 28 405 45 0 52.0 50.8 
2 405 0 45 23.3 23.1 28 360 45 45 51.9 52.2 
2 360 90 0 19.5 19.2 28 315 135 0 32.3 30.8 
2 405 22.5 22.5 26.1 25.8 28 360 45 45 53.2 52.2 
2 315 135 0 10.7 11.4 56 360 90 0 47.6 49.8 
2 405 22.5 22.5 25.8 25.8 56 405 0 45 59.6 59.7 
2 450 0 0 29.7 29.3 56 405 45 0 58.5 57.9 
2 360 45 45 20.5 19.4 56 360 45 45 55.1 56.3 
2 450 0 0 29.4 29.3 56 450 0 0 63.7 62.0 
2 360 45 45 21.1 19.4 56 427.5 0 22.5 61.9 62.7 
7 360 90 0 32.7 32.2 56 450 0 0 64.7 62.0 
7 405 0 45 39.7 37.0 56 405 22.5 22.5 58.6 57.0 
7 405 45 0 39.5 38.5 56 360 90 0 52.4 49.8 
7 360 45 45 32.2 32.4 56 360 45 45 57.5 56.3 
7 450 0 0 46.4 46.0 56 405 45 0 57.5 57.9 
7 315 135 0 14.5 14.6 56 360 45 45 56.2 56.3 
7 405 45 0 37.0 38.5 90 360 90 0 53.0 51.8 
7 405 0 45 35.9 37.0 90 405 0 45 63.0 61.8 
7 405 45 0 40.0 38.5 90 360 90 0 52.3 51.8 
7 360 45 45 32.5 32.4 90 405 0 45 60.6 61.8 
7 360 90 0 32.0 32.2 90 360 90 0 53.0 51.8 
7 360 45 45 33.0 32.4 90 405 22.5 22.5 63.8 63.0 

28 360 90 0 47.3 46.9 90 450 0 0 62.5 62.1 
28 360 45 45 52.0 52.2 90 405 0 45 61.9 61.8 
28 360 90 0 46.7 46.9 90 405 45 0 61.5 61.4 
28 405 22.5 22.5 53.0 52.5 90 405 0 45 62.5 61.8 
28 450 0 0 57.2 57.6 90 360 90 0 50.0 51.8 
28 405 0 45 56.9 53.3 90 405 0 45 62.6 61.8 

 
 

The linear least square fit line, its equation and the R2 values were shown in these figures for 
the training and testing data. As it is visible in Fig. 5 and 6, the values obtained from the training 
and testing in MLPNN model are very close to the experimental results. The result of testing in 
Fig. 5 and 6 shows that the MLPNN model is capable of generalizing between input and output 
variables with reasonably good predictions. 

For both training and testing results, the statistical values such as RMS, R2 and MAPE were 
given in Table 7. While the statistical values of RMS, R2 and MAPE from the training in the 
MLPNN model were calculated as 1.2259, 0.9932 and 0.0266, respectively. Also, these values 
were found in testing as 1.5001, 0.9921 and 0.0293, respectively. All the statistical values in Table 
7 show that the proposed MLPNN model is suitable. And the 2, 7, 28, 56 and 90 day’s 
compressive strength values are very close to the experimental values. 
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Fig. 5 Comparison of compressive strength experimental results with training results of model comparison

Fig. 6 Comparison of compressive strength experimental results with testing results of model 
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Table 7 The compressive strength statistical values of proposed MLPNN model 

Statistical parameters 
MLPNN 

Training set Testing set 
RMS 1.2259 1.5001 

R2 0.9932 0.9921 
MAPE 0.0266 0.0293 

 
 

6. Conclusions 
 

In this study, MLPNN model can be used for the prediction the 2, 7, 28, 56 and 90 day’s 
compressive strength values of cement mortars containing FA, SF and FA+SF. The 
back-propagation algorithm was used in MLPNN model. This model consists of two hidden layers. 
There are 10 neurons in the first hidden layer and 10 neurons in the second hidden layer. This 
model was trained by using experimental data for input and output. After the model was trained 
the 2, 7, 28, 56 and 90 day’s compressive strength values of cement mortars containing FA, SF and 
FA+SF, using only the test input data were predicted compressive strength values of cement 
mortars. The compressive strength values are correlated to the experimental data with data 
obtained from MLPNN model both for training and testing. The statistical parameter values of 
RMS, R2 and MAPE which are calculated for comparing experimental data with MLPNN model 
results have shown statistically significantly related.  

As a result, compressive strength values of cement mortars containing FA, SF and FA+SF can 
be predicted in the multilayer feed-forward neural network model in a quite short period of time 
with tiny error rates. The conclusions have shown that MLPNN system is practicable methods for 
predicting compressive strength values of cement mortars containing FA, SF and FA+SF. 
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