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Abstract.    This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this 
propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase 
material consisting of interface zone, matrix and inclusions – each constituent modeled by an appropriate 
constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular 
shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact 
finite elements developed here in order to capture the effects of phase debonding and interface crack 
closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. 
Our main goal here is to show a computational homogenization-based approach as an alternative to complex 
macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite 
element procedure within a purely kinematical multi-scale framework. A set of numerical examples, 
involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In 
summary, the proposed homogenization-based model is found to be a suitable tool for the identification of 
macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect. 
 

Keywords:    multi-scale analysis; constitutive model; quasi-brittle materials; unilateral effect; cohesive 
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1. Introduction 
 

This works deals with numerical applications of a computational homogenization-based 
approach proposed to model the mechanical behavior of quasi-brittle materials subject to reversal 
loading. The goal of this work is to contribute to modeling of bimodular materials that present 
recovery of elastic properties due to crack closure. The proposed approach can be seen as an 
alternative to complex macroscopic constitutive models for the mechanical behavior of the 
quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale 
framework (Peric et al. 2011, Giusti et al. 2009). 

Many damage models have been proposed using phenomenological or micromechanical 
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approaches (Pituba and Fernandes 2011, Brancherie and Ibrahimbegovic 2009, Zhu et al. 2008 and 

others). The unilateral effects and crack interaction effects are not properly described in many 

phenomenological damage models, (Zhu et al. 2009). Therefore, some features of quasi-brittle 

materials still need to be investigated, such as, the unilateral effect. Complex formulations, 

excessive number of parameters to identify and, even, in some cases, parameters without physical 

meaning, are problems to overcome using phenomenological constitutive models. 

In the other hand, in the last decade, many works deal with the prediction of mechanical 

behavior of materials using information about two or more physical scales (Miehe et al. 1999, 

Michel et al. 1999, Terada et al. 2003, Giusti et al. 2009, Gal and Kryvoruk 2011). It can be noted 

that some works dealing with modeling of mechanical behavior of concrete have the advantage to 

capture some important features. However, complex formulations are used in order to model the 

materials involved (Unger et al. 2011a, Unger et al. 2011b, Verhoosel et al. 2010, He et al. 2011). 

Initially, this work intends to simulate the mechanical behavior of the concrete using constitutive 

models simplest as possible. Potentialities and limitations about the use of the proposed model are 

discussed. Accordingly with, the material is considered as a three-phase material consisting of 

interface zone, matrix (cement paste) and inclusions (aggregates) – each constituent modeled by an 

appropriate constitutive model. The Representative Volume Element (RVE) consists of aggregates 

idealized as circular shapes randomly placed into the concrete specimen. The interface zone is 

modeled by cohesive contact finite elements developed in this work in order to capture the effects 

of phase debonding and interface crack closure/opening. As an initial approximation, the aggregate 

is modeled as linear elastic as well as the cement paste. Then, we are trying to model a complex 

macroscopic behavior using simplest as possible as constitutive models at mesoscopic scale taking 

into account the geometry of the material phases and the dissipative phenomena in the interfacial 

transition zone (ITZ). 

Others works have attempted to model the mechanical behavior of concrete by means cohesive 

fracture model (Ortiz and Pandolfi 1999, Carol et al. 2001, Cirak et al. 2005) using some interface 

finite elements, but in those works the aim have been to model the crack opening. In this work, the 

proposed approach intends to deal with unilateral effect presented in some heterogeneous materials, 

like concrete. Therefore, a cohesive contact finite element has been developed. 

This work is divided into six sections. In section 2, the kinematical multi-scale framework is 

described. In section 3, the constitutive models are briefly presented. After that, the development 

of the cohesive contact finite element is described in section 4. The section 5 shows some 

numerical results related to microcraking process on the RVE, mainly about unilateral effect 

simulations. The paper ends in section 6 where some concluding remarks, limitations and possible 

extensions of the model are discussed. 

 

 

2. Multi-scale constitutive modeling 
 
This section intends to review the multi-scale constitutive framework (Giusti et al. 2009, Peric 

et al. 2011) used here to estimate the macroscopic elasticity tensor from the knowledge of the 

underlying material microstructure. 

Following (Somer et al. 2009), the class of multi-scale solid mechanics problems with which 

the present paper is concerned is characterized by: 

(1) A conventional equilibrium boundary value problem at the so called macroscopic scale, 

where  
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Fig. 1 Macroscopic continuum represented by a concrete beam and the Representative Volume Element (RVE) of 

the heterogeneous material 

 

 

(2) The constitutive response at each point of the macroscopic continuum is defined in a 

non-conventional way by homogenizing the response of a representative volume element (RVE) 

that models the material micro structure at that point (see Fig. 1). The RVE itself is modeled as a 

conventional (generally dissipative) continuum and the macroscopic stress and strain tensor are 

volume averages of their so-called microscopic counterparts over the RVE. 

The starting point of the kinematically-based family of multi-scale constitutive theories upon 

which the present paper relies is the assumption that any material point x of the (macroscopic) 

continuum is associated to a local Representative Volume Element (RVE). At any instant t, the 

strain tensor at an arbitrary point x of the macro-continuum is assumed to be the volume average 

of the microscopic strain tensor field, μ, defined over the RVE domain Ωμ 

   






  dVty
V

t ,
1

                             (1) 

where Vμ is the volume of the RVE and =
s
u, the symmetric gradient of the microscopic 

displacement field uμ of the RVE. 

In Peric et al. (2011) is showed that the averaging relation Eq. (1) is equivalent to the following 

constraint on the displacement field of the RVE 

 
 

 VndAu S
                                (2) 

where n denotes the outward unit normal field on Ωμ. 

This constraint requires the set μ of kinematically admissible RVE displacement fields to be a 

subset of the minimally constrained set of kinematically admissible microscopic displacements  
*
 : 













 
 

  VndAvregularlysufficientv /, *                  (3) 

with sufficiently regular meaning that the relevant functions have the sufficient degree of 

regularity so that all operations in which they are involved make sense. By splitting uμ into a sum 

  ),(~),( tyuyttyu                                 (4) 
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of a homogeneous strain displacement, (t) y, and a displacement fluctuation field, u~ . Following 

the split Eq. (4), the microscopic strain inserted in Eq. (1) can be expressed as the sum 

  ),(~),( tyutty S
                               (5) 

of a homogeneous strain field (coinciding with the macroscopic, average strain) and a field 
s
u 

that represents a fluctuation about the average. 

Similarly to the macroscopic strain definition, the macroscopic stress tensor, , is defined as the 

volume average of the microscopic stress field, μ, over the RVE 

   






  dVty
V

t ,
1

                             (6) 

On the other hand, the Hill-Mandel Principle of Macro-Homogeneity for any kinematically 

admissible motion of the RVE can be expressed by 








 dV
V

 :
1

:                               (7) 

It must hold for any kinematically admissible microscopic strain rate field,˙  . Therefore, the 

variational equilibrium statement – the virtual work equation – for the RVE is given by 

 


~0:  


dVS                           (8) 

where 
~  is the space of kinematically admissible displacement fluctuations of the RVE. Further, 

it is assumed that at any time t the stress at each point y of the RVE is delivered by a generic 

constitutive functional Gy of the strain history  yt
  at that point up to time t. This constitutive 

assumption, together with the equilibrium equation, Eq. (8), leads to the definition of the RVE 

equilibrium problem which consists in finding, for a given macroscopic strain  (a function of 

time), a displacement fluctuation function u~  
~  such that 


 S



Gy         ~0:,~  dVtyut STS                 (9) 

The general multi-scale constitutive model in the present context is defined as follows. For a 

given macroscopic strain history, we must firstly solve the RVE equilibrium problem defined by 

Eq. (9). With the solution u~  at hand, the macroscopic stress tensor is determined according to 

the averaging relation Eq. (6). The characterization of a multi-scale model of the present type is 

completed with the choice of a suitable space of kinematically admissible displacement 

fluctuations, 
~ ⊂ *~

 . In general, different choices lead to different macroscopic response 

functional, Giusti et al. (2009). In this work, the periodic and linear boundary fluctuations will be 

considered in the analysis addressed in Section 5. 

The periodic boundary fluctuations are typically associated with the description of media with 

periodic microstructure. The macrostructure in this case is generated by the periodic repetition of 
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the RVE. Therefore, considering the description on two-dimensional problems, each pair i of sides 

consists of equally sized subsets i  and i  of  , with respective unit normals 
in  and 


in , such that   ii nn . 

The key kinematical constraint for this class of models is that the displacement fluctuation must 

be periodic on the boundary of the RVE. That is, for each pair {y
+
, y

−
} of boundary material points 

we have 

   tyutyu ,~,~                               (10) 

Accordingly, the space 
~  is defined as 

        yypairtyutyulyregularsufficientuper ,,~,~/,~~~
         (11) 

On the other hand, the linear boundary displacements model is characterized by zero boundary 

fluctuations. Therefore, the condition below is valid 

     yyulyregularsufficientulin 0~/,~~~               (12) 

The displacements of the boundary are fully prescribed as 

     yyyu                             (13) 

 

2.1 Numerical approximation 

 
In this work, it is assumed that the constitutive behavior at the RVE level is described by means 

conventional constitutive theories, such as: cohesive fracture and contact models. The stress tensor 

is obtained by solving the boundary value problem for a given strain tensor history. Taking into 

account a set αn of internal variables related to fracture and contact phenomena addressed here at 

time t
n
, the stress 

1n
  is a function of 

1n
  at t

n+1
. The solution to the time-discrete version of 

the RVE equilibrium problem is given by (Peric et al. 2011) 

   


 


 ,0:;~ˆ 11 dVu S
n

nSn
y

S

V                  (14) 

In the general case, the homogenized incremental constitutive function for the stress is defined 

implicitly through the incremental microscopic equilibrium Eq. (14). The stress 
1n

  is obtained 

by firstly solving Eq. (14) and then, with 
1~ nu  at hand, computing 

  





S

dVtu
V

n
nSn

n



 



;,~ˆ
1 11

1                      (15) 

Therefore, the incremental macroscopic stress constitutive function is defined as 

    




S

dVtu
V

t n
nSn

n
n



 



;,~ˆ
1

;,ˆ 111hom               (16) 
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where 
1~ nu  is itself a function solely of 

1n
  (for a given Δt and αn) defined as the solution of 

Eq. (14). 

Considering a perturbed macroscopic strain that there is a generic incremental strain tensor Δε, 

the tangential relationship between the macroscopic stress and macroscopic strain tensor at t
n+1

 is 

expressed by a fourth order tensor D
hom

 consistently with the homogenized incremental 

constitutive function Eq. (16). That is, for any macroscopic strain direction Δε, we have 

      oDtt n
n

n  
 :;,ˆ;,ˆ hom1homhom               (17) 

where :homD  is the directional derivative of the incremental constitutive function hom̂  in 

the direction :  and  is a scalar that contributes with the perturbed macroscopic strain. 

Finally, it can be shown in Peric et al. (2011) that the following compact canonical formula for 

the general homogenized incremental constitutive tangent operator can be obtained 

DDD Taylor ~hom                               (18) 

where D
~

 depends on the choice of the kinematical constraints and D
Taylor

 is the volume average 

of the microscopic incremental constitutive tangent tensor. 

 

 

3. A mesosocopic mechanical model for concrete 
 

3.1 Finite element modeling 

 

The employed procedure is such that a two-dimensional representation of the concrete is obtained 

through a slice as input to a mesh generation code that produces a mesh which will be used for 

two-dimensional mechanical analyses, see Fig. 2. Cohesive fracture finite elements are used to 

simulate the ITZ whereas triangular finite elements are employed to simulate the aggregates and 

cement matrix zones. The aggregates are idealized as circular or ellipsoidal shape with various 

dimensions. They are randomly distributed on RVE. The layout of cement matrix depends on the 

spatial distribution of aggregate particles. 

 

 

 

Fig. 2 Finite element model adopted in this work 
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3.2 Constitutive models 
 
In order to model the fracture processes in materials, cohesive fracture and contact models are 

adopted in this work. The cohesive fracture model has been originally proposed to simulate 

opening cracks in solids subject to impact loading (Ortiz and Pandolfi 1999). In general way, the 

cohesive fracture models were developed to represent the behavior of cracks that have a region 

capable to transmit efforts between their surfaces, what gradually decreases until there was no such 

transmission between the surfaces. 

On the other hand, when the solid is submitted to loading/unloading, including reversal loading, 

the crack, previously opened, starts to close. This process leads to stiffness recovery or partial 

recovery of the material. In heterogeneous materials, like concrete, the friction between the crack 

surfaces does not allow the complete closure. This phenomenon is a concrete characteristic and it 

is called unilateral effect, Pituba and Fernandes (2011). Therefore, in order to model the recovery 

or partial recovery of the elastic moduli, a strategy based on penalty factor is adopted. This 

strategy has been used because there is an advantage: there are no additional variables in the 

equations system. Contact Mechanics appeared to avoid the problem created when two bodies or 

surfaces of a crack are in contact without penetration between the surfaces of bodies or cracks in 

the numerical model in order to attend the physical model, where the numerical model 

incorporates a new condition, called impenetrability. Some works which deal with contact 

problems can be mentioned, for example, Wriggers and Reinelt (2009), Xiaoyu et al. (2006) and 

Wriggers (2006), among others. It can be noted that upon closure, the cohesive surfaces are subject 

to the contact unilateral constraint, including friction. However, this work does not intend to model 

the frictional sliding phenomenon in partially closed cracks. This feature can be studied in future 

works. 

The cohesive fracture model proposed by Ortiz and Pandolfi (1999) has been implemented in 

the finite element code on basis of multi-scale approach described in Section 2. This model is used 

in order to simulate the opening crack processes on RVE observed in meso-scale throughout 

loading processes, mainly in the ITZ. Also, this model allows simulating the closing crack 

processes when the unloading processes take place. Nevertheless, a contact model acts when the 

crack is completely closed and there is a reversal loading. These both situations are incorporated in 

the finite element developed in this work and described in Section 4. 

A general description about the finite-deformation irreversible cohesive laws is presented in 

Ortiz and Pandolfi (1999). Some simplified hypotheses are assumed, such as: the behavior of 

cohesive surfaces is local, the cohesive response is independent of the stretching and shearing of 

the cohesive surface, the cohesive surface is isotropic, i.e., the resistance to sliding is independent 

of the direction of sliding. However, these adopted hypotheses lead to good results for the aims of 

this work. 

Therefore, it is assumed here that the cohesive surface is isotropic. This requires that the 

cohesive free energy  is given by 

=  qsn ,,                                (19) 

where s and n are the sliding and normal opening displacements, respectively. Also, q is a 

variable that contains internal variables which describe the inelastic processes attendant to 

decohesion. Moreover, it is possible to assume that the sliding opening displacement is given by a 

scalar value independent of direction on crack surface (s = |s|). 
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For the formulation of mixed-mode cohesive laws, there is an introduction of an effective 

opening displacement 

222
nS                               (20) 

The parameter β assigns different weights to the sliding and normal opening displacements. 

Assuming that free energy potential  depends on , the cohesive law is written as 

t


t
 (β

2
δS+ δnn)                            (21) 

where n is the normal vector to the crack, s is the sliding opening displacement vector located on 

the crack surface, t is the cohesive traction vector over the crack and t is a scalar effective traction 

given by 

222
nS ttt                                 (22) 

This relation shows that β defines the ratio between the shear and the normal critical tractions. 

It bears emphasis that, upon closure, the cohesive surfaces are subject to the contact unilateral 

constraint, including friction. It is regarded that contact and friction are independent phenomena to 

be modeled outside the cohesive law, Ortiz and Pandolfi (1999). 

In this work we have used the following relations to loading Eq. (23) and unloading to the 

origin Eq. (24) 

ceet
c

c











  if  m a x   and 0                    (23) 


max

maxt
t   if  m a x   or 0                        (24) 

where e is the e-number, c is the maximum cohesive normal traction and c is a characteristic 

opening displacement. 

For the present model, the kinetic relations reduce to 



 


otherwise

andif

0

0max
max





                   (25) 

On the other hand, if the crack is closed, a numerical strategy based on Contact Mechanics is 

assumed. A penalty factor (p) is adopted in order to avoid a possible penetration between the 

crack surfaces. This penalty factor is a scalar value parameter. In practice use, high values for the 

penalty factor are adopted in order to obtain a sufficiently accurate approximation. 

In general way, this strategy intends to create stiffness in the node-pairs at the cohesive contact 

finite element in order to not allow the penetration of the crack surfaces. For detection of the 

contact phenomenon, this work adopts the concept of the gap between the Gauss points of the 

cohesive contact finite element described in section 4. 
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4. Cohesive contact finite element 
 

The phenomena investigated in this work involve a transition from continuum to discrete 

discontinuity using cohesive fracture models. This kind of problem can be computationally 

simulated either by enrichment functions or inter-element techniques, Paulino et al. (2008). 

In this work, it is used the second mentioned technique, where cohesive contact finite element, 

developed in this section, are inserted between triangular finite elements. 

Accordingly with Paulino et al. (2008), we are using intrinsic cohesive elements, i.e., the 

cohesive elements are inserted a priori on the ITZ. This method is easier to develop a mesh 

generation code because all cohesive contact elements are embedded in the discretized structure 

prior to the beginning of simulation. In this work, it is considered that the ITZ is the major 

dissipative zone in the RVE. Also, it is adopted a intrinsic cohesive model (see section 3). These 

kinds of models and finite elements used here supply accurate responses despite their simplicity, 

avoiding the need of an adaptive insertion of cohesive elements. Our goal is to model the 

mechanical behavior of bimodular materials that present recovery of elastic properties due to crack 

closure using mathematical models simplest as possible by means a computational 

homogenization-based approach. 

Hereafter, it is briefly described the cohesive contact finite element developed in this work. The 

class of elements considered consists of two surface elements which coincide in space in the 

undeformed reference configuration of the RVE, Fig. 3. The total number of nodes of the cohesive 

contact element is 4 (four). The geometry of the finite element is compatible with two-dimensional 

triangular elements used to model the aggregates and cement paste. 

First, consider the local system of the finite element given by s (sliding direction) and n 

(normal direction) coordinate axes. The nodal displacements and internal forces vectors are given 

by 

ue

 

 
 

 



































8

5

4

1

e

e

e

e

u

u

u

u

















e

e

u

u
 and int

eF

 

 
 

 

































8

5

4

1

int

int

int

int

e

e

e

e

F

F

F

F

















int

int

e

e

F

F
              (26) 

The 
eu  and int

eF  are the nodal displacements and internal forces vectors related to plus side 

e . Similarly, the 
eu  and int

eF  are the nodal displacements and internal forces vectors related 

to minus side e . 

In order to calculate the Gap Function in each Gauss point, the expression below is used 

            3,2,1,   iuuusNusN iieieeieie             (27) 

Where  iu   and  iu   are the displacements related to Gauss point on minus and plus 

surface, respectively.   sN ie   and   sN ie   are shape functions related to Gauss point on 

minus and plus surface, respectively. Therefore, matrix Ne holds the contribution of shape 

functions on both sides 
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Ne   
ee NN

       
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Considering the principle of the virtual work over the crack on plus side e , for example, it 

can be obtained 
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The equation above presents the traction internal force vector on the first part and virtual 

displacements on the second one. Therefore, after some trite calculations, it is possible to obtain 

the internal force vector at the cohesive contact finite element. 

int
eF     





1

1
2

 dStN
l T

e
e                       (30) 

where le is the finite element length and   St  is the cohesive traction vector on each Gauss 

point composed by sliding and normal tractions 

t(S)=
 
 




St

St

n

s
                               (31) 

It is important to note that each Gauss point contributes to the calculus of the internal force by 

means the traction vector obtained by cohesive law (if crack is opened in that Gauss point) or 

contact law (if crack is closed in that Gauss point). So, in this way, it can get crack surfaces not 

properly parallel. 

For the opened cracks, in loading case, the cohesive traction vector is obtained by means Eqs. 

(21) and (23) at the Gaus point of interest and its components are given by 

 
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On the other hand, for unloading cases, the cohesive traction vector is obtained by means Eqs. 

(21) and (24) at the Gaus point of interest and its components are given by 
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Fig. 3 Geometry of cohesive contact element. The surfaces e  and e  coincide in the undeformed 

reference configuration of the RVE 
 

 

In the context of implicit finite element computations,  it max  and  imax  scalar variables 

denote the last converged values of the previous increment. However, if the crack surfaces are 

closed at a Gauss point of interest, the traction vector is denoted by 

   isepis lt                                (36) 

   inepin lt                                (37) 

Finally, it should be noted that the integral (Eq. (29)) extends over the undeformed surface of 

the element in its reference configuration. The integral mentioned may conveniently be 

approximated by recourse to numerical quadrature using three Gauss points in this work. Then, the 

internal force vector is given by: 

int
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e
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On the other hand, the internal force vector on the minus side int
eF  is obtained taking into 

account that the cohesive traction vector has negative values in order to satisfy the equilibrium of 

the cohesive contact finite element leading to   intint
ee FF . 

 

4.1 Consistent linearization: the tangent stiffness matrix 
 

In this work, the linearization of the equilibrium equation system of the RVE for solution of the 

discrete non-linear boundary value problem is given by 

0~  ud
du

dF
R                              (40) 

where R is the out-of-balance force and   ̃ is the increment of displacement fluctuation field and 








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calling K the tangent stiffness as 
du

dF
K  . Then, focusing on the cohesive contact finite element, 

the consistent tangent stiffness Ke is written as 


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The component related to minus side needs to take account the direction of cohesive traction 

vector at that surface. For the plus side, it can observe that 
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For the minus side, similar equations are obtained. Note that in Eq. (43), it needs to obtain the 

values of dt/dδe matrix at Gauss point of interest. Therefore, considering an opened crack in 

loading and unloading cases, the derivate mentioned can be written as, Eqs (45) and (46), 

respectively 
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However, if the crack surfaces are closed at a given Gauss point of interest, the dt/dδe matrix is 

expressed by 

 
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5. Numerical applications 
 

The numerical applications of the proposed modeling will be showed in this section. Our main 

goal here is to show a computational homogenization-based approach as an alternative to complex 

macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a 

finite element procedure within a purely kinematical multi-scale framework. 

This section is composed by numerical examples in order to show the behavior of 

heterogeneous materials submitted to loading/unloading processes including reversal loads. 

Besides, it is important to note the behavior of constitutive models implemented in a finite element 

code to two-dimensional analysis.  

It has been cohesive contact finite elements to model the ITZ. Triangle finite elements have 

been used to model the aggregates and cement paste where the elastic behavior has been adopted. 

A plane deformation condition is assumed in all analysis. Besides, periodic and linear 

displacement fluctuations on the boundary of the RVEs are assumed. 

 
5.1 Validation of the constitutive model 
 

This numerical application deals with a RVE with a single cohesive contact finite element 

located at the centre. A periodic condition is imposed on the boundary of the RVE. It intends to 

verify the behavior of the contact model as well as the cohesive law when this RVE is submitted to 

loading/unloading process including reversal load. 

The RVE is illustrated in Fig. 4. The parameters of the cohesive and contact models are given 

in Table 1 as well as the Young’s modulus E and Poisson’s ratio . The symmetric mesh of 

triangle finite elements is very poor (14 elements), but the focus here is the behavior of the 

cohesive contact finite element. 

 

 

 

Fig. 4 Geometry of the RVE with a single cohesive contact finite element 
 

 

Table 1 Elastic, cohesive fracture and contact model parameters 

E (N/mm
2
)  (-) C (mm) C (N/mm

2
) β (-) p (N/mm) 

30000 0.2 0.0002 4 0.707 10
7 
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Fig. 5 Behavior of the cohesive fracture model on the RVE - loading case 1 

 

 

 

Fig. 6 Behavior of the cohesive fracture model on the RVE - loading cases 1, 2 and 3 

 

 

Initially, the behavior of the cohesive model has been analyzed. Regarding the Cartesian axes 

illustrated in Fig. 4 and followed throughout the paper, we have applied a total strain  = [0.00008; 

0; 0] in 20 increments and we have called loading case 1, where  = [x; y; xy] and it was used 
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10
-7

 as tolerance value. It is observed in Fig. 3 the perfect behavior of the cohesive fracture model 

in each Gauss point (see the three graphs in top) by means the three similar graphs tef (N/mm
2
) x 

ef (mm). In the bottom of Fig. 5, it can be observed the mesh adopted and the cohesive contact 

finite element opened (there is a deformation amplification factor used only for plotting the 

deformed micro-cell mesh). Also, it can observe the graph of homogenized response about x 

(N/mm
2
) x x. It can be noted the influence of the fracture process in the homogenized response of 

the RVE. 

Also, we have submitted RVE to the loading cases 2 and 3, where  = [0.00008; -0.00008; 0] 

and  = [0.00008;-0.00008; 0.0005], respectively. The Fig. 6 shows the deformed mesh to case 3 

and the homogenized responses plotted in the same graph in order to compare them. It is noted the 

behavior more damaged of the RVE when the loading conditions are increased. 

Another interesting observation can be verified about the Fig. 7, where there are some graphs 

representing the loading case 1 and the increasing of the maximum cohesive normal traction, C. 

In Fig. 7, Case 1 refers to C = 4 N/mm
2
, Case 2 refers to C = 40 N/mm

2
 and Case 3 refers to C = 

0.4 N/mm
2
. The behavior of the RVE seems like an elastic RVE (without fracture) when the C has 

been increased. On the other hand, when C has been decreased, the RVE starts to present a 

behavior like a medium with a strong fracture without a transition process. These results show 

coherent qualitative numerical responses of the cohesive model implemented in a finite element 

procedure within a purely kinematical multi-scale framework. 

Finally, the RVE is submitted to a loading/unloading including reversal loading. Now, it intends to 

verify the behavior of cohesive and contact model in conjunction with cohesive contact finite 

element developed in this work. In the first case, we have applied a loading with total strain  = 

[0.00008; -0.00008; 0.0005], then we have proceeded to complete unloading up to reversal loading 

in compression up to  = [-0.00004; -0.00004; -0.00025]. As it can see in Fig. 8, the cohesive 

contact finite element is closed and the unilateral effect in this simple example is perfectly 

modeled. The transition between cohesive and contact law seems quite satisfactory to model that 

phenomenon. Once more, the qualitative responses are quite satisfactory. 

 

5.2 Validation of the modeling proposal for heterogeneous material 
 
Now, the proposed modeling is applied to simulate the mechanical behavior of a heterogeneous 

material with inclusions disposed into the RVE following a uniformly random distribution 

proposed by Nguyen et al. (2011). 

For these numerical examples, a plane stress conditions is adopted. The parameters of the 

contact and cohesive models are given in Table 2. 

 

 
Table 2 Elastic parameters and parameters of the cohesive and contact models 

 E (N/mm
2
) (-) C (mm) C (N/mm

2
) β (-) p (N/mm) 

ITZ   0.0002 4 0.707 10
5 

Aggregate 30000 0.2     

Matrix 25000 0.2     

749



 

 

 

 

 

 

José J.C. Pituba and Eduardo A. Souza Neto 

 

Fig. 7 Study about the behavior of the RVE- loadings with different c 

 

 

Fig. 8 Loading/unloading case - unilateral behavior of the RVE 

 
 
5.2.1 Elastic-fracture behavior 
This numerical example intends to show the behavior of the proposed modeling in this work 

when applied to a RVE of a heterogeneous material like concrete, for example. Sizes of aggregates 

are varied from 2.5 mm to 5.0 mm. The RVE has dimensions 10 x 10 mm with 45% of inclusions, 

see Fig. 9. A periodic condition is imposed on the boundary of the RVE. Here, it intends to verify 

the behavior of the ITZ during the loading process. 
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The mesh is composed by 520 triangle elements where 187 elements are used to model the 

aggregates and 333 elements are used to model the cement paste (matrix). Besides, 95 cohesive 

contact finite elements are used to model the ITZ in all surroundings of aggregates. 

Initially, it has been applied a total strain  = [0.00022; 0; 0] (case1) in 20 increments using a 

tolerance of 10
-6

. It is observed in Fig. 10 the homogenized response about x (N/mm
2
) x x. It can 

be noted that the non-linearity of the response is linked to the increase of the number of cracks in 

the ITZ. The cohesive model adopted in this work assumes that in the beginning of the 

deformation process there is a fracture created. However, its effective opening is linked to how is 

growing the applied load. This is reasonable when we are dealing with deformation processes at 

microstructure level. Nevertheless, the homogenized response x x x starts to present some energy 

dissipation when there is a increasing of the number of cracks. Therefore, a junction of some 

cracks in the ITZ leads to a non-linearity of the homogenized response more pronounced. This 

phenomenon can be seen in Fig. 10 by means a close-up view in the ITZ corresponding to x = 4.8 

N/mm
2
. 

Paulino et al. (2008) have mentioned convergence problems in simulations that use intrinsic 

cohesive models. In fact, when the number of activated cohesive elements is increased, mainly at 

the peak of the  x  curve when there are many cracks at the ITZ, the iterative process presents a 

increasing of iterations. However, the consistent tangent formulation adopted in this work (see 

section 4.1) shows a robustness and efficient numerical solution. This is very important when 

dealing with multi-scale analysis and this is the authors’ goal in future works. 
Also, the RVE has been submitted to total strain  = [0; 0.00022; 0] (case 2) in order to verify 

the anisotropic behavior of the material. Fig. 11 shows the comparison between the numerical 

responses when the RVE is loaded in the x-direction and y-direction. It is observed that the 

difference between the responses arises at peak stress region of the homogenized stress-strain 

relation. In fact, this anisotropic behavior takes place when there is a union of microcracks in the 

ITZ surrounding the aggregates. Also, note the differences between the microcrack configurations, 

see Fig.12 that shows a close-up view at the large aggregate. Therefore, the proposed modeling is 

capable to simulate the anisotropic behavior of the heterogeneous materials due to geometry and 

the distribution of aggregates on the RVE. 

 
 

 

Fig. 9 Mesh of the RVE 
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(a) homogenized response (b) close-up view of the ITZ 

Fig. 10 RVE of a heterogeneous material 

 

 

Fig. 11 Anisotropic behavior of the RVE - homogenized response 

 

 

Fig. 12 Anisotropic behavior of the RVE - microcrack configurations 
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In order to check the objectivity of the numerical responses, a mesh with 8088 triangle finite 

elements and 364 cohesive contact finite elements was used. A linear condition has been imposed 

on the boundary of the RVE. As it can see in Fig. 13, the numerical responses did not change. The 

new mesh is plotted in the same figure with a deformation amplification factor in order to visualize 

the microcracks opened. 

Now, it intends to investigate the influence of the shape of aggregates in the homogenized 

stress-strain relation. For this reason, the original circular aggregates have been replaced by 

ellipsoid aggregates trying to agree the center of the two shapes. Fig. 14 shows the new RVE. A 

mesh with 851 triangle finite elements and 94 cohesive contact finite elements was used. 

In this analysis, it has been applied a total strain  = [0.0003; 0; 0] in 20 increments using a 

tolerance of 10
-6

. The homogenized response is plotted in the Fig. 15. Also, it is possible to 

compare the numerical responses of the RVEs with circular and ellipsoid aggregates. Note that, for 

this numerical example, the homogenized response seems more flexible for ellipsoid shape than 

for circular shape evidencing once more time the importance of the geometry of the material 

components on the mechanical behavior of the RVE. Obviously, it is necessary to perform a 

significant number of analyses, but we have not considered many different samples since a 

statistical analysis of the existence of an RVE for this kind of material has already been given in 

Nguyen et al. (2010). 

 

 

 

Fig. 13 Numerical responses of the old and new meshes 

 

 

Fig. 14 Mesh of the RVE with ellipsoid aggregates 
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Fig. 15 Numerical responses of the RVE with circular and ellipsoid aggregates 

 

 
5.2.2 Unilateral effect 
This numerical example intends to show the potentialities of the proposed modeling in this 

work related to capture of the unilateral effect of the RVE of a heterogeneous material like 

concrete, for example. The same RVE and finite element mesh of the last numerical example are 

used here, see Fig. 9. 

Initially, periodic and linear conditions are imposed on the boundary of the RVE in order to 

verify the stiffest and more compliant solution of the microscopic equilibrium problem.  

The RVE is submitted to a loading/unloading including reversal loading. Now, it intends to 

verify the bimodular behavior of the RVE of a brittle material. We have applied a loading with 

total strain  = [0.00023; 0; 0.], then we have proceeded to complete unloading up to reversal 

loading in compression up to  = [-0.00045; 0.; 0.]. A total of 60 increments have been performed 

and a tolerance of 10
-6

 has been used. 

As it can see in Fig. 16, the unilateral effect in brittle material analyzed here is perfectly 

modeled. The transition between cohesive and contact law seems quite satisfactory to model that 

phenomenon. Once more, the qualitative responses are quite satisfactory, like as in section 5.1. 

Note that, initially, the numerical responses are very similar, but when the dissipation processes 

take place, like fracture and contact problems, a difference between the periodic and linear 

conditions is more evident. The linear condition gives the stiffest solution. These conclusions are 

agreement with Peric et al. (2011). Nevertheless, the proposed modeling is not capable to capture 

the dissipation processes quite satisfactory in compression stress regimes, despite the opened 

microcracks due to Poisson effect. 

Now, it has been adopted different values for the penalty factor (p), see section 3.2. It intends 

to investigate the influence of this parameter in the recovery of material stiffness when the RVE is 

submitted to reversal loading. 

For Ju et al. (1995), a very large penalty factor leads to accurate numerical solution as well as 

to convergence problems. Otherwise, a small penalty factor usually results in easy convergence, 

but the numerical results might be less reliable. Therefore, there is a dependency upon the choice 

of penalty factor in order to obtain a reliable result. 
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For this analysis, the values for penalty factor from 10
4
 up to 10

9
 N/mm have been adopted. 

This technique is similar to used by Ju et al. (1995). Note that, for high values, the penalty factor 

does not influence the behavior of the numerical responses, see Fig. 17. Besides, during the 

analyses it has been observed a increasing of the number of iterations in order to close the 

microcracks for high values of penalty factor. In this numerical example, the value 10
7
 can be 

considered as a reasonable penalty factor which not only produces convergence but would give 

reliable results, see Fig. 17. 

In general, the robustness of the Newton–Raphson scheme adopted in the iterative solution of 

the incremental RVE equilibrium problem has been evidenced in all numerical applications. A 

quadratic rate of asymptotic convergence of the microscopic scale Newton–Raphson scheme has 

been achieved. The problems have presented up to four iterations to obtain an accurate response 

even dealing with contact problems. This feature is important when dealing with multi-scale 

analyses. 

 

 

 

Fig. 16 Numerical responses of the RVE: close-up and global views 

 
 

 

Fig. 17 Influence of the penalty factor on the numerical response 
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6. Conclusions 
 

In this work, numerical applications of a computational homogenization-based approach 

proposed to model the mechanical behavior of heterogeneous materials subject to reversal loading 

have been presented. 

A cohesive contact finite element has been developed in order to take into account opening and 

closing processes. This finite element has been implemented in a 2D finite element code to analyze 

RVEs within a purely kinematical multi-scale framework developed by Péric et al. (2010) and 

Giusti et al. (2009). 

The qualitative responses presented are quite satisfactory considering that only simple cohesive 

and contact models were employed. Besides, it is important the results obtained here about the 

modeling of unilateral effect in brittle materials. Also, the model is able to obtain homogenized 

responses of bimodular materials (different behaviors in tension and compression regimes) and 

anisotropy induced by damage processes. These results show that the modeling developed in this 

work is potentially applicable in multi-scale analysis of concrete structures submitted to cyclic 

loading. 

In general, the numerical responses have been obtained an easy convergence even when contact 

problems arise due to closed microcracks. The self-consistent linearization developed here has 

presented a computational efficiency which is expected to be particularly useful for multi-scale 

analysis of heterogeneous materials. 

Therefore, these initial results encourage us to procedure in the improvement of the modeling 

proposed in this work in order to use it in the parametric identification of complex macroscopic 

constitutive models and multi-scale analysis of concrete structures. It can be incorporated the 

Mohr-Coulomb model in order to contribute to the dissipated energy in the cement paste zone and 

to simulate the plastic strains together with cohesive and contact models, for example. As a 

reminder, we are trying to model a complex macroscopic behavior using simplest as possible as 

constitutive models at mesoscopic scale. The features discussed here will be addressed in future 

works. 
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List of Symbols 
 

 Macro strain tensor 

μ Micro strain tensor 

D
hom

 Homogenized fourth order constitutive tensor  

D
Taylor

 Fourth order constitutive tensor for Taylor 

boundary conditions 

D
~

 Fourth order constitutive fluctuation tensor 

n Outward unit normal field 

q Internal variables vector 

t Cohesive traction vector over the crack 

t Scalar effective traction 

uμ Microscopic displacement field 

u~  Displacement fluctuation field 

Vμ Volume of the RVE 

x Point of the continuum media 

y Point of the microstructure 

β Parameter that defines the ratio between the 

shear and the normal critical tractions 

s Sliding opening displacements 

n Normal opening displacements 

c Characteristic opening displacement 
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