
 

 

 

 

 

 

 

Computers and Concrete, Vol.15, No.4 (2015) 673-686 

DOI: http://dx.doi.org/10.12989/cac.2015.15.4.673                                                673 

Copyright ©  2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=cac&subpage=8                     ISSN: 1598-8198 (Print), 1598-818X (Online) 
 
 
 

 
 
 
 

On geometry dependent R-curve from size effect law  
for concrete-like quasibrittle materials 

 

Yan-hua Zhao
, Jian-mei Chang1,2 and Hong-bo Gao3 

 
1
State Key Laboratory of Coastal and Offshore Engineering, 

Dalian University of Technology, Dalian, China 116024 
2
Transportation Institute, Inner Mongolia University, Hohhot, China 010070 

3
College of Civil Engineering and Architecture, Hainan University, Haikou, China 570228 

 
(Received July 21, 2014, Revised October 4, 2014, Accepted November 15, 2014) 

 
Abstract.  R-curve based on the size effect law previously developed for geometrically similar specimens 
(geometry type III) is extended to geometries with variable depth (geometry type I) as well as with variable notch 
(geometry type II), where the R-curve is defined as the envelope of the family of critical strain energy release rates 
from specimens of different sizes. The results show that the extended R-curve for type I tends to be the same for 
different specimen configurations, while it is greatly dependent on specimen geometry in terms of the initial crack 
length. Furthermore, the predicted load-deflection responses from the suggested R-curve are found to agree well with 
the testing results on concrete and rock materials. Besides, maximum loads for type II specimen are predicted well 
from the extended R-curve. 
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1. Introduction 

 
Within the framework of fracture mechanics, R is often used to denote the crack resistance, 

meaning the amount of energy needed to grow a pre-existing crack. For quasi-brittle materials 
such as concrete, ceramic, rock and wood, a more or less pronounced rising R-curve is common 
due to the existence of a sizable fracture process zone (FPZ) at the crack front which may consume 
a large amount of energy during crack growth (Bažant et al. 1986, Ferreira et al. 2002, de Moura et 
al. 2008, Xu and Zhang 2008, Kumar and Barai 2009, de Moura et al. 2010, Xu et al. 2011, Dong 
et al. 2013). R-curve approach has been successfully used to predict the structure response, i.e., the 
maximum load, load-displacement (or load-crack mouth opening displacement) as well as other 
material fracture properties. In all, the R-curve may provide a deeper physical insight into the 
material fracture. For that purpose, many attempts have been made to find a solution for the R-
curve described by the variation of fracture energy versus the crack extension. One direct way is to 
evaluate the critical energy release rate from the load-deflection curve, which may require an 
accurate measurement or definition of the crack extension length or the concept of “the effective 
crack length” (Jenq and Shah 1985a, Morel et al. 2008). R-curve results in this way are limited due 
to the difficulty or ambiguity in experimental location of the crack tip especially for quasi-brittle 
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materials. Alternatively, the idea that the R-curve is a unique function of the crack extension 
originated for metals (Krafft et al. 1961) has been borrowed to derive an analytical solution of R-
curve based on different fracture models. Fig.1 shows three typical geometrical configurations 
frequently used to study fracture behavior in materials. Accordingly three types of R-curve were 
defined according to the different geometrical size (Ouyang et al. 1990). 

(i) type I for constant a0 and changeable d, where R-curve is defined as an envelope of the 
energy release rates with different specimen size d but the same initial notch length a0. By 
assuming that the critical crack length is proportional to the initial crack length, a formulation of 
R-curve was proposed by solving an Euler equation (Ouyang et al. 1990, Ouyang and Shah 1991). 
Two necessary parameters for this formulation, the critical stress intensity factor ( s

IcK ) and the 
critical crack tip opening displacement (CTODc), two fracture parameters defined in the two 

parameter fracture model (TPFM) can be determined according to the RILEM recommendation 
(RILEM 1990). 

(ii) type II for the same specimen depth d and different initial crack length a0. For this situation, 
R-curve is defined as an envelope of the energy release rates with different a0 but the same 
specimen size. A general expression for R-curve was obtained in (Yang and Shah 2001), which is 
also based on the hypothesis that the critical crack length is proportional to the initial crack length. 

(iii) type III for specimen by changing a0 and d proportionally. R-curve for this type is defined 
as an envelope of the energy release rates for a set of geometrically similar specimens. The R-
curve developed by Bažant (Bažant and Kazemi 1990) falls into type III, since its underlying idea 
is based on the size effect law (SEL) for geometrically similar specimens. The R-curve in type III 
specimen depends on two material fracture parameters, that is, Gf and cf, meaning the critical 
energy release rate and crack extension in an infinitely large specimen. By definition, Gf and cf 
should be independent of specimen size and specimen shape and therefore can be regarded as 
material properties. RILEM recommended in 1991 to determine Gf and cf (RILEM 1991).  

The generalized SEL permits the use of specimens not only of geometrically similar size (type 
III) but also of variable-notch one size (Tang et al. 1996). In other words, R-curve for specimen 
type II can be theoretically derived based on SEL. For type I, the initial crack length a0 is believed 
to be a material characteristic length thus the study on R-curve for type I may be more of a 
practical use. The present paper has the objective of verifying the feasibility of SEL to R-curve for 
type I and type II with highlight on type I. Simultaneously, geometry dependence of R-curve is 
investigated to give a deeper understanding of the nature of R-curve. To avoid complexity, we 
restrict our investigation to fracture under mode I. 

 

 

 
(a) TPB       (b) SEN        (c) CC 

Fig.1 Specimen geometries for R-curve determination 
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2. General rule to construct R-curve 
 

For a three-point-bending beam (TPB) shown in Fig.1(a), the nominal strength at failure can be 

described  

 u
N n

P
c

td
    (1) 

where Pu is the maximum load, cn =1.5s/d is a coefficient introduced for convenience, and t is the 

thickness of the specimen. 

The critical energy release rate when the load attains its peak value Pu can be written based on 

the theory of linear elastic fracture mechanics (LEFM) 

 
2

2
( ) ( )uP

G a g
Et d

                            (2) 

where E is the elastic modulus, and g() is a certain non-dimensional function of the relative crack 

length =a/d characterizing the shape of the structures. 

The generalized SEL can be rewritten in the following form (Bažant and Kazemi 1990) 

 

1/2

0 0'( ) ( )

f

N n

f

EG
c

g c dg


 

 
  

  

                   (3) 

where 0=a0/d, and 0'( )g  is the first derivative of g() with respect to  when =0. Two crucial 

parameters in the generalized SEL are Gf and cf. By definition, these two parameters are 

theoretically material-related only.  

When the stress intensity factor at the crack tip is put in a typical form  

 I 1π ( )K ag                             (4) 

Then g() in Eq.(2) is related to g1() by 

 2 2
1( ) π ( )ng c g                          (5) 

For many typical specimen geometries, the values of g1() in the Eqs.(4)-(5) can be found in 

the handbook [Tada et al. 2000]. 

Substitution of Eq.(1) and Eq.(3) into Eq.(2) yields the equation of the critical energy release 

rate for TPB specimens  

 
0 0

( ) ( )

'( ) ( )f f

G a dg

G g c dg



 



          (6) 

For concrete and rock like quasi-brittle materials, instability is often preceded by a certain 
amount of slow crack growth which leads to a rising R-curve behavior. R-curve is generally treated 
as a function of crack extension c, i.e., R(c). To ensure instability occurs, two conditions must be 
satisfied (c.f. Fig.2) 
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Fig. 2 Definition of R-curve 

 

 

( ) ( )G a R c           (7a) 

 
( ) ( )G a R c

a c

 


 
          (7b) 

Eqs. (7a)-(7b) indicate that R-curve can be regarded as the envelope of the critical energy 

release rates from specimens of different size, and it holds true for geometry type I, type II and 

type III, which gives us a hint to construct R-curve analytically. Mathematically speaking, R-curve 

can be developed by setting equal to 0 the partial derivative of Eq.(7a) with respect to the 

parameter involved. Though for different geometry type, different parameter is concerned. R-curve 

defined by Eqs. (7a)-(7b) is in all governed by two geometrical factors, a0 and d. Specifically, for 

type I since a0 is fixed, d is the only parameter; for type II, d is constant and R-curve is a parameter 

equation with respect to a0; while for type III, a0/d keeps unchanged, a0 or d could be regard as the 

parameter influencing the R-curve. Detailed discussions are presented in the following sections. 

 
 
3. R-curve for geometry type I 
 

For geometry type I, only specimen size d is the variable, and a0 is fixed. To calculate R-curve, 

a series of c values in terms of c/cf is chosen, and for each c/cf the value of d is solved from Eq.(6) 

by setting 0
G

d





. Then R-curve is constructed by substituting d solved and =(a0+c)/d into 

Eq.(7a). Note c/cf, the coordinate for R-curve should be less than one unit when the above 

calculation is proceeded, since for c/cf 1, R=Gf.  

When R(c) is known in advance, fracture response of a specimen, such as load-displacement 

may be predicted by the following simple algorithm.  

(i)Assign a small crack increment c and set a=a0+c, where a is considered to be an equivalent 

elastic crack. 

(ii)For each c calculate R(c). For crack a to grow, G(a) should be equal to R(c).Using LEFM, 
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the load corresponding to a can be calculated based on the following equation 

 
2

2
( ) ( ) ( )

P
R c G a g

Et d
                        (8) 

(iii)For each a=a0+c and its corresponding load P above, the total load-line displacement tol 

can be obtained using  

 tol 0 crack                              (9) 

where 0 responds to displacement caused by load P in the same specimen without crack and for 

bending situation 

 
3

0 34

Ps

Etd
                  (10) 

crack is the additional load point displacement due to the existence of crack (Tada et al. 2000) 

  
2

crack 2

3
( )

2

PS
V

Etd
              (11) 

For s/d=4  

 
2

2 3 4( ) 5.58 19.57 36.82 34.94 12.77
1

V


    


 
     

 
         (12) 

The above formula has better than 1% accuracy for any . 

(iv)Repeat (i)-(iii) until the load P approaches zero. 

The experimental results (Bažant et al. 1991, Jenq and Shah 1985b) on rock and concrete are 

used to testify the proposed R-curve approach. Necessary test results on Indiana limestone for 

different size are illustrated in Table 1. 

For TPB with s/d=4, cn in Eq.(1) equals to 6 and g1() in Eq.(5) has the form (Tada et.al 2000) 

2

1 3/2

1.99 (1 )(2.15 3.93 2.70 )
( )

π(1 2 )(1 )
g

   


 

   


 
                  (13) 

Eq.(13) has an accuracy 0.5% for any . 

Fig.3 plots R-curves for three specimens of rock determined using the proposed method. Rising 

behavior of R-curve is well depicted which is attributed to the energy consumption of FPZ. For 

further investigation, an explicit expression for R-curve may be easier for programming. The 

following formula fitted by means of software Excel appears to work well with the coefficient of 

determination R square close to 1.  
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Table 1 Rock test results reported in (Bažant et al. 1991) 

Specimen  

label 

Dimensions(mm) 

(sdta0) 

Peak load 

(N) 

Gf 

(N/mm) 

cf 

(mm) 

E 

(MPa) 

RL 

RM 

RS 

4571021341 

229511321 

114251310 

418, 405, 394 (406)
* 

238, 243, 243 (241)
*
 

134, 140, 140 (138)
 * 

0.061 9.3 15300 

* Note: value in the parenthesis is the average 

 

 

Fig. 3 R-curves for rock material of different a0 

 

Table 2 1, 2, and 3 for rock of different size 

 1 2 3 

RL 

RM 

RS 

1.2168 

1.4976 

1.8812 

-3.2323 

-3.5975 

-3.9743 

3.0155 

3.0999 

3.0931 

 

 

3 2
1 2 3

( )
( ) ( ) ( ), 1

( )
1, 1

f f f f f

f f

R c c c c c

G c c c c

R c c

G c

  


   


  



            (14) 

where 1, 2, and 3 are coefficients for better fitting and their values for different size rock 

specimens are tabulated in Table 2. 

With R-curve known, the theoretical load-displacement relation could be easily predicted using  
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Fig.4 Comparison of experimental and theoretical results for rock 

 

Table 3 Mechanical parameters corresponding to Point C and Point F 

 Point C Point F 

Pu(N) au(mm) cu(mm) Pf(N) af(mm) cf(mm) CTODf(mm) 

RL 

RM 

RS 

400.65 

238.08 

138.99 

46.4 

24.9 

12.4 

5.4 

3.9 

2.4 

375.98 

187.84 

54.72 

50.3 

30.3 

19.3 

9.3 

0.034 

0.024 

0.021 

 

 

the procedure described earlier and Fig.4 shows the comparison between the theoretical solution 

and experimental result and a favorable agreement is observed.  

During computation, R value for specimen of a finite size is not assumed to be a plateau value 

after the load attains its peak value Pu. From our study, FPZ has not gained its fully development 

when the load reaches its maximum value (Zhao et al. 2007), and the energy dissipating in the FPZ 

continues to grow until FPZ evolves fully and begins to detach from the crack tip and advances 

ahead with an approximate same size and thus the same amount of energy. A simple possible 

explanation is sketched in Fig.5, where Point C and F denote the peak load and the onset of 

propagation at constant fracture resistance Gf respectively. The load, equivalent crack length and 

equivalent crack extension for Point C and F are represented by Pu, au, cu and Pf, af, cf  

respectively, where cu= au- a0 and cf= af- a0. According to the R-curve approach, these values could 

be easily obtained except that cf=9.3mm is already known for the limestone under consideration, 

and the obtained results are given in Table 3.  

At the Point C, the maximum load Pu from the proposed R-curve approach is very close to the 

experimental measurement in Table 1. Also at the Point C FPZ has not gained its fully 

development and the cohesive force at the original crack tip is not assumed to be zero shown in 

Fig.5(b). At the Point F, FPZ reaches its fully evolution after which FPZ may detach from the 
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original crack tip and start to grow forward with the fixed length, and the energy needed will stay 

unchanged as Gf. At this moment the cohesive force at a0 is supposed to be zero marking the 

detachment shown in Fig.5(c). By substituting the related parameters listed in Table 3 into the 

following two empirical expressions (Jenq and Shah 1985b), crack tip opening displacement  

(CTOD) at Point F can be obtained and the computation results are also listed in Table 3.  

1/2

2 20 0 0(1 ) (1.081 1.149 )( ( )
f f

f f f f

CTOD aa a a

CMOD a d a a

  
     
  

   (15a) 

 12

6
( ),

f f f
f f f

P sa a
CMOD V

dd tE
         (15b) 

where              2 3
1 2

0.66
( ) 0.76 2.28 3.87 2.04

(1 )
f f f f

f

V    


    


            (15c) 

Eq.(15b) is within 1% accuracy and V1() is valid for s/d=4.  

A simple linear softening relation is taken for our example, and the crack opening displacement 

for complete fracture is taken to be t2 / 2 0.061/ 5 0.0244mmfG f     where ft=5MPa is the 

tensile strength reported in (Bažant et al. 1991), and this value is close to the predicted value 

CTODf in Table 3, which confirms our previous assumption that the R-curve is still increasing after 

the peak load until FPZ gains its fully development and then leveling off of the R-curve indicates 

FPZ will evolve at a steady state. A similar phenomenon has also been detected in the tests on the 

wood material (Ferreira et al. 2002, de Morel et al. 2010). 

  The size of the concrete beam in (Jenq and Shah 1985b) were 305762922(mm) (sdta0), 

and the Young’s modulus for elasticity E=20000MPa was chosen for a better match with the 

 

 

Fig.5 Description of leveling off of R-curve 
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experimental initial compliance of P- curve. Two prerequisite parameters for the R-curve model, 

i.e., Gf and cf can not be extracted from the test results directly and only s
IcK  and CTODc were 

provided in the test. Since these two pairs are assumed to be materials properties, their equivalency 

can be established from the infinitely large TPB specimen based on LEFM 

s
Ic

f

K
G

E
                                (16a) 

    
2

2 2 c
0 0 00.5405 0.0545 0.292 0.05 0.00297 ,f

f

CTOD E
c a A a a A A A

G
           (16b) 

Inserting the average values s 3/2
Ic 31.45N/mmK  and CTODc=0.02mm leads to 

Gf=0.0492N/mm and cf=16.94mm. With these two parameters known, the same procedure as in 

rock is conducted and the P- curve for this specimen is evaluated, and Fig.6 gives its comparison 

with the experimental recording. 

Fig.6 implies that the global response of the specimen can be well simulated by the proposed R-

curve model, though the maximum load P/t from the R-curve approach is 31.34N/mm, a little 

higher than the four peak load values 29.62N/mm, 24.55N/mm, 27.31N/mm and 30.47N/mm. 

Next R-curve geometry-dependence is explored by changing a0 and specimen geometry 

configuration. Gf=0.0492N/mm and cf=16.94mm from the above concrete test are utilized for this 

purpose. a0 are chosen to be 10mm, 15mm and 22mm, and the geometries for study are TPB, 

single edge notch(SEN) and center cracked specimen (CC). These three geometries are shown in 

Fig.1. For different geometries, cn and g1() have different expressions (Tada et al. 2000) 

 

 

Fig.6 Comparison of experimental and theoretical results for concrete  
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(a) a0=22mm (a) CC 

 

(b) a0=15mm (b) TPB 

 

(c) a0=10mm (c) SEN 

Fig. 7 R-curve dependence on geometry shape Fig .8 R-curve dependence on specimen size 
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for SEN 4
1 3/2

1

0.857+0.265
( ) 0.265 1- +

1-

nc

g


 









（ ）
（ ）

             (17) 

Eq. (17) has an accuracy better than 1% for <0.2, 0.5% for 0.2.  

for CC 
1

2 30.3

0.5

1 0.5
( )

1

70 0.044

nc

g









  




                (18) 

Eq.(18) has an accuracy of 0.3% for any . 

The R-curves for different geometries are shown in Fig.7. Interestingly, no apparent influence 

from geometry configuration is observed, which means for the same material with Gf and cf  as 

constants, TPB, SEN and CC specimen geometry share the same R-curve when the initial crack 

length a0 keeps unvarying. While for different values of a0, R-curves exhibit obvious geometry-

dependence in TPB, SEN and CC specimens as shown in Fig.8. For a shorter notch, less energy is 

needed for the same crack extension. Dimensionless geometry factor g(a0) and its derivative 

0'( )g   may be responsible for this behavior. 

 
 
4. R-curve for type II and type III geometry 
 

Type II geometry contains a fixed depth of specimen d and a varying a0, and this configuration 

is often used in laboratory to study material properties of fracture. When the basic Eq.(6) is used to 

deduce R-cure for type II, a0 in the equation is treated as the parameter and G/a0 is put to zero 

for every crack extension c, and by substituting a0 into Eqs.(6)-(7a), one can easily get R-curve for 

a fixed value d. But one major disadvantage for one-size specimen is that an entire R-curve may 

not be achieved because of the limitation of specimen size, since c may not attain its peak value cf 

because of no appropriate a0 can be matched to this situation. But one deeper thought may be 

helpful. Bažant and his co-workers have identified that Eq.(3), the equation of the generalized SEL 

can be extended to variable-notch one-size test specimen, i.e., type II geometry. Consequently, the 

SEL-based R-curve proposed by Bažant for geometrically similar specimen (type III geometry) 

can be definitely regarded as R-curve for type II geometry. Next we use experimental data for 

concrete reported in (Tang et al.1996) to see how it works.  

Batch 3 in (Tang et al.1996) had a mix proportion of 294:147:1134:756 of cement: water: 

coarse aggregate: sand by weight, and two series of beams were prepared: one is of geometrically 

similar beams with a0/d=0.4 and d being 78.5mm, 115mm, 155mm and 230.5mm, the other was of 

the same size d=152mm but different notches a0/d being 0.25, 0.4 and 0.5. Both series had 

s/d=2.5. Gf=0.0608N/mm and cf=22.5mm were evaluated from the first series specimen on the 

basis of SEL. By inserting a0/d=0.25, 0.4 and 0.5 and cf=22.5mm into Eq.(6) and placing the 

partial derivative G/d=0, one can get a series of d values which constitutes the envelop of energy 

release rates for different specimen size. Then by combination with relation of Eqs.(7a)-(7b), R-

curve for type III geometry is achieved. Fig.9 demonstrates the computation results. Note for 

specimen s/d=2.5, cn and g1() in Eq.(5) take the following form (Tang et al. 1996)  
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2 3 4

1 3/2

4.76 5.

15 / 4

1.83 1.65 2.51
( )

π(1 2 )(

3

1 )

0

nc

g



 

  




  


 





            (19) 

Eq. (19) is valid for 0.10.6. 

For later usage, appropriate form must be sought to represent R-curve. Like in geometry type I, 

cubic function with respect to c/cf is adopted here and the form is taken as Eq.(14). Table 4 lists the 

values of coefficients 1, 2, and 3 introduced for a good regression. 

Next we extend the R-curve determined above for type III geometry to type II geometry by 

comparing the predicted maximum stress with the experimental result. For crack begins to grow 

instable, the nominal stress reaches its maximum value and the energy release should fulfill two 

conditions represented by Eqs.(7a)-(7b). Substitute the expression of G(a) and R(c) decided above 

into Eqs.(7a)-(7b), we can get  

2
2 3 2

1 1 2 3

π
( ) ( ) ( )= ( ) ( ) ( )N

f

f f f

a c c c
G a R c g G

E c c c


   

 
    

  

        (20a) 

2
2 ' 2

1 1 1 2 3

π( ) ( )
( ) 2 ( ) 3 ( ) 2 ( )

fN

f f f

GG a R c c c
g g

a c E c c c


     

  
            

   (20b) 

By means of Matlab software, the failure stress N may be solved directly by eliminating c 

from Eqs.(20a)-(20b) and the results are listed in Table 5, and a great agreement is achieved. 

 

 

 

 

Fig.9 R-curve for type III with cf=22.5mm 
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Table 4 1, 2, and 3 values for type III geometry with different a0/d 

a0/d 1 2, 3 R
2
 

0.25 

0.4 

0.5 

0.8076 

1.0106 

0.9776 

-2.5101 

-2.9083 

-2.9095 

2.7025 

2.8977 

2.9319 

0.9998 

0.9997 

0.9996 

 

Table 5 Predicted values of N and experimental results 

d(mm) a0/d 
N(MPa) 

Predicted results Experimental results 

152 

0.25 

0.4 

0.5 

2.899 

1.924 

1.375 

2.767, 2.928(2.846) 

1.952, 1.967(1.959) 

1.302, 1,251(1.277) 

* Note: value in the parenthesis is the average 

 
 

5. Conclusions 
 

Gf and cf in the general SEL are believed to be material parameters and capable of constructing 

a simple R-curve model by defining R-curve as the envelope of the critical energy release rate of 

specimens of different sizes. R-curves for three typical geometries (type I, II and III) are provided 

using the general SEL, and much attention is paid to type I where the initial crack length a0 keeps 

unchanged while the specimen depth d increases. Geometry type I is more of practical meaning 

when a0 assumes to be a material’s intrinsic property. The presented R-curve requires no 

measurements of crack length or compliance from the test. The study on type I shows the load-

displacement response for quasi-brittle materials can well be described by the proposed R-curve 

approach and the R-curve for type I is strongly depended on a0 but geometric shape has little 

influence on R-curve. In this sense, the R-curve may be said to be a material property. A special 

feature of the proposed R-curve is that crack resistance not only develops prior to the peak load but 

also in the post-peak regime. Also, R-curves originally determined for type III can be definitely 

applied to type II geometry.  
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