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Abstract.  A finite element computer code for short-term analysis of steel-concrete composite structures is 
extended to study long-term effects under service loads, in the present work. Long-term effects are important in 
engineering design because they influence stress and strain distribution of the structural system and therefore 
contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a 
Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using 
Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon 
that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of 
beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage 
of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are 
represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-
dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the 
horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two 
full-scale continuous composite beams previously studied by other authors. Results are given in terms of 
displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the 
structural response and also the potentiality of the present numerical code. 
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1. Introduction 

 

Steel-concrete composite structures are very attractive and widely used in civil engineering, 

allowing lower costs and improvements in the structural performance. A reinforced concrete slab is 

mechanically connected to the top flange of a rolled or fabricated steel beam, thereby forming a 

composite member stronger and stiffer than the steel beam acting on its own. Composite beams 

usually show partial composite actions, which is induced from the bond-slip deformation along the 

interface between the slab and the steel beam. In practical applications, it is not always possible or 

necessary to reach full shear connection in a composite beam. For instance, the number of shear 

connectors required to achieve full shear connection may be so large that there are difficulties in 

accommodating them in the beam, or on the other hand, the applied load carried by a beam may be 

safely sustained with less shear connectors than those required to reach full shear connection. The 
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consideration of partial interaction represents an increase of lateral deflection and a decrease of 

resisting capacity and therefore the bond-slip effect should be accounted for in order to precisely 

evaluate the actual structural behavior of partially bonded composite beams.  

Moreover, since concrete has the characteristics of shrinkage and creep, the final deflection of the 

composite beam under long-term load is generally several times the initial deflection, even under 

dead load only. This is due to the fact that creep and shrinkage of concrete may modify significantly 

stress distribution along time. Therefore, the rheological behavior of concrete is a very important 

factor in structural response. Factors influencing creep and shrinkage are strongly linked to the 

concrete age at loading, load duration, type of cement, geometry, relative humidity and temperature. 

The law of creep proposed by Bazant (1988) and the theory of solidification are still fairly used. 

There is a comprehensive body of literature relating to composite beams analysis under long-term 

effects. For instance, one-dimensional models based on beam-column elements are employed 

extensively, obtaining a good compromise between accuracy of solution and computational 

effectiveness (Macorini et al. 2006).  

Within these one-dimensional formulations, one approach is based on using a single finite 

element composed of two parallel beams linked to each other through non-linear spring system 

acting along the beam axis. Alternatively, each of the parallel beams is modeled with its own set of 

beam-column elements, which are then linked using additional non-linear spring elements. Examples 

of these formulations are given in the works of Jiang et al. (2009) and Sakr and Sakla (2008) where 

the effects of creep and shrinkage of the concrete slab are considered only for uncracked concrete. 

The flexibility of the shear connection at the slab-beam interface is also considered in these models. 

In Gara et al. (2009), a beam finite element formulation for the long-term analysis of steel-concrete 

composite decks taking into account the shear lag in the slab and the partial shear interaction at the 

slab-beam interface is presented. The concrete is considered to be uncracked even under traction and 

behave in a linear viscoelastic fashion. In Valipour and Bradford (2009) and Hwang and Kwak 

(2013), formulations of 1D steel-concrete composite elements suitable for short-term loads that 

captures material nonlinearities and partial shear interaction are also presented. A very interesting 

analytical model of the behavior of continuous composite beam under service load is presented in 

Gilbert and Bradford (1995). Unlike the previous models, this model accounts for cracking of the 

concrete slab in the negative moment regions at each interior support as well as the time-dependent 

deformation caused by creep and shrinkage in the concrete slab.  

Despite the success of the one-dimensional approach, there are some cases, such as when the 

structural response is affected by significant shear strains of the concrete slab in the horizontal plane, 

for which one-dimensional discretization is not suitable for the composite beam. This corresponds to 

the well-known phenomenon of shear-lag, which is complex to study for realistic composite beams 

even in the elastic range. Although the inclusion of the shear lag phenomenon in one-dimensional 

models is possible, it would require a more involved and complex formulation. In this way, research 

that includes the effect of shear stresses at slab is far more limited. Studies that include the shear lag 

phenomenon in the numerical modeling using a three dimensional approach, are given in Macorini et 

al. (2006) and Liu et al. (2013), for instance. In these cases, a two-dimensional representation of the 

slab is used, for which the strain distributions is typically non-uniform along a generic layer of the 

slab cross-section. Also, the use of layered shell elements for representing the concrete slab allow to 

capture concrete cracking patterns more realistically.    

In this work, an elastic-plastic finite element model developed and implemented by Tamayo 

(2011) suitable for short-term loads was extended to consider long-term effects under service loads. 

For this purpose, creep and shrinkage strains are calculated according to the CEB-FIP90 model and 
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viscoelasticity theory is used. The slab of the steel-concrete composite beam is modeled with 8-node 

thick degenerated shell elements, the steel beam are modeled with 4-node thin plate shell elements 

and the connection between these two types of elements, given in the real structure by stud 

connectors, is provided by a three-dimensional 2-node beam-column element, which enables flexible 

or rigid coupling between the nodes of each part. The numerical model is able to trace the complete 

non-linear response of composite beams under long-term loads, non-uniform shear stress distribution 

and realistically cracking patterns at the concrete slab are also obtained. Work is undergoing in order 

to include prestressed tendons at the concrete slab for modeling long-span bridges. Validation of the 

numerical model is demonstrated by reproducing two full-scale continuous composite beams tested 

for a period of 340 days. Previous studies have dealt with these examples, but a proper three-

dimensional numerical model has not been addressed before and therefore not cracking patterns have 

been reported. Also, the model is able to calculate bending moments along the beam axis showing 

clearly the influence of the long-term effect in the final structural response. 
 

 

 
 

2. Elasto-plastic constitutive model for reinforced concrete, steel beam and shear 
connectors 
 

Concrete in compression is modeled using the associated theory of plasticity; a modified 

Drucker-Prager yield criterion (Tamayo et al. 2014) is used in this work. Due to nonlinear hardening 

behavior, this yield criterion defines an initial yield surface at effective stress equal to co f3.0

(which is considered the beginning of the plastic deformation), being cf  the concrete compression 

strength and a limit surface which separates nonlinear state from a perfect elasto-plastic one as 

shown in Figs. 1(a)-(b). 

The stresses and strains are to be calculated according to a local orthogonal Cartesian coordinate 

system ( zyx  ) defined at sampling points in order to easier deal with the shell assumption of zero 

normal stress. The normal direction, which is taken perpendicular to the current layer surface, is 

 

 

  
(a) Two-dimensional criterion in principal plane (b) One-dimensional representation 

Fig. 1 Concrete model 

 

obtained by the cross product of two tangential directions at the current sampling point (Tamayo 
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2011). Because the concrete slab lies in the horizontal global plane XY , the directions of this local 

coordinate system coincide with those of the global coordinate system ( XYZ ) and the yield criterion 

is defined by: 

        oyxozyzxyxyxyxf   

2/122222 355.03355.1)(  (1) 

where o  is the effective stress. In addition, the associated rule is defined as: 
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(3) 

where  eD is the elastic constitutive matrix of the material,   d  is a vector containing the 

increments of strain components, H   is the hardening parameter, considered as the slope of the 

one-dimensional curve shown in Fig. 1(b), in which the hardening rule is defined and d  is the 

plastic multiplier. In this work, the curve known as “Madrid Parabola” is adopted and is defined in 

the following way:  

    

   2
1

2
2 pocpcpo EEH                         (4) 

where cE is the elastic modulus of concrete, o  represents the total strain at maximum 

compressive stress cf  (usually 0.002) and p  is the effective plastic deformation obtained from a 

work hardening hypothesis. The elasto-plastic constitutive relation is expressed in the following 

differential form: 
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Finally, the crushing condition is given by: 

       222222 355.001625.1355.1 uyxuzyzxyxyxyx      (6) 

where u  represents the ultimate strain extrapolated from experimental test whose values ranges 

from 0.003 to 0.0045. On the other hand, the response of concrete under tensile stresses is assumed 

to be linear elastic until the fracture surface is reached and then, its behavior is characterized by an 

orthotropic material. The cracking is governed by a maximum stress criterion. Cracks are assumed to 

occur in planes perpendicular to the direction of the maximum tensile stress as soon as this stress 

reaches the specified concrete tensile strength tf . After cracking has occurred the elastic modulus 
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cE  and Poisson ś ratio G  are assumed to be zero in the direction perpendicular to the cracked 

plane, and a reduced shear modulus is employed. The adherence between the concrete and the 

reinforcing bars is responsible for the capacity of the stress retention of the cracked concrete. That is, 

due to bond effects, cracked concrete carries, between cracks, a certain amount of tensile force 

normal to the cracked plane. This effect is known a tension stiffening effect and is considered 

through a relationship between the strain and the stress normal to the cracking plane direction as 

shown in Fig. 2(a), where ct  is the strain associated with tf  and tm  is the maximum strain for 

         . The normal stress i  is determined from a known value of strain i . In the case 

of simple concrete or for concrete far away from the influence zone of the reinforcing bars, the 

previous diagram (or relationship) is also used (Povoas 1991) in conjunction with the fracture energy 

of the material fG  (0.25-0.58 N/cm) and the representative thickness h  of the concrete specimen 

in order to guarantee the objectivity of the finite element solution. In all examples presented in this 

work, firstly a sensitivity analysis has been carried out in order to prove mesh independence of the 

finite element results. In addition, the model considers the opening and closure of cracks and in the 

post-cracking stage, a fixed crack orientation is assumed, such orientation being orthogonal to the 

direction of the maximum principal stress that first exceeds the concrete tensile strength.  

The reinforcing bars in the concrete slab are modeled as a membrane layer of equivalent 

thickness oriented according to the actual reinforcement direction, following the behavior of a one–

dimensional elasto-plastic material with a yielding stress equal to o , a constant elastic steel modulus 

sE  and a tangential elastic modulus sE  , as shown in Fig. 2(b). Further details of the reinforced 

concrete constitutive model can be found in Tamayo (2011) and Tamayo et al. (2014). 

In relation to the steel beam, as thicknesses of the web and flanges are considered to be smaller 

than that of the concrete slab, the theory of thin plates is used for modeling these parts of the 

structure besides a plane stress assumption. The multiaxial state of stress in the steel beam follows 

 

 

 

 
 

(a) Tension stiffening model 
(b) Bilinear stress-strain relationship for 

reinforcing bars 

Fig. 2 Constitutive model for concrete in traction and steel reinforcement constitutive law 

the Von Mises yield criterion with a hardening law defined by the one-dimensional bilinear curve 

691



 

 

 

 

 

 

Maiga M. Dias, Jorge L.P. Tamayo, Inácio B. Morsch and Armando M. Awruch 

shown in Fig. 2(b). However, because service loads are considered in this work, the whole steel 

beam behaves in a linear elastic fashion. The connection system at the slab-beam interface is discrete 

and is represented by three-dimensional beam-column elements located in the finite element mesh 

according to its real positions. The behavior in the element is dictated by the non-linear relationship 

of the shear force in the connector versus the slip that takes place at the slab-beam interface. Here, 

the exponential law proposed by Razaqpur and Nofal (1989) is used to represent this behavior along 

the longitudinal and transverse direction of the composite beam, whereas a rigid or flexible 

connection can be assigned in other directions. The shear stiffness is non-linear since the beginning 

of loading and the constitutive law is defined in the following manner: 

  



ds
ecF


 1                                (7) 

where F  and s are the shear force acting in the shear connector and the slip associated in the 

direction, respectively. The constant c and d define the shape of the constitutive curve and are 

determined by experimental fitting obtained from push-out test results. The tangent to this curve 

defines the current stiffness of the shear connector to be used in the element stiffness matrix. Both 

steel and connection do not exhibit rheological phenomena, hence the same laws are considered for 

short- and long-term analyses. Explicit expressions for the stiffness of the steel beam and shear 

connectors can be found in Tamayo (2011). Then, the reader is referred to that reference for more 

details.  

 
 
3. Finite element formulation 

 
The finite element employed for the concrete element is a degenerated shell finite element based 

on the theory of thick plates. The element is composed of several layers through thickness in order to 

capture nonlinearity variation due concrete cracking and non-linear compression behavior.  It is 

assumed that the layers, normal to the surface, remain straight after deformation. Also the strain 

energy corresponding to the stress component perpendicular to the finite element mid-surface is 

disregarded. A quadratic finite element with eight nodes and five degrees of freedom at each node 

(three translations and two rotations) is adopted. The reinforcement mesh within the concrete slab is 

defined in its real position through thickness as another layer of equivalent thickness and with steel 

properties. The thickness of this layer is calculated since the current area of the reinforcing bars for 

the considered effective width (Dias 2013). Perfect adherence is also considered between reinforcing 

bars and the surrounded concrete.  In a time dependent analysis, it is important to properly account 

for the development of the time-dependent strains in the structure such as creep and concrete 

shrinkage. Thus, the element stress-strain relationship should properly consider those effects (Dias 

2013).  

The steel beam was modeled using a plane shell element obtained from the assemblage of a 

membrane element with drilling degree of freedom and a thin plate element (Tamayo et al. 2014). 

Introduction of the drilling degree of freedom notably improves the element behavior under bending. 

Inelastic behavior of the steel is considered by using a five point integration rule through thickness. A 

bilinear finite element with four nodes and six degrees of freedom at each node (three translations  
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Fig. 3 Assembly of finite elements for composite beam made of steel, concrete and shear connectors 

 

 

and three rotations) is adopted. The stud shear connectors are represented by a three-dimensional 

beam-column element with special characteristics to take into account nonlinearity of the shear force 

in the transversal and longitudinal directions. The connection system, generally made of mechanical 

studs, is modeled by introducing an interaction law between the two nodes of the connector element, 

one belonging to slab middle plane and the other to the middle plane of the top flange of the steel 

beam. For details about the finite element formulation of these elements, the reader is referred to the 

work of Tamayo (2011), Dias (2013) and Tamayo et al. (2014).  

In Fig. 3 is depicted a short element of steel-concrete composite beam after assembly. 

Determination of stiffnesses and internal forces at the element level and the assemble procedure are 

performed as usually and they have been already presented in some text books (Smith et al. 2014). 

As it was stated before, in Fig. 3, the local coordinate system at each sampling point of each layer at 

the concrete slab follows the directions of the global coordinate system for the present case.   

 
 
4. Solidification theory – creep concrete 
 

Because it is numerically expensive to store all time-history of each of the involved variables, the 

formulation proposed by Bazant and Prasannan (1988), employing a creep law without aging, was 

adopted in the present work. A Kelvin chain-based rheological model was used, with time-

independent elastic and viscous parameters, as in the classical linear viscoelastic theory. The total 

strain of a Kelvin chain at instant t due to a load applied at time t0 is given by: 

 0( ) /
0

1

1
( ) (1 )

N
t t

t t e
E






 



                         (8) 

where E ,  and   are the elastic modulus, retardation time and viscosity of the 

-th component of the Kelvin chain, respectively and N is the total number of elements in the Kelvin 

chain. Eq. (8) is known as Dirichlet series, which may be fitted to various creep curves. Proper 

determination of retardation times is needed for curve fitting (Bazant, 1988). In this work the 

following expression for retardation times was adopted: 

/ E   
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1
1 1 0 m10 1,2,..., 0.01 0.5N axN t t

        
              

(9) 

It is necessary to choose time steps in order to determine . It is more effective to keep 

constant time steps using a logarithmic scale  0tt   where 0t  is the instant at which the first load 

is applied or the instance where the first strain is imposed to the structure (Bazant 1988). Then, it is 

needed to choose the initial step  10 , tt , and then, rt  is generated successively until the final time, 

with the following expression: 

 1/
1 0 0 1 0 010 ( ) 0.1m

r rt t t t t t t                         (10) 

where m (number of steps per decade) may be adopted with a value around 10 to obtain a good 

accuracy. In the Solidification Theory proposed by Bazant and Prassanan (1988), the creep function 

for a material with aging, like concrete, is given by the following expression: 

 
)(

),(

)(

1
),( 0

0

0
tV
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tE
ttJ

c


                          (11) 

where  0tEc  is the elasticity modulus at the load application instant  0t  in MPa,   tV  is the 

solidified concrete volume (which is taken as an aging function) and  0, tt  is the Kelvin chain 

strain. According to the Comité Euro-International du Béton (1990), the creep function is given by: 
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 
                          (12) 

where  28cE  is the elasticity modulus at 28 days,  00 t is the ideal creep coefficient and 

 01 , tt  is a function of time that describes creep development after loading. A comparison between 

both formulations for the creep function  0, ttJ , expression (11) and (12), gives: 
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where: 
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being H  a constant given by the CEB-FIP90 model. 

With this comparison, the parameters E  can be obtained by evaluating the function  01 , tt  

given in the CEB-FIP90 model at L specified points. The following system of linear equations is 

obtained by employing the least squares method: 

      NjiiBjXjiABXA ,...,2,1,)()(),(                (15) 
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 jEjX /1)(                                  (18) 

 Then, solving the system of equations given in Eq. (15), the Kelvin chain parameters E  can 

be obtained. Shrinkage strains were obtained using directly the CEB-FIP90 model code.  In Bazant 

and Oh (1984) good match between numerical and experimental results in the prediction of 

deflections was found for simply and doubly reinforced concrete beams when the creep coefficient is 

considered to be larger in traction than that for compression stresses (approximately three times 

larger). Later, Alwis et al. (1994) also obtained good results for the same set of experimental beams 

using the same creep coefficient in traction and compression, but including the effect of concrete 

shrinkage in the numerical modeling. As in the works of Macorini et al. (2006) and Sakr and Sakla 

(2008), in this work, the creep compliance function and the shrinkage strain are assumed to be the 

same in traction and compression and are evaluated according to the CEB-FIP90 model. 

 
 

5. Numerical algorithm 
 

A finite element constant or tangent stiffness formulation, coupled with a step-by-step integration 

scheme in the time domain, is developed to analyze steel-concrete composite beams. Within each 

time step, an incremental load procedure, with an iterative approach to solve of the equilibrium 

equations for each load increment, is used. The entire time period, for which the response history of 

the structure is to be analyzed, is divided into a number of time steps, 1t , 2t , 3t ,…, nt . It is 

assumed that changes in the external nodal loads, if any, occur only at the beginning or at the end of 

a time step. During a time step, the external loads are assumed to remain constant. The increment of 

the external nodal loads at any particular time, may be subdivided into a number of load steps to 

follow the non-linear response of the structure in more detail. For a given force  iR t , the increment 

in the external nodal vector at time it  could be divided into n  load steps jR ( 1,2,..., )j n . An 

iterative approach is then used to solve for each load step and the increments in the field variables 

(strains and stresses) are added to the previous total values to give the current stress and strain states 

of the structure. The basic steps of the numerical method of analysis are presented below (Dias 

2013). 

1. Read all data related to the geometry of the structure and input data for constitutive relations 

and time-dependent material properties, type of layers and element properties. 

2. Read the load control data for the current time it  and time step it ( iii ttt  1 ). Form 

the applied load vector  itR for time it . Divide this vector in a given number of load steps to 

obtain the load vector for each load step of the current increment.  

3. Start the iterative solution procedure for this load step. 

4. Form the element stiffness matrices and assemble the structural stiffness matrix. This step 

may be performed only for the first iteration of each load step.  

5. Solve the equilibrium equations to obtain nodal displacements incremental vector. Add this 
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vector to the previous total displacement vector to obtain the current total nodal displacement vector 

in the global coordinate system. Check convergence if the displacement norm is used. 

6. Calculate for each element the local deflection increment and the corresponding strain and 

stress increments. Update material matrix, calculate current total strain and stress components, and 

calculate the element resisting forces based on the current state. 

7. Transform all the element resisting forces to the global coordinate system and assemble the 

current structural internal resisting force vector. The unbalanced force vector is given by subtracting 

the total applied external load from the internal resisting force vector. Check convergence if the force 

norm is used. 

8. If convergence has not been obtained, go back to step 4 and repeat steps 4 to 7 until 

convergence is achieved or the maximum number of iterations allowed is reached. If the equilibrium 

state has been found, go to step 9, or, if the solution diverges, stop calculations. 

9. If this is not the last load step for the current time, go back to step 2 and repeat steps 2 to 8 

until the solution is obtained for all the specified load steps. When the last load step was reached, go 

to the next step. 

10. Calculate the material properties at the end of the time steps, i.e., for time 1it . For each 

element the creep and shrinkage strains are calculated and the stresses are assumed to be constant 

during the load step. The equivalent nodal loads for each element are calculated by considering these 

strains as initial strains and then they are assembled into the structural load increment vector. Go to 

step 2 and repeat steps 2 to 8.  

11. If time it  is the last time the analysis is finished, otherwise go back to step 2 and continue 

the analysis for the next time step.  

Most of the steps in the algorithm are standard procedures used in any computer program 

employing the finite element method. The manner in which the time dependent vector is calculated 

(step 10) is presented in section 5.1. The determination of the state in the concrete layers, mentioned 

in step 6, is explained in detail by Tamayo et al. (2014) and only a brief comment is given in section 

5.2. 

 
5.1 Solution procedure for creep and shrinkage effects 

 
Assume all load changes to occur at the beginning of the time step. By solving the equilibrium 

equations for these load changes, all the field variables (nodal displacement vector, strain and stress) 

are known for all elements. Creep and shrinkage laws are also specified. A step-by-step integration 

scheme in the time domain is employed to analyze the effects of time-dependent phenomena. The 

non-linear response of the structure is traced over a time period by dividing this time period into a 

number of smaller time steps. An initial strain approach (Dias 2013) is adopted to determine the 

response of the structure due to the time-dependent strain increments occurring during a time step. 

The procedure is presented below for time step it  ( iii ttt  1 ). 

At the beginning of the time step i, the stress components  i  are known, as well as the stress 

components   1i  obtained at the previous step. At the first time step, components of stress 

increments vector,   1 i  are equal to zero. The stress increment for the time step i is calculated 

with       1 iii  and the following algorithm is used to calculate equivalent nodal forces 

due to long-term effects: 
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- For each element e, a load vector due to creep and shrinkage effects with contribution of all the 

Gauss points g, considering all layers adopted in the normal direction to the surface of the concrete 

slab, is computed, with: 

- For e = 1… m (where m is the total number of finite elements in the concrete slab); 

- For g = 1… p (where p is the total number of Gauss points in each element): 

1. In the element e, for Gauss point g, the shrinkage strain  for time step i is given by: 

 
),,( iegcs   (CEB – FIP90) 

2. Strain increment due to shrinkage is given by: 

     
)1,,(),,(),,( 


iegcsiegcsiegcs   

3. Functions )( 0to  and )(tV  are computed employing CEB-FIP90 formulation. 

4. Creep strain is quantified by the sum of the strain of each Kelvin chain element: 

- For ,,...,1 N  being N the total number of Kelvin chain elements: 

         
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where   1

D  is the inverse of the isotropic constitutive matrix evaluated with an elasticity 

modulus equal to  /2/1iVE ; being    


  

i

t
te i 

 /
1 . 

5. Matrix  * ),,( iegD  is evaluated with the effective modulus *
),,( iegE , which is given by: 


 




N

ii VEE
E

1 2/12/1

*
11

/1
 


 

   

where 2/1i  is the middle of the interval  1, ii tt . Constitutive matrix  
*

D is given by: 
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with )1(2* vEG  and v is the coefficient of Poisson. 

6. The equivalent element force vector is formed by summation of each Gauss point g 

contribution, being p the total number of Gauss points: 
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**

),,(),(),(   

7. The global force vector due to creep and shrinkage at time step i,  iR , is assembled, 

considering the contribution of each load vector at element level; 

8. At the end of the time step, the elasticity modulus is updated by the effective modulus *E . 

 
5.2 States of stress and strain determination in concrete layers 
 

The behavior of concrete is characterized by an elasto-plastic constitutive law besides a cracking 

monitoring algorithm. A step-iterative approach is adopted to analyze the nonlinear behavior with a 

series of piecewise linear solutions. The stress increment vector in any concrete layer is obtained 

through the material constitutive matrix and the mechanical strains. These strains are obtained by 

subtracting the total strains from the non-mechanical ones due to creep and shrinkage (Dias 2013). 

 

 
6. Numerical applications 
 

6.1 Series C beams tested by Jaccoud and Favre (1982) 
 

The RILEM Technical Committee TC 114 suggests, for long-term analysis benchmarks, the 

Series C beams, experimentally tested by Jaccoud and Favre (1982). Main characteristics of these 

beams are shown in Fig. 4(a). A sketch of the layers division is shown in Fig. 4(b), where the actual 

thickness of the concrete slab and the actual position of steel layers are indicated at the left side, 

while the position and thickness of the normalized steel layers are located at the right side. The slab 

thickness is normalized within a range of -1 to +1. The angle refers to the longitudinal reinforcement 

direction. Each reinforced concrete beam was subjected to five different permanent load levels. In 

Table 1 the phases of each structure in the test, according with the applied load, are presented. 

Besides the self-weight of the structures, the beams were subjected to two equidistant loads from its 

center. Table 2 shows the values of the properties used in the analysis, for each beam. These values 

are within the minimum and maximum range displayed on the original report. 

The load was applied at 28 days and kept constant up to 528 days, except for the C11 beam which 

was maintained for a period of only 365 days. Due to symmetry, just the half beam was modeled 

with 96 8-node concrete shell elements. The number of equations is 480. The self-weight was treated 

as a distributed load of 3.924kPa, and was applied as a pressure load at the upper surface of the 

beams. The concentrated load was applied at the center of the beam width. The cement was 

considered with normal hardening at a temperature of 20°C. The relative humidity adopted was 55% 

 

 
Table 1 Beams state after loading by Jaccoud and Favre (1982) 

Beam Load P (kN) State 

C11 5.77 Homogeneous 

C12 12.19 First cracks 

C13 18.61 cracked 

C14 25.04 Advanced cracks 

C15 31.45 Service limit 
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(a) Geometry of series C beams (b) Layers of series C beams 

Fig. 4 Geometry of series C beams 

 

Table 2 Material properties of series C beams 

 

 

for beams C11 and C13, 50% for beams C12 and C14 and 60% for beam C15. A Kelvin chain with 4 

parameters was used and values of elastic modulus and retardation time for each element of the 

Kelvin chain are: 1E =8.56, 1 =0.28; 2E =8.78, 2 =2.8; 3E =4.03, 3 =28; 4E =2.34, 4 =280. 

The creep coefficient and shrinkage strain for all studied beams were validated with the 

experimental results presented by Jaccoud and Favre (1982) for a period of about 500 days (not 

shown here). The evolution of the mid-span deflection at early ages is compared with the 

experimental measures for each load level in Fig. 5. It shows that the prediction algorithm was able  
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Material Properties 

Steel Young’s modulus (MPa)  sE  200000 

Φ 6mm Yield stress (MPa)  yf  580 

Steel Young’s modulus (MPa)  sE  200000 

Φ 12mm Yield stress (MPa)  yf  580 

Concrete Young’s modulus (MPa) C11, C13 28E  27500 

  C12, 14 28E  28300 

  C15 28E  28500 

 Compressive strength (MPa) C11, C13 cf  26.6 

  C12, 14 cf  27 

  C15 cf  27.4 

 Tensile strength (MPa) C11, C13 tf  2.25 

  C12, 14 tf  2.55 

  C15 tf  2.73 

 Coefficient of Poisson  v  0.2 

 Ultimate compression strain (‰)  u  3.5 

 Ultimate tension strain (‰)  tm  3 

 Parameter for tension stiffening    0.5 
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Fig. 5 Deflection at midspan for series C beams, immediately after loading 

 

 
Fig. 6 Long-term deflection at mid-span for series C beams 

 

  

a) Font: Jaccoud and Favre (1982) b) Present analysis 

Fig. 7 Cracks on the bottom of half beam C15 due to a load acting during 510 days 
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 Instantaneous response Long-term response 
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Fig. 8 Cracking evolution of series C beams  

 

 

to obtain a good approximation between experimental and numerical results, even for early age 

concrete. In Fig. 6, results for the load acting for periods of 340 and 500 days are presented. A good 

approximation between experimental and numerical results is also observed. 

The crack pattern in the bottom of C15, obtained by the experimental report, 510 days after 

loading, is shown in Fig. 7(a). The crack pattern obtained by the current analysis, where the traces  

indicate the cracking and its orientation, can be visualized in Fig. 7(b). It shows a good agreement 

with the mapping of cracks observed in the experimental work. As cracking is the main concern of 

the analysis, in Fig. 8, the cracking evolution is presented for beams C11, C12 and C13. The first 

column corresponds to the instantaneous response ( 280 t  days) and the second column, to long-

term response ( 510ft days, except C11 beam with 365ft  days). It is possible to verify the 

level of cracking shown in Table 1 

In relation to the computational time needed for analyzing the series of C beams, the algorithm 

was able to predict crack patterns similar to those obtained in the experimental tests by using 256 

time steps in the analysis; being the average time of computation approximately 21 minutes for each 

beam. The analysis was carried out in AMD Athlon X2 processor with 2.7 GHz of speed. A tolerance 

equal to 1% in the norm of unbalanced forces was used for all examples presented here. 
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6.2 Continuous steel-concrete composite beams of two spans tested by Gilbert and 
Bradford (1995) 

 

Two composite beams, both having two spans were experimentally tested by Gilbert and 
Bradford (1995) for a period of 340 days. Beams characteristics are shown in Fig. 9. The first 
beam (B1) was submitted to a self-weight load equal to 1.92kN/m, and the second beam (B2) 
supported, besides its self-weight load, a superimposed load of 4.75kN/m. The self-weight was  

 
 

  
a) Longitudinal view b) Transversal section 

Fig. 9 Geometry of continuous steel-concrete composite beam 

 

Table 3: Material properties of continuous steel-concrete composite beams 

Material Properties   

Structural steel Young’s modulus (MPa) sE  200000 

 Yield stress (MPa) yf  280 

 Ultimate stress (MPa) uf  350 

 Coefficient of Poisson v  0.3 

 Ultimate strain (%) u  25 

Reinforced steel Young’s modulus (MPa) sE  200000 

 Yield stress (MPa) yf  280 

 Ultimate stress (MPa) uf  350 

 Coefficient of Poisson v  0.3 

 Ultimate strain (%) u  25 

Concrete Compressive strength (MPa) cf  27 

 Young’s modulus (MPa) E  22000 

 Tensile strength (MPa) tf  3 

 Coefficient of Poisson v  0.2 

 Ultimate compression strain (‰) u  1 

Shear connector Spacing (mm) s  145 

 Diameter x height (mm) dxh  9 x 50 

 Row number  2 

 Constant 1 (kN) a  32 

 Constant 2 (mm
-1
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applied as a pressure load at the beams upper surface. The superimposed load of beam B2 was 

applied along its length as a pressure load acting in a central width of 60.65mm. Table 3 shows the 

values of the properties used in these examples. 

According to Gilbert and Bradford (1995), for the final period, the creep coefficient measured 

was 1.68, whereas the shrinkage strain was 0.00052. Due to uncertainty of the age of loading, two 

loading times of 3 and 7 days were considered in the analysis following the study of Chaudhary et 

al. (2007). A Kelvin chain with 5 parameters was used. Values of the elasticity modulus and 

retardation time for each element of the Kelvin chain are: 1E =23.47, 1 =0.03; 2E =24.03, 2

=0.3; 3E =11.52, 3 =3; 4E =6.14, 4 =30; 5E =2.40, 5 =300 for a loading time of 3 days and 

1E =18.21, 1 =0.07; 2E =18.62, 2 =0.7; 3E =8.94, 3 =7; 4E =4.64, 4 =70; 5E =2.16, 5

=700 for a loading time of 7 days. 

Properties of stud shear connectors, dimensions and arrangement were based on Jiang et al. 

(2009) studies. These authors used the same connector formulation employed by Tamayo (2011) 

and adopted a maximum value of slip equal to 1.25mm. In this work, a tangential formulation was 

used for the evaluation of the connector stiffness. 

Using symmetry, only half of the structure was modeled. As it is depicted in Fig. 10(a), the 

finite element mesh is composed of 287 8-node degenerated shell elements for modeling the 

concrete slab, 369 4-node shell elements for modeling the steel beam and 80 2-node beam-column 

elements for representing the shear connectors. The total number of degree of freedoms in the 

model is 7310. For the concrete slab layered model, seven concrete layers of the same thickness 

and one steel layer, representing the reinforcement, were used. Two additional meshes composed 

of 1040 and 1495 elements were considered for the concrete slab in order to prove mesh 

objectivity. Almost identical results were obtained for all meshes. 

In Fig. 10(b) the instantaneous and final deformed meshes for beam B2 and also the 

considerable slip that takes place at the slab-beam interface are shown. The mid-span deflections 

obtained by the present analysis were compared with experimental and theoretical results obtained 

by Gilbert and Bradford (1995). These authors considered a one-dimensional analytical model 

using the aged-effective modulus method for including long-term effects. Mid-span deflections for 

both loading times are shown in Fig. 11.     

As it can be seen, the differences for both loading times are small, being results for the loading 

time of 3 days closer to the experimental tests. Mid-span deflection for beams B1 and B2 are 

largely increased due to long-term effects during 340 days of sustained load from values of 0.1 cm 

and 0.35 cm to 0.4 cm and 0.8 cm, respectively. 

The self-weight load, applied at 3 days, did not cause cracks in the beam B1, and the cracking 

process began after 38 days, approximately. Due to the superimposed load applied on the B2 beam, 

the cracking process began already in the first day of load application. Note that, in both structures 

cracking was not important along the beam, except in the zone near to the central support, where the 

bending moment is negative and the tensile stresses reach values that may cause cracks. Cracking 

patterns on the upper layer of concrete slab for beam B2 are shown in Fig. 12, for instance. 

In Fig. 13 is shown the development of the deflection along the longitudinal axis of beams B1 and 

B2 for instantaneous and long-term responses. Maximum displacements took place at mid-span of 

each span. In Fig. 14, the computed initial and final bending moment diagrams obtained with the 

present model are plotted for beam B2 (the most loaded) and compared with the results of Gilbert 

and Bradford (1995). The instantaneous bending response (3 days) is the same in all cases; however 

some differences are obtained for the final period of analysis (340 days). This difference is attributed  
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a) Finite element mesh b) Deformed mesh (cm) for 3 and 340 days 

Fig. 10 Geometry and deformed mesh for composite beam B2 

 

 
Fig. 11 Mid-span deflection for continuous steel-concrete composite beams 

 

 
Fig. 12 Cracking evolution on the upper layer of half B2 beam for 3 and 340 days 
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Fig. 13 Deflections along axis of the beams 

 

 
Fig. 14 Initial and final bending moment diagrams for composite beam B2 

 

 
to cracking monitoring algorithm used in each model. In the cited reference the authors used a more 

simplified analysis neglecting the tension stiffening effect. It can be seen that the time-dependent 

redistribution of moments that occurs in continuos composite members at service loads due long-

term effects is considerable for this particular case. More parametric studies are needed in order to 

give more general conclusions about this fact.   

In relation to the computational time, the non-linear code took approximately 41 minutes for 

analyzing beams B1 and B2 despite only using 21 time steps. The analyses were carried out in the 

same computer used in the previous application. The current band solver needs to be improved in 

order to minimize the bandwidth of the system and the execution time. However, the implementation 

of a parallelized sparse solver seems to be a better option and the corresponding work is in progress.    
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7. Conclusions 
 
Concrete long-term effects in steel-concrete composite beams were studied and implemented in 

this work. A computer code for short-term analysis until the structural collapse developed by Tamayo 

(2011) was extended in the present study to include creep and shrinkage effects (Dias 2013). Aging 

was introduced using the Solidification Theory. The viscoelastic behavior is represented by a 

rheological model applying a Kelvin chain with their elements placed in series. The Kelvin chain 

showed a good behavior when four or five elements were used. Parameters of the Kelvin chain were 

adjusted using a least squares procedure. Creep and shrinkage models of the CEB-FIP90 were able to 

quantify correctly the creep coefficient and the shrinkage strain for the studied examples. 

The analysis considers material nonlinearity caused by cracking of the concrete slab in the 

negative moment regions, the time dependent deformations caused by creep and shrinkage in the 

concrete and the partial interaction at the slab-beam interface. Computed results were shown to be in 

close agreement with laboratory measurements taken on two full-scale continuous composite beams 

tested for a period of 340 days. Only one-dimensional numerical analyses were found in the 

technical literature of the topic for analyzing these two experimental composite beams. In this work, 

a three-dimensional numerical model which is able to consider shear lag phenomenon at the concrete 

slab is used.  Therefore, a more accurate response and a more realistic representation of cracking 

patterns at the concrete slab can be obtained. 

Maximum slips of connectors took place at the end of the composite beams for an analysis time 

of 340 days. These slips correspond to the 71% and 78% of the ultimate shear force of the connector 

for beams B1 and B2, respectively. Therefore, the use of a nonlinear constitutive law for the 

connectors is needed since the beginning of the analysis. Studies are undergoing in order to include 

prestressed tendons at the concrete slab for modeling long-span bridges. 
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