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Abstract.  On mesoscopic level, concrete can be treated as a three-phase composite material consisting of 
mortar, aggregates and interfacial transition zone (ITZ) between mortar and aggregate. A lot of research has 
confirmed that ITZ plays a crucial role in the mechanical fracture process of concrete. The aim of the present 
study is to propose a numerical method on mesoscale to analyze the failure mechanism of reinforced 
concrete (RC) structures under mechanical loading, and then it will help precisely predict the damage or the 
cracking initiation and propagation of concrete. Concrete is meshed by means of the Rigid Body Spring 
Model (RBSM) concept, while the reinforcing steel bars are modeled as beam-type elements. Two kinds of 
RC members, i.e. subjected to uniaxial tension and beams under bending, the fracture process of concrete 
and the distribution of cracks, as well as the load-deflection relationships are investigated and compared with 
the available test results. It is found that the numerical results are in good agreement with the experimental 
observations, indicating that the model can successfully simulate the failure process of the RC members. 
 

Keywords:  mesoscale simulation; Rigid Body Spring Model (RBSM); reinforced concrete (RC) member; 
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1. Introduction 

 

In terms of the composite structure, concrete should not be looked as a homogeneous material 

because it is a three-phase composite system consisting of aggregates embedded in a matrix of 

hardened cement paste, and the interfacial transition zones (ITZs) on the interface between the 

aggregate particles and the surrounding cement paste (Oh and Jang 2004, Caré and Hervé 2004, 

Sadouki and Van Mier 1997, Zhou and Hao 2008). This description of concrete is widely 

recognized and usually defined as mesoscale approach, which is specifically useful when 

analyzing the influence of the aggregates and the ITZs on the mechanical properties of concrete, 

particularly on fracture behavior, as well as on the transport processes (Guinea et al. 2002, Wang 

and Ueda 2011). Therefore, over the past few years, the numerical analysis of concrete on 
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mesoscale has been successfully conducted, leading to a better understanding of the micro-

cracking and fracture behavior of concrete (Cusatis et al. 2003, Jirásek and Grassl 2008, Grassl 

and Jirásek 2010, Grassl and Rempling 2008). Moreover, the mesoscopic analysis can represent 

the effects of aggregates shape, distribution and volume fraction, particularly the thickness and 

properties of the ITZ (Kim and Abu Al-Rub 2011).     

However, the majority of the conducted studies are focused on the mechanical simulation of 

plain concrete due to the computational complexity and cost after including the reinforcement. To 

well extend the application of mesoscopic type approach to structural analysis, the reinforcement 

should be firstly introduced into the model. Therefore, the objective of this study is to develop a 

meso-mechanical approach to investigate the response of RC members subjected to uniaxial 

tension or bending load. In this method, the two-dimensional (2D) mesoscale geometry of concrete 

is meshed by the Voronoi diagram and the discrete element method, named Rigid Body Spring 

Model (RBSM), is adopted to perform the mechanical analysis. The advantage of the Voronoi 

diagram is that it can reduce mesh bias on potential crack directions because the crack initiation 

and propagating direction have been prescribed in advance. The continuous reinforcement is 

dispersed irrespective of the diagram of the concrete Voronoi meshing. Each reinforcing element is 

regarded as a general beam element. A specific link element with zero-size is used to simulate the 

bonding behavior between reinforcement and concrete. The proposed model is applied to the RC 

members who have been experimentally studied in order to verify the feasibility and efficiency of 

the method. 

 

 
2. General description of the basic models  
 

2.1 Concept of the RBSM 

 

In the currently developed method, concrete is represented by the RBSM theory on mesoscale 

level. In terms of the RBSM approach, the domain of sample geometry is meshed into polyhedron 

elements whose common boundary segments are assumed to be interconnected by zero-size 

springs, using a Voronoi diagram based on a set of randomly distributed points. Each element has 

two translational and one rotational degree of freedom for a 2D case (Fig. 1). The elastic modulus 

of the springs as shown in Fig. 1 can be written as follows when a plane stress condition is 

assumed: 
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where kne and kte are the elastic moduli of normal and shear springs respectively; Eelem and elem are 

the calibrated elastic modulus and Poison’s ratio of element on the mesoscale level, respectively. 

The response of the springs can simulate the interaction between elements instead of 

considering the internal behavior of each element. This has been regarded as the most significant 

feature of the discrete element method, for example the RBSM. The mechanical properties of 

springs are assigned with different characteristic depending on their position (i.e. in the aggregate,  
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Fig. 1 RBSM mechanical model 

 

  

Fig. 2 Constitutive model of the normal 

spring (Nagai et al. 2004) 

Fig. 3 Beam elements of steel bar embedded in 

the Voronoi diagram of concrete 

 

 

mortar, interface or macro concrete element). In terms of the heterogeneity of concrete material, 

the mechanical parameters, including the strength and elastic modulus, are assumed to follow 

normal distribution, which is used to account for the randomness of material damage and 

localization. The probability density function for the tensile strength of mortar is written as 
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in which ftelem is the distributed tensile strength and ftaverage is the average tensile strength of mortar 

on the mesoscale. When ftelem is less than 0, ftelem=0.  

Both the normal and shear springs behave elastically until the stresses reach the tensile strength 
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or the maximum shear stress criterion. In the paper, only the constitutive model of a normal spring 

is depicted in Fig. 2. The formulation for the maximum shear stress criterion can be referred to 

Nagai et al. (2004).  

Only a short overview of RBSM on mesoscale of concrete is given above. Additional details, 

such as those related to element meshing process and constitutive laws of different phases of 

concrete have been reported in literatures (Nagai et al. 2004 and Wang et al. 2008). 

 

2.2 Steel element 

 

For a RC specimen, the continuous steel bars are overlapped on the Voronoi diagramming 

geometry ignoring the layout of concrete elements. It implies that that the reinforcing bar 

trajectories are independent of the geometry of the Voronoi elements representing the concrete, 

which greatly facilitates the model construction and revision. Each reinforcing bar is represented 

by a series of regular beam elements, as shown in Fig. 3. Given the bar trajectory, beam end nodes 

are set to be located midway along the pathway traversing each Voronoi cell. By this manner, the 

number of beam-column elements is proportional to the average density of Voronoi element 

(Bolander and Le 1999). The interactions between reinforcement and concrete can be realized via 

zero-size link elements (see Fig. 3). The spring parallel to the reinforcing bar (with stiffness of Kt) 

represents the bond action between the bar and the concrete material, which will be described by 

the nonlinear stress-slip relation in the followed section. Much large stiffnesses (Kn and K) are 

assigned to the normal and rotational springs of the link element because the relative 

displacements for these two component directions are almost nil (Bolander et al. 2000). 

One of the link nodes is attached to the beam node (e.g. the node with coordinate of xb and yb in 

Fig. 3), while the motion of the other link node is rigidly constrained to the associated Voronoi 

node of (xk, yk). This strategy has already been applied to the numerical simulation of RC 

structures on macroscopic level in terms of RBSM (Bolander and Saito 1998, Bolander and Hong 

2002, Nakamura et al. 2006). 

After prescribing the position and direction of steel rebar, the end nodes of a beam element can 

be automatically generated along the path traversing each Voronoi element, as shown in Fig. 3. 

Assuming small rotations, the displacement (u1, v1) of a beam node (xb, yb) will move with the 

gravity center of concrete element (xk, yk) with motion equation as 
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in which u, v,  represent the two translational displacements and the rotational displacement, 

respectively. The relative displacements between the two link nodes are given by d=Bu, where 
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and u
T
=[u,v,,u1,v1,1] are the generalized displacement components of the computational point 

and the beam node, respectively; d
T
=[n,t,] are the normal, tangential and rotational  
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Fig. 4 Illustration of conversion method for the cross-sectional area of reinforcements 

 

 

displacements, respectively. To obtain relationship between the local and global coordinate, the 

transformation matrix is required with expression as following  
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in which  is the angle between the reinforcement and the horizontal coordinate. Thus, the 

stiffness matrix of the link element can be written as  

e

T TK B T DBT                            (6) 

where D is a diagonal matrix containing the normal, tangential, and rotational spring stiffness of 

the previously described springs as given by                          
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In the diagonal matrix D, kn, kt, k are the normal, tangential and rotational stiffness of the link 

springs, respectively.  

In order to reduce the computing burden, the real 3-dimensional specimen is simplified into a 

2-dimensional (2D) model. In the 2D configuration, the aggregate size and grading can be 

generated with the Fuller equation proposed by Walraven and Reinhard (1981). In terms of the 

reinforcing bar, the area of n bars on the same height (with diameter of d) is assumed to uniformly 

distribute on the width direction. Therefore, for the 2D simulation, if the thickness of a sample is 

set as unit value, the cross-sectional area of steel reinforcement (As) can be calculated by 

A=nd
2
/4b, in which b is the width of the specimen section. This conversion method is illustrated 

by Fig. 4. 

 

 

b b 
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Fig. 5 Stress-strain relationship of 

reinforcement under loading 

Fig. 6 Bond-slip relationship of the reinforcement 

within concrete 

 

 

2.3 Constitutive model of the reinforcement 

 

The bilinear stress-strain relationship, as shown in Fig. 5, is applied to the beam element of 

steel reinforcement. The elastic modulus of the strengthened branch, Esh, is taken as the 1% of the 

initial elastic modulus of steel.  

It is evident that the interaction between reinforcement and concrete has a great influence on 

the crack formation and propagation. As a result, it is desirable to take into account the bond 

stress-slip relationship. In this study, the spring parallel to reinforcing bar is used to represent this  

bond action between the bar and the concrete material. The strength and stiffness of the spring 

aligned tangentially to the bar are governed by non-linear stress-slip relations determined through 

experimentation, for example the model developed by Shima et.al. (1987) (as given in Fig. 6). 

The formulation for the ascending branch of stress-slip relationship in Fig. 6 is written as 

follows (Nakamura et al. 2006): 

 2 3 1 20.9 1 exp( 10( / ) )cf s d           for  s0.2               (8) 

where s is the slip between reinforcing bar and concrete; fc is the compressive strength of concrete; 

d is the steel diameter;  is a reduction coefficient. Eq. (8) is only applicable to the mass concrete 

and the effect of concrete cover should be taken into account when it is used for the beam case 

because of its mush thinner cover thickness compared to mass concrete. In this paper,  =0.6. In 

addition, the bond strength between concrete and reinforcement in the numerical simulations 

below, max, is calculated as 5.59 MPa by Eq. (8) when the slip s=0.2 mm. 

 
 
3. RC beam under bending -Verification I 
 

3.1 Construction of the numerical models 

 

In this section, the four-point bending beam, which has been experimentally studied by Revathi 

and Menon (2005), is numerically analyzed to simulate its mechanical response and to compare 

with test observations. The compressive strength of concrete is 20 MPa, and the yield strengths of  

0.2 0.4 

τmax 

τmax/10 

τ  

s   

yf

sE

shE





310



 

 

 

 

 

 

Mesoscale computational simulation of the mechanical response of reinforced concrete members 

   

 
(a) Loading mode (Unit: mm) 

 

 l1 l2 a b h d 

B-1 1800 100 600 150 200 160 

B-2 1800 100 600 150 200 160 

B-3 1500 250 500 120 200 / 

(b) Reinforcement details of specimens                   (c) Specimens size 

Fig. 7 Configuration and loading mode of the RC beams 

 

  

(a) Under-reinforced or over-reinforced (b) Low-reinforced 

Fig. 8 Numerical simulation models 

 

Table 1 Mechanical parameters of the materials on mesoscale 

Type 
Young’s modulus 

E/GPa 

Poisson ratio 

 

Tensile strength 

ft/MPa 

Aggregate 50.0 0.25 6 

Mortar 23.6 0.18 3.50 

ITZ 20.9 0.15 1.15 

Concrete 25.98 0.2 1.94 

Longitudinal rebars 200 / 415 

Stirrups 200 / 250 

 

 

tensile reinforcement and stirrup are 415 and 250 MPa respectively. The Young’s moduli of steel 

bars and concrete are 2×10
5
 and 25980 MPa, respectively. The shape, dimensions, loading point 
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locations, and reinforcement details of specimens used in the experiments are shown in Fig. 7. In 

the current numerical analysis, the incremental displacement of 0.02 mm is applied on the two 

loading points. 

The numerical model of the specimen after meshed with the Voronoi diagram is shown in Fig. 8. 

The one-third lengths of the beam on both right and left hand parts are discretised by using the 

macroscale elements, but the middle zone is meshed in terms of the mesoscale modeling of 

concrete composition so that the time of model building and computing can be reduced greatly. 

The number of concrete elements in Fig. 8(a) is 2729 with an average element size of 12.6mm. For 

the low-reinforced beam, the point locations and reinforcement details of specimens used in the 

experiments differ from the under-reinforced or over-reinforced one so that 2661 concrete 

elements with an average element size of 12.3mm are employed. Here and elsewhere in the paper, 

the average element size is estimated through dividing the sample length by element numbers in 

the longitudinal direction. The material parameters are listed in Table 1. A displacement loading 

mode will be applied. In other words, in each calculation step two equal displacements are 

symmetrically exerted on the points of the mid-span of the beam in order to obtain a pure bending 

segment. During the computing process, the convergence condition is judged and the displacement 

increment will be preceded to next step when the square root of the sum-of-squared-error between 

the current and former steps becomes less than 10
-5

 or the iterative times are larger than a specified 

maximum value. When the load-defection curve switches to the descending branch, running of the 

program may be ended at a given percentage of peak loads.  

 
3.2 Under-reinforced beam 
 
The numerically simulated load-deflection curve for the under-reinforced beam with the 

present method is compared with the test results in Fig. 9. While not perfect, a relatively good 

agreement can be observed. The peak load and its corresponding deflection at the mid-span are 

41.12 kN and 11.67 mm. The two measurements of test result are 38 kN and 12.39 mm, 

respectively. Also, from Fig. 9 it can be seen that both the beams from numerical simulation and 

test undergo three distinct stages before it failed by the load. However, after loading 20 kN, the 

load of numerical simulation on load-deflection curve increases faster than that of the test curve. 

This result may be attributed to the two reasons: i) the constitutive laws of shear and rotational 

springs on the common boundary of Voronoi elements of concrete may be too idealistic; ii) the 

other one may be that the error induced by the actual test makes the bearing capacity lower. 

Nevertheless, the existed difference between numerical simulation and test result can be acceptable. 

The above analysis can illustrate the possibility to use the currently proposed numerical method 

for simulating the mechanical behavior of reinforced concrete structures. 

The cracking pattern and distribution with three different mid-span deflections are depicted in 

Fig. 10. It can be noted that, for the under-reinforced beam, cracks of concrete mainly present in 

the mid-span region. Fig. 11 demonstrates the steel stress distribution along the longitudinal 

direction under various mid-span deflections. It can be seen that when the mid-span defection is 

2.24 mm, the steel stress reaches 150 MPa (lower than the yield strength of 415 MPa) and tends to 

be slightly higher at position of the four principal cracks (see Fig. 10(a)). Furthermore, when the 

mid-span deflection is increased to 5.69 mm, the steel bars begin to yield. After this point, the 

increase of steel stress is marginal, which results in a flat phase on the load-defection curve. The 

stiffness of the beam in this stage is significantly weakened and from Fig. 9, a large increase of the 

deflection (almost 10 mm) was observed. In addition, from Fig.10, one can find that the number of  
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Fig. 9 Load-deflection curve of the under-

reinforced beam 

Fig. 11 Steel stress distribution along the 

longitudinal direction 

 

 

 

principal cracks in the middle zone (also called the pure bending segment) keeps unchanged after 

yielding of the longitudinal steel bars. The mean crack spacing is around 130 mm in this example.  

 
3.3 Over-reinforced beam 

 

Employing the same numerical analysis approach, the load-deflection curve for the over-

reinforced beam is shown in Fig. 12 to be compared with test result. The ultimate load from 

numerical data is about 82kN, which is smaller than that measured in test (90kN). Because no 

descending branch was recorded in the test, it became difficult to estimate the deflection 

corresponding to the peak load. However, from the viewpoint of approximation, the two curves in 

Fig. 12 match well on the whole. The fracture patterns, including the propagation and distribution 

of cracks, obtained at two stages of the analysis are shown in Fig. 13. Compared with the under-

reinforced beam, the cracks presenting in the mid-span zone develop much more slowly and their 

propagating heights are lower. At the peak load point, a large number of cracks are found in the 

pure bending zone, but they are finer. Therefore, as would be expected, the average crack width is 

much smaller than that arising in the under-reinforced beam. Likewise, the steel stress distributions 

  
 (a) Mid-span deflection = 2.24mm (Load = 21.32kN) 

 
 

 (b) Mid-span deflection =5.69mm (Load = 38.07kN) 

 
 

 (c) Mid-span deflection = 11.67 mm (Load = 41.12kN) 

Fig. 10 Propagation and distribution of the cracks for under-reinforced beam 
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Fig. 12 Load-displacement curve of over-

reinforced beam 

Fig. 14 Stress of the steel bar in the over-

reinforced beam 

 

  

 (a) Mid-span deflection = 2.0mm (Load = 66.7kN) 

 
 

 (b) Mid-span deflection = 3.5 mm (failure) 

Fig. 13 Propagation and distribution of the cracks 

 

 

are acquired and plotted in Fig. 14. The maximum steel stress corresponding to the peak load is 

about 251 MPa, which is far below the yielding strength of the steel bars, i.e. 415 MPa as given in 

Table 1. These observations are in general agreement with some preliminary conclusions drawn for 

the failure mode of over-reinforced concrete beams. 

 
3.3 Model verification 

 

With these models and input parameters, the numerical results are compared with the 

experimental results as shown in Figs. 5(a)-(f), which indicates that the calculated displacement of 

unconfined columns is slightly smaller than the measured one. This is mainly due to neglecting the 

slip between the steel bars and concrete in the numerical analysis. The larger stiffness difference 

between the numerical and experimental hysteretic loops shown in Fig. 5(a) could be induced by 

experimental errors.  

The difference in the descending branch between the numerical and experimental results shown 

in Figs. 5(d)-(f) is due to the constitutive model of concrete adopted in OpenSees. As shown in Fig. 

12(a), the constitutive model of CFRP confined concrete is approximated by projecting the stresses 

and strains at points A and B onto the unconfined concrete model. However, there exists a residual 

stiffness after point B in the Kent-Park model. In addition, the difference could be also induced by 

neglecting the slip between the steel bars and concrete.  

As shown in Table 7, the calculated bearing capacity Pnum is higher than the measured one Pexp, 

but the difference is smaller than 10%. Although there are slight differences between the calculated 
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and measured hysteretic loops, the numerical results are still in good agreement with the 

experimental results. 

 

3.4 Low reinforced beam 

 

Low reinforced beam is usually referred to that failure of the beam occurs immediately after 

cracking of the concrete. The reason is that the so much small reinforcement is unable to carry the 

force released by cracking of the concrete. Therefore, the ultimate carrying capacity of a low 

reinforced beam is theoretically no more than the cracking load. The load-deflection curves of the 

low reinforced beams, including the test data and numerical result, are shown in Fig. 15. It can be 

seen that the cracking load is almost same as that of the under-reinforced beam. Before cracking, 

the curves obtained from numerical simulation and test results agree well to each other. However, 

after cracking, they begin to deviate gradually. The test curve exhibits constant load but rapid 

increase of deflection. The numerical curve regains growth with a much lower slope compared 

with the initial stage. The failure modes and cracking distributions obtained from numerical 

analysis and test are given in Fig. 16. In the test, only one principal crack is observed, which 

almost extends to the top surface of the beam. But for the case of numerical simulation, there are 

two apparent cracks presenting in the pure bending segment. This may be attributed to the 

influence of the bond-slip relationship between concrete and the steel bars. In the test study, plain 

round bars were used, which have very poor bond performance with concrete. On the contrary, Eq. 

(8) was experimentally obtained by means of the deformed steel bars.   

The steel stress distributions are shown in Fig. 17 corresponding to the mid-span deflection of 

0.57 mm and 4.0 mm respectively. It can be seen that when the mid-span deflection is 4.0 mm, the 

 

 

  
Fig. 15 Load-displacement curve of the lower-

reinforced beam 

Fig. 17 Stress distribution of the steel bar at 

bottom of the over-reinforced beam 
 

 
 

(a) Numerical simulated result (b) Test photo 
Fig. 16 Failure model of the lower-reinforced beam 
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steel stress at the crack position has run up to 400 MPa. This value is beyond the yielding strength 

of the reinforcement, indicating the steel bars have entered the strain-hardening stage. This is one 

of the main mechanisms which result in the continued, but lower rate increase of load in the 

second phase of the numerical load-deflection curve, as shown in Fig. 15.  

 
 
4. Numerical modeling on RC member under uniaxial tensile loading 
 

The RC member shown in Fig. 18 is chosen as the numerical example to demonstrate the 

analysis procedure of the proposed model. The size of the specimen is 300 mm×100 mm×100 mm 

and aggregate volume fraction is 32.5% by area. Only one centrically positioned rebar with 

diameter of 12 mm is considered. The mechanical parameters for calculation are listed in Table 2. 

The specimen meshed by Voronoi diagram is shown in Fig. 19 with total 6930 elements, 

including concrete element and beam element of steel. The left side of the model is set as the fixed 

boundary and the displacement loading is applied on the right end of steel bar with an increment of 

0.001 mm. 

The cracking development during loading process is presented in Fig. 20. In order to make the 

cracks visibly clearer, the deformation is enlarged 20 times along both vertical and horizontal 

directions. The lower pictures present the simulated cracks corresponding to the upper ones, 

without showing aggregates in order to clearly reveal the initiation and propagation process of 

cracks. It can be seen that the shape and distribution of cracks are quite close to those observed in 

experiments. Additionally, the cracking in specimen firstly initiates on the interface of the coarse 

aggregates, and then propagates around surface of the aggregate. With increase of the applied 

displacement, the cracks begin to extend into the mortar matrix and form a connecting network. 

From Fig. 21, it can also be noted that the crack opening width on surface of the specimen is larger 

than that at the location of steel reinforcement. 

The variation of steel stress along the longitudinal reinforcement is shown in Fig. 21 under 

different applied displacements on the right end. The effect of concrete cracking is obviously 

observed. 
 

 

Table 2 Mechanical parameters of the materials on mesoscale 

Type Young’s modulus E/GPa Poisson ratio  
Tensile strength 

ft/MPa 

Aggregate 50.0 0.25 300 

Mortar 23.6 0.18 3.50 

ITZ 21.6 0.16 1.74 

Reinforcement 210 / 300 

 
 

  
Fig. 18 Configuration of the RC specimen for 

tensile loading 

Fig. 19 The 2D Voronoi diagram of the specimen 

under tensile loading 
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(a) Displacement = 0.2 mm (b) Displacement = 0.5 mm (c) Displacement = 1.0 mm (d) Displacement = 

1.5 

Fig. 20 Cracking development and distribution of concrete under tensile loading 

 

 

Fig. 21 Steel stress distribution along the longitudinal direction 

 

 

5. Conclusions 
 
A numerical model to simulate the mechanical response of RC structures on mesoscale level of 

concrete composite is proposed in the current study. In this method, the concrete and steel 

reinforcements are respectively represented by the Rigid Body Spring Model (RBSM) and the 

beam elements, which are combined by the zero-size link elements. The failure process of RC 

members subjected to tensile or bending load were simulated and compared with the available test 

results. The following conclusions can be drawn: 

 On mesoscale, concrete can be regarded as an composite consisting of coarse aggregate, 

mortar and the interfacial transition zone between the aggregates and mortar in terms of the 

mechanical properties of each phase and the cracking potential among these components. The 

method of including reinforcement into concrete model is practical to describe the role of 

strengthening effect of steel bars and the interaction between concrete and steel. 

 The model can successfully simulate the failure process of the RC members. The 

distribution of cracks within the specimen, as well as the stress distribution of steel bars along their 

longitudinal direction is well demonstrated under various loading levels. It is shown that the 
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numerical results are in good agreement with the experimental observations in terms of the failure 

mode and the load-deformation curves. 
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