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Abstract.  This paper presents a novel harmony search (HS)-based data-driven single input rule modules 
(SIRMs)-connected fuzzy inference system (FIS) for the prediction of stress in externally prestressed 
tendon. The proposed method attempts to extract causal relationship of a system from an input-output pairs 
of data even without knowing the complete physical knowledge of the system. The monotonicity property is 
then exploited as an additional qualitative information to obtain a meaningful SIRMs-connected FIS model. 
This method is then validated using results from test data of the literature. Several parameters, such as initial 
tendon depth to beam ratio; deviators spacing to the initial tendon depth ratio; and distance of a concentrated 
load from the nearest support to the effective beam span are considered. A computer simulation for 
estimating the stress increase in externally prestressed tendon, Δfps, is then reported. The contributions of this 
paper is two folds; (i) it contributes towards a new monotonicity-preserving data-driven FIS model in fuzzy 
modeling and (ii) it provides a novel solution for estimating the Δfps even without a complete physical 
knowledge of unbonded tendons. 
 

Keywords:  bond reduction coefficient; externally prestressed tendon stress; harmony search; monotonicity 

index; single input rule modules (SIRMs)-connected fuzzy inference system (FIS) 

 
 
1. Introduction 
 

Externally prestressed beam is a structural concrete member where the prestressing tendons are 

placed on the outside of the concrete section and are attached by anchors and deviators at discrete 

locations (Naaman and Alkhairi 1991a, Ng 2003). The idea of prestressing tendon placement (or 

sometime known as externally prestressing technique) has been growing rapidly in rehabilitating 

and strengthening the components of existing structure due to progressive aging and corrosion of 

steel reinforcement (Ariyawardena and Ghali 2002, Naaman and Alkhairi 1991a, Ng 2003). 

Comparing to the conventional prestressing technique (i.e., bonded tendon), externally prestressing 
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technique has some advantages, such as simpler to construct, easier to inspect and maintain 

(Naaman and Alkhairi 1991a, Ng 2003). Regardless of its popularity, the structural behaviour of 

externally prestressed beam is still not fully understood due to its complicity compared to the 

conventional prestressing technique (Tan and Tjandra 2007, Zona et al. 2009). The study of 

externally prestressed beam is difficult because of the variation of the tendon eccentricity caused 

by the nonlinear geometric effects on the beams (i.e., second-order effects) (Alkhairi and Naaman 

1993, Ariyawardena and Ghali 2002, Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991a, b, Ng 

and Tan 2006a) and it involved complicated numerical analysis (Alkhairi and Naaman 1993, 

Mutsuyoshi et al. 1995, Rao and Mathew 1996, Zona et al. 2009). 

The common approach used for estimating the stress in externally prestressed tendon at 

ultimate, fps, for an externally prestressed beam is to determine the stress increase caused by an 

external loading(s), Δfps, beyond the effective prestress, fps, i.e., fps=Δfps+fpe. Since the complicated 

analysis is required for an externally prestressed beam, it can be further simplified by a “pseudo-

section analysis” by considering the bond reduction coefficient, Ωu (Alkhairi and Naaman 1993, 

Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991a, Ng 2003). A search in the literature reveals 

that efforts to predict an accurate Δfps (via analytical and/or experimental approaches), either 

directly or indirectly, have been reported. A number of parameters have been identified to have  

contributed to Ωu; e.g., concrete strength, 
'

cf , area of prestressed reinforcement, Aps, area of non- 

prestressed reinforcement, As, span to depth ratio, L/dps0, the effective prestress of prestressing, fpe, 

ratio of initial tendon depth to beam depth, dps0 /h, the ratio of deviators spacing to the initial 

tendon depth, Sd /dps0, ratio of the distance of a concentrated load from the nearest support to the 

effective beam span, Ls /L and so on (Harajli et al. 1999, Mutsuyoshi et al. 1995, Naaman and 

Alkhairi 1991b, Ng 2003). For details, refer to Figs. 1-2. 

To predict fps at ultimate flexural failure, numerical technique (Pisani 2009), nonlinear analysis 

(Dall’Asta et al. 2007, Zona et al. 2009), rational analysis (Ozkul et al. 2008), and finite element 

analysis (Lou and Xiang 2006, Sivaleepunth et al. 2006, 2007) have been adopted to estimate Δfps 

analytically. However, it was argued that the aforementioned analytical solutions maybe tedious 

 

 
 

 
 

Fig. 1 Strain and stress distributions at critical section of an externally prestressed beam at ultimate 

flexural limit state. (Ng 2003) 
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Fig. 2 Type of loading and configurations of external tendons and deviators (Ng 2003) 

 

 

due to the second-order effects (Harajli et al. 1999, Mutsuyoshi et al. 1995) and maybe 

inconsistent with actual test values (He and Liu 2010, Nataraja et al. 2006, Sivaleepunth et al. 

2006). Many tests had been carried out to estimate fps, that is, indirectly estimating, Ωu (Alkhairi 

and Naaman 1993, Ariyawardena and Ghali 2002, Harajli et al. 1999, Lee et al. 1999, Mutsuyoshi 

et al. 1995, Naaman and Alkhairi 1991a, b, Ng 2003). Various statistical tools, e.g., linear 

regression (Naaman and Alkhairi 1991a) and correlation (Ng 2003), were used to approximate Ωu. 

These lines of study result in various approximated mathematical models which are able to 

describe a set of experimental data. However, it is realized that most of these equations may not 

cover all the parameters that have significant effects on Δfps and tend to overestimate it. 

Instead of using statistical tools in approximating Δfps, soft computing approach is an 

alternative solution to solve this approximation problem. The soft computing model introduced 

herein is a data-driven harmony search (HS) zero-order single input rule modules (SIRMs)-

connected fuzzy inference system (FIS) hereafter abbreviated as HS-SIRMs connected FIS. FIS 

model is used because of its interpretability capability to express the behaviour of the system in a 

human understandable way (Jin 2000). It is worth mentioning that the use of fuzzy set related 

techniques in civil engineering is new. It is a popular research direction in the predictions of 

compressive strength (Subaşı et al. 2012) and shear strength (Nasrollahzadeh and Basiri 2014) of 

concrete. SIRMs-connected FIS is chosen because of its capability to overcome the issue related to 

the curse of dimensionality when the number of input increases (Yubazaki et al. 1997). To improve 

the validity of the resulting SIRMs-connected FIS model, additional qualitative knowledge (i.e., 

monotonicity property) is imposed in the modelling process. Three non-dimensionalised 

parameters (i.e., dps0 /h, Sd /dps0, and Ls /L) are chosen. HS is then used to search for an SIRMs-

connected FIS model which best fit the experimental data. To preserve the monotonicity property, 

monotonicity index (MI) from previous works (Lau et al. 2013, Tay et al. 2012) is used as the 

constraint of the HS search. 

This study is significant because it contributes to a new data-driven SIRMs-connected FIS 

model with monotonicity preserving capability. A musical-inspired meta-heuristic optimizer (i.e., 

HS) is used to search for a set of parameters that best describe the stress increase in the external 

tendons. The proposed approach may further lead to save the computational time and reduce the 

analysis cost of externally prestressed beams. 
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2. Background 
 

In this section, existing prediction equations for externally prestressed tendon using simplified 

method (i.e., pseudo-section analysis) is described. This is followed by a review of a SIRMs-

connected FIS, monotonicity index (MI), and HS. 

 

2.1 Review of prediction equations 
 

Several pseudo-section analysis equations based on Ωu have been developed to evaluate the fps 

and flexural strength of externally prestressed beam (Alkhairi and Naaman 1993, Mutsuyoshi et al. 

1995, Naaman and Alkhairi 1991b, Ng and Tan 2006a, Ng 2003). 

Naaman and Alkhairi (1991) proposed that  
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in which Eps is modules of elasticity of tendon; εcu is concrete strain in top tendon at ultimate; dps0 

is initial depth of the external tendon; c is depth of neutral axis at critical section at ultimate; L is 

total span length; fpe and fpy is effective prestress and yield strength of prestressing tendons 

respectively. 

Mutsuyoshi et al. (1995) then modified Ωu in Naaman’s Equation (Naaman and Alkhairi 1991a) 

based on a numerical analysis and introduced a depth reduction factor, Rd, to estimate the tendon 

depth at ultimate. The tendon stress is given as 
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with the depth reduction coefficient given by 
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and bond reduction coefficient given by  
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where Sd is deviator spacing; b is beam width of compression zone; Ld is distance between loading 

points; As, ds, and fy are area, depth and yield strength of tension reinforcement respectively; and  
'

cf  is cylinder compressive strength of the concrete. 

Aravinthan et al. (1997) then improved the equation proposed by Mutsuyoshi et al. (1995) 

based on the investigation on simply-supported externally prestressed beams. The proposed 

equation considered several factors that influenced the second-order effects such as: distance 

between deviators-to-span ratio, Sd /L, span-to-effective depth ratio, L/dps0, bonded-to-total tendon 

area ratio Aps,int /Aps,tot.  

The Ωu is proposed as 
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with depth reduction factor given as 
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From a series of theoretical and experimental investigations, Ng (2003) showed that the span to 

depth ratio, L/dps0, has insignificant effect on Δfps. A new dimensionless parameter, Sd /dps0, is 

introduced to cater for the second-order effects for longer span beam. Ng (2003) proposed a 

modified equation for Ωu using the correlation of average strains in the external tendons obtained 

through the rational analysis based on strain compatibility and force equilibrium on externally 

prestressed beam 
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Fig. 3 Fuzzy rules for a zero-order SIRMs-connected FIS model 

 

with coefficient accounting for second-order effect given as 
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where h is beam height and Ls is shear span. 

The preceding descriptions have identified several significant non-dimensionless parameters 

(i.e., dps0 /h, Sd /dps0, and Ls /L) which then served as the basis for prediction of external tendon 

stress, fps, for externally prestressed beams using HS-SIRMs connected FIS model, which 

indirectly approximates the bond reduction coefficient, Ωu. 

 

2.2 A general formulation of the zero-order SIRMs-connected FIS 
 

A relatively new fuzzy inference model, SIRMs-connected FIS model is proposed for multi-

input fuzzy system with n -input (Yubazaki et al. 1997). Consider a zero-order SIRMs-connected 

FIS model with n -input (i.e.,  ; xfy  ), where  nxxxx ,...,, 21  and 

 n
n
jjjn cccAAAwww ,...,,;,...,,;,...,, 21

21
21 . It consists of n fuzzy rule modules as in Fig. 3.  

Note that SIRM-i represents the i-th rule module, where xi is the sole variable in the antecedent, 

where i = 1, 2,…,n. ij
iR  is the j-th rule in SIRM-i, where j = 1,2,…,mi, while ij

ic  is a variable 

output value in the consequent part. A fuzzy rule ij
iR  can be viewed as a mapping from ij

iA  to 
ij

ic . 

The output of SIRM-i, i.e., yi(xi) is obtained using Eq. (10). The membership function (MF) for 
ij

iA  is denoted as  i
j

i xi . The final inference result of SIRMs-connected FIS is obtained by a 

weighted sum of rule modules, as in Eq. (11). In which ]1,0[iw  reflects the relative importance 

of the SIRM-i which is defined according to the contribution of the input item to the system 

performance. 
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2.3 A Monotonicity index (MI) for zero-order SIRMs-connected FIS 
 

Let  xf  denote as n-input zero-order SIRMs-connected FIS model, where 

  nn XXXxxxx  ...,...,, 2121 . The i-th input in x  is represented by xi where ii Xx   

and i=1,2,…,n. A sequence, s , denotes a subset of x , where xi is excluded from s , i.e., xs  ; 

sxi  . The definition for monotonicity of  xf  can be formally written as:  

Definition 1 An SIRMs-connected FIS model is said to fulfill the monotonicity increasing or 

decreasing property between its output, y , and its input, ix , when y  monotonically increases 

or decreases respectively, as ix  increases, i.e.,    ',, ii xsfxsf   or    ',, ii xsfxsf  , 

respectively, where iii Xxx  '
.  

The proposed procedure for MI is summarized as follows: 

(i) Determine the upper and lower limits of the universe of discourse for ix , and denote as ix  

and ix respectively. 

(ii) Divide ix  domain to in  divisions. Determine the grid size of ix ,   iiii nxxs  . 

(iii) Compare each pair of  
isiii nsxy   and   1

isiii nsxy  with a function denote as 

  
isiii nsxymonotone   . Eq. (12) or Eq. (13) is adopted for a monotonic increasing or 

decreasing relationship respectively. 

  
    
    









10

11

ii

ii

i

siiisiii

siiisiii

siii nsxynsxy if 

nsxynsxy if 
nsxy  monotone  (12) 

 

  
    
    









10

11

ii

ii

i

siiisiii

siiisiii

siii nsxynsxy if 

nsxynsxy if 
nsxy  monotone  (13) 

 

(iv) Obtain the MI between yi and xi for an SIRMs-connected FIS model using Eq. (14) 
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Fig. 4 Pseudo code for HS algorithm (Geem et al. 2001) 
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Fig. 5 Fuzzy rules for a zero-order SIRMs-connected FIS model 

 

 

2.4 Harmony search (HS) algorithm 
 

The SIRMs-connected FIS model is then optimized using a music-inspired meta-heuristic 

optimizer (i.e., HS). The HS is conceptualized using the musical process of searching for a perfect 

state of harmony. HS is chosen because it does not require initial values for the decision variables. 

Besides, it uses a stochastic random search based on the memory considering rate (HMCR) and the 

pitch adjusting rate (PAR) so that derivative information is unnecessary (Geem et al. 2008, Geem 

et al. 2001). Consider an optimization problem with m variables (i.e.,  mzzzz ,...,, 21 ). The aim 

is to search for a set of z  such that  zg  is optimized. Fig. 4 summarizes the optimization 

procedure for HS. 

 
 
3. Proposed framework 
 

In this section, the HS-SIRMs connected FIS model is expressed as a constraint optimization 

problem. In this study, the non-dimensionalised parameters considered are: dps0/h, Sd/dsp0, and Ls/L. 

 
3.1 The zero-order SIRMs-connected FIS for estimating Δfps 

 
 

A zero-order SIRMs-connected FIS model with three inputs (i.e.,  ; xff ps  , where 
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 LLdShdx spsdps  , , 00  and θ is the parameters describing the model is considered. It 

consists of three fuzzy rule modules as show in Fig. 5, i.e., i = 1,2,3. SIRM – dps0/h represents the 

dps0/h rule module, where 1

1

j
A  is the sole variable in the antecedent. ijR1  is the ji 

-th rule in 

SIRM - dps0/h, where ji = 1,2,…,mi and ijc1  is a numerical output in the consequent or fuzzy 

singleton. Thus, a fuzzy rule ijR1  can also be viewed as a mapping from 1

1

j
A  to ijc1 , i.e., 

iii jjj
cAR 111 :  . The same procedure applies to modules SIRM – Sd/dps0 and SIRM – Ls/L. 

The zero-order SIRMs-connected FIS model is written as Eq. (15). 
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3.2 Monotonicity index (MI) 
 

The monotonicity relationship between the inputs and output of the zero-order SIRMs-

connected FIS model can be observed from experiments. It is generally agreed that when dps0/h 

increases, Δfps increases. Besides, when Sd /dps0 and Ls/L increase, Δfps decrease (Ng 2003). An 

input  LLdShdx spsdpsi  , , 00  is considered, the proposed procedure is summarized as 

follows: 

(i) Determine the upper and lower limits of the universe of discourse for ix , and denote as ix  

and ix respectively. 

(ii) Divide ix  domain to in  divisions. Determine the grid size of ix ,   iiii nxxs  . 

(iii) Compare each pair of  
ii siips nsxf   and   1

ii siips nsxf  with a function 

denote as   
ii siips nsxf  monotone  . Eq. (16) or Eq. (17) is adopted for a monotonic 

increasing or decreasing relationship respectively. 
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(iv) Obtain the MI between 
ipsf  and ix  for an SIRMs connected FIS model using Eq. (18) 
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In this paper, iMI  is preprocessed with Eq. (19) 






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
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1 ,0
'

r

r

i
MI

MI
MI  (19) 

 

3.3 A Monotonicity preserving HS-SIRMs connected FIS model for estimating Δfps 
 

A HS-SIRMs connected FIS model, i.e.,  ; xff ps  , is considered. A system identification 

problem attempts to determine a set of ' , in such a way that  '; xf  best represents a system 

when it is observed by j  desired input-output pairs of data, i.e.,  
kpsk fx , , where 

      
kskpsdkpsk LL,dS,hdx 00 , k=1,2,…,j. Fig. 6 shows the schematic diagram of parameter 

identification for HS-SIRMs connected FIS. 

A data set composed of j  desired input-output pairs  
kpsk fx , , where k =1,2,3,…, j, is used 

to construct an HS-SIRMs connected FIS model. The inputs (i.e., dps0 /h, Sd /dps0, and Ls /L) are 

applied to both the system and the HS-SIRMs connected FIS model, while the square of the 

difference between the target system output (i.e., Δfpsi) and the model output (i.e., 
ipsf ), is  

 2
ii psps ff  . The total of  2

ii psps ff   for the j  set of data is used to give an indication 

of how near the FIS model with the target system is. The constrained optimization problem is 

formulated as Eq. (20) 

Subjected to 1' iMI , in which  3 2, ,1i  

Thereafter, the objective function to be minimized by HS is as shown in Eq. (21). 

 

 

  

Fig. 6 Proposed model 
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  



3

1

'Error  

n

i

iMIwfunctionObjective   (21) 

where w is a weightage constant. 

 

 

4. Model development 
 

4.1 Data collection 
 

A total of 27 beams (j = 27) from experimental investigations were used to examine the 

applicability of the proposed model in estimating Δfps and fps of the externally prestressed beams. 

The flexural strength of the beams were analysed based on strain compatibility and force 

equilibrium on beams reported in Table 1 and Figs. 1-2. These beams were: (i) Series T, ST, and 

SR beams with straight tendons, tested under third-point loading in (Ng 2003); (ii) Series M beams 

with an effective span of 5200 mm and draped tendons, tested under two symmetrical loads spaced 

at 900 mm apart by (Mutsuyoshi et al. 1995) and (iii) Series Y with an effective span of 4000 mm 

and straight tendons, tested under two symmetrical loads spaced at 600 mm apart (Yaginuma 

1995). Data used in this paper is obtained from (Mutsuyoshi et al. 1995, Ng 2003), as summarized 

in Table 1. 

 

4.2 Simulation  
 

In the simulation, Gaussian membership function (MF) is used. It is further assumed that there 

are five Gaussian MFs for each of the non-dimensional parameters. The parameter setting for HS-

SIRMs connected FIS model is depicted in Table 2.  

 

 

5. Results and discussions 
 

5.1 Comparison with previous equations 
 

Fig. 7 shows the plot for Δfps (predicted) versus Δfps (experimental) and fps (predicted) versus fps 
(experimental) in externally prestressed tendons between the existing prediction equations 
(Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991a, Ng 2003) and the proposed model. It is 
observed that most of the existing prediction equations can reasonably predict fps, but they tend to 
overestimate Δfps, except for Ng (2003) which underestimates Δfps, and showed the scattering 
phenomenon far from the perfect line. Besides, it is observed that the existing prediction equations 
(Mutsuyoshi et al. 1995, Naaman and Alkhairi 1991b, Ng 2003) tend to give inconsistent and 
unconservative results in predicting Δfps 

and fps. 
Table 3 further shows the results of the correlation between the experimental results (Alkhairi 

and Naaman 1993, Mutsuyoshi et al. 1995, Ng 2003) and the proposed model with and without 
considering monotonicity property for beams listed in Table 1 and the predicted values. The HS-
SIRMs connected FIS model is first tested with the data from Table 1 without considering MI as a 
constraint. The study shows a relatively good coefficient correlation of 0.8468 and 0.9538 
respectively for Δfps, and fps 

in the external tendons at ultimate, with relatively less variability 
compared with other proposed equations (Naaman and Alkhairi 1991b; Mutsuyoshi et al. 1995; Ng 
2003). 
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Table 1 Parameter for predicting bond reduction equations [18-21] 

 

Table 2 Parameter setting used for the simulation 

Parameter Setting 

Harmony memory size (HMS) 30 

Harmony memory consideration rate (HMCR) 0.90 

Pitch adjusting rate (PAR) 0.20 

Number of iterations 10,000 

Number of inputs, N 3 

Number of MF for each input 5 

Grid size for MI, in  1000 

Weight, w  0; 1,000,000 

Beam No 0psd dS
 

hd ps0
 

LLs  psf
 psf

 

M-1 7.2000 0.7692 0.4135 357.4000 1347.6000 

M-2 12.0000 0.7692 0.4135 341.5000 1331.7000 

NA-1 3.5211 0.7100 0.4250 179.2000 670.3000 

OA-1 14.2349 0.7025 0.4250 160.9000 651.8000 

SA-1 2.1127 0.7100 0.4250 187.8000 676.7000 

SR1 0.0000 1.1000 0.3333 815.5000 1784.5000 

SR2 0.0000 1.1000 0.3333 602.6000 1647.6000 

SR3 0.0000 1.1000 0.3333 422.4000 1809.4000 

SR4 0.0000 1.1000 0.3333 426.6000 1737.6000 

SR5 0.0000 0.7000 0.3333 621.3000 1704.3000 

SR6 0.0000 0.7000 0.3333 360.7000 1462.7000 

ST-1 0.0000 0.6667 0.3333 443.2000 1207.6000 

ST-2 0.0000 0.6667 0.3333 380.9000 1152.1000 

ST-2C 0.0000 0.6667 0.3333 330.2000 1099.3000 

ST-2P 0.0000 0.6667 0.5000 259.2000 1017.7000 

ST-3 0.0000 0.6667 0.3333 409.2000 1159.6000 

ST-4 0.0000 0.6667 0.3333 366.2000 1122.7000 

ST-5 0.0000 0.6667 0.3333 269.6000 1029.9000 

ST-5A 10.0000 0.6667 0.3333 376.0000 1137.7000 

ST-5B 7.5000 0.6667 0.3333 412.4000 1154.2000 

T-0 15.0000 0.6667 0.3333 410.8000 1707.5000 

T-0A 22.5000 0.6667 0.3333 260.7000 1005.1000 

T-0B 30.0000 0.6667 0.3333 224.0000 965.9000 

T-1 0.0000 0.6667 0.3333 589.5000 1786.0000 

T-1A 0.0000 0.8333 0.3333 810.9000 1137.6000 

T-1D 0.0000 0.8333 0.3333 954.9000 1242.8000 

T-2 5.0000 0.6667 0.3333 527.5000 1709.4000 
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(a) Experimental psf  versus predicted psf  

 
(b) Experimental psf  versus predicted psf  

Fig. 7 Comparison of experimental results with predicted values 
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5.2 Comparison between model with and without MI 
 

An evaluation of HS-SIRMs connected FIS model with and without MI as a constraint was also 
carried out in this study. It is observed that although HS-SIRMs connected FIS model without MI 
yields better correlations and less variability compared to other researchers as in Table 3, the 
monotonicity property of the model is not preserved as shown in Fig. 8. To improve the validity of 
the model, MI is considered as a constraint to the HS-SIRMs connected FIS model. It is identified 
that the model yields slight decrease in correlation coefficient value and variability but the 
monotonicity property of the model is fulfilled as depicted in Fig. 8. 

 

Without MI as a constraint With MI as constraint 

  
(a) Surface plot for Sd /dps0 = 12 

  

(b) Surface plot for dps0/h = 0.7 

  

(c) Surface plot for Ls/LI = 0.4 

Fig. 8 Surface plots for the effects of MI to HS-SIRMs connected FIS model 
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Table 3 Correlation of test results and theoretical predictions for Δfps and fps 

Methodology 

Stress increase, psf  Ultimate stress, psf  

Correlation 

Coefficient 

Variability within 

95% confidence 

Correlation 

Coefficient 

Variability within 

95% confidence 

Proposed Without MI 0.8468 0.0874 0.9538 0.0321 

Proposed With MI 0.7815 0.1097 0.9262 0.0404 

Naaman  

(Naaman and Alkhairi 1991b) 
0.7356 0.1572 0.8661 0.0563 

Mutsuyoshi  

(Mutsuyoshi et al. 1995) 
0.7228 0.1610 0.8613 0.0569 

Ng (Ng 2003) 0.8573 0.0971 0.9532 0.0308 

 

 

Fig. 8 shows in detail the surface plot for the HS-SIRMs connected FIS model with and without 
MI as a constraint. By considering Sd /dps0 to be constant (i.e., Sd /dps0 = 12), it is observed that 
when the ratio of dps0 /h increases from 0.65 to 0.90, the observed output increases monotonically; 
when the ratio of Ls /L increases from 0.30 to 0.50, the observed output decreases monotonically. 
Furthermore, when the ratio of dps0/h is kept to be constant (i.e., dps0 /h = 0.7), the increased in the 
ratio of Sd /dps0 (i.e., 0 to 30) and Ls /L (i.e., 0.30 to 0.50) caused the observed output to decrease 
monotonically. Eventually, when the ratio of Ls /L is kept constant (i.e., Ls /L = 0.4), the increase in 
the ratio of Sd /dps0 (i.e., 0 to 30) causes the observed output to decrease, while the increase in the 
ratio of dps0/h (i.e., 0.65 to 0.90) causes the observed output to increase monotonically. 

 
 

6. Conclusions 
 

In this paper, HS-SIRMs connected FIS model is proposed in a data-driven FIS model. The 
objective function is formulated as a constrained optimization problem. A HS optimization 
procedure is then used to search for a set of variables that obey the monotonicity property as the 
sufficient conditions. Experiments are conducted with data obtained from the prediction equation 
developed by other researchers to study Δfps and fps in externally prestressed beams. The results 
show that the proposed approach is useful to generate a HS-SIRMs connected FIS model with HS 
optimization procedure for the predicting Δfps and fpswith acceptable computation complexity and 
error.  

The parametric study was carried out for determining Δfps and fps in externally prestressed 
beams. The influential non-dimensionalised parameters include (i) dps0/h; (ii), Sd/dps0; and (iii) Ls /L 
were examined by HS-SIRMs connected FIS model analysis. The proposed model overall provides 
a better correlation for predicting Δfps and fps compared with other existing prediction equations 
while preserving the monotonicity property of the model. 
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