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Abstract.  To solve structural optimization problems, it is necessary to integrate a structural analysis 
package and an optimization package. There have been many packages that can be employed to analyze 
reinforced concrete plane frames. However, because most structural analysis packages suffer from closeness 
of systems, it is very difficult to integrate them with optimization packages. To overcome the difficulty, we 
proposed a possible alternative, DAMDO, which integrates Design, Analysis, Modeling, Definition, and 
Optimization phases into an integration environment as follows. (1) Design: first generate many possible 
structural design alternatives. Each design alternative consists of many design variables X. (2) Analysis: 
employ the structural analysis software to analyze all structural design alternatives to obtain their internal 
forces and displacements. They are the response variables Y. (3) Modeling: employ artificial neural networks 
to build the models Y=f(X) to obtain the relationship functions between the design variables X and the 
response variables Y. (4) Definition: employ the design variables X and the response variables Y to define 
the objective function and constraint functions. (5) Optimization: employ the optimization software to solve 
the optimization problem consisting of the objective function and the constraint functions to produce the 
optimum design variables. The RC frame optimization problem was examined to evaluate the DAMDO 
approach, and the empirical results showed that it can be solved by the approach. 
 

Keywords:  artificial neural networks; optimization; reinforced concrete; plane frame 

 
 
1. Introduction 

 

The purpose of the applications of optimization theory on structural design is mostly to reduce 

the consumption of engineering materials so as to reduce project cost (Yeh 1999; Iranmanesh and 

Kaveh 1999; Papadrakakis, et al. 1998; Kodiyalam and Gurumoorthy 1997; Adeli and Karim 1997). Since 

structural analysis is the only function considered in the development of most structural analysis 

packages, they lack the structural optimization design function. Therefore, to solve structural 

optimization problems, it is necessary to combine a structural analysis software and an 

optimization software into an integrated system. Although there have been many structural 

analysis packages, most of them suffer from closeness of systems; hence, it is very difficult to 

combine them with optimization packages. For example, there have been many packages that can  
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Fig. 1 The concept of the traditional approach of Structural Optimization with neural networks 

 

 

be employed to analyze reinforced concrete plane frames; however, it is very difficult to combine 

them with optimization packages. 

There has been much published literature of applications of artificial neural networks to 

optimize the design of structure. For example, Yeh and Chen (2009) proposed to use neural 

networks to predict the optimal design of reinforced concrete simple beams. The objective 

function is to minimize the total cost of tension reinforcement steel, stirrups and concrete. Meon et 

al. (2012) proposed to employ neural networks to predict the optimal design of frame structures. 

Result indicates that the neural networks can predict the optimal solution with proper training but 

this ability depends on the complexity of the frame structural optimization itself.  

However, most of them employed the design conditions as the input variables, and the optimal 

designs solved by other structural optimization packages as the output variables. A lot of data was 

collected (input-output variable pairs) to build the optimal design database. Then, neural networks 

were employed to learn the knowledge implied in the database. The trained neural network 

becomes the optimal design system, which can predict the optimal design (output variables) 

according to the engineer’s specific design conditions (input variables). The essential difficulty of 

the approach is that it must have a traditional structural optimization package to produce the 

optimal designs to collect the required data sets, which may be impractical in the real world. The  
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Optimal design of reinforced concrete plane frames using artificial neural networks 

 
Fig. 2 The concept of DAMDO (Design, Analysis, Modeling, Definition, and Optimization) 

 
 
concept of the traditional approach of structural optimization with neural networks is shown in   

Fig 1. 

To overcome the difficulty, we proposed a possible alternative, DAMDO, which combines 

Design, Analysis, Modeling, Definition, and Optimization phases into an integrated environment. 

The key concept of DANDO is, through the Design, Analysis, and Modeling phases, to create a set 

of neural network models of response variables of structures to work as an alternative for the 

structural analysis package. Because these trained neural network models can be considered as a 

set of regular functions, it is easy to employ them to define the users’ specific optimization 

problems in the Definition phase, and then the optimization problems can be solved with the 

optimization package in the Optimization phase. 

In this approach, since the structural analysis package is employed in Step 2 (Analysis), and the 

optimization package is run in Step 5 (Optimization), it is not necessary to directly couple the 

structural analysis package with the optimization package into an integrated system. 

The paper is set up as follows. Section II presents the methodology applied. We first solved the 
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optimal designs of the RC beams and columns in Section III and IV. Then, we examined three case 

studies to validate the applicability of neural networks in solving the optimal designs of the RC 

frames in Section V. We concluded in Section VI. 

 
 
2. Methodology of DAMDO 

 
2.1 The DAMDO approach 

 
This study proposed an alternative, DAMDO, which combine Design, Analysis, Modeling, 

Definition, and Optimization phases into an integrative environment as follows. Its architecture is 

shown in Fig. 2.  

 

(1) Design: first randomly generate many possible structural design alternatives. Each design 

alternative consists of many design variables X. For example, a structural design alternative 

consists of a set of width and depth of cross-section of member. 

(2) Analysis: employ the structural analysis software to analyze all structural design 

alternatives to obtain their internal forces and displacements. They are the response variables Y. 

(3) Modeling: employ artificial neural networks to build model Y = f(X) to obtain the 

relationship functions between the design variables X and the response variables Y. 

(4) Definition: employ the design variables X and the response variables Y to define the 

objective function and constraint functions. 

(5) Optimization: employ the optimization software to solve the optimization problem 

consisting of the objective function and the constraint functions to produce the optimum design 

variables X*. 

 
2.2 Artificial neural networks 
 
The steps 1 to 3 in Section 2.1 are used to create some models of response variables to be an 

alternative for the structural analysis package. Because these models are a set of regular functions, 

it is easy to define the users’ specific optimization problems in step 4, and then the optimization 

problems can be solved with the optimization package in step 5. 

The reason that artificial neural networks is employed instead of the traditional regression 

analysis in step 3 is that in structures the relations between internal forces and displacements and 

cross-sectional areas of members are often nonlinear. The greatest advantage of artificial neural 

networks is their native nonlinear system characteristic, which makes them able to build very 

accurate nonlinear models (Zhang and Subbarayan 2002a, 2002b; Lagaros et al. 2005; Cheng and 

Li 2008; Cheng and Li 2009; Möller et al. 2009; Gholizadeh and Salajegheh 2010; Patel and Choi 

2012). An artificial neural network is a mimic biological neural network information processing 

system, and has many features and advantages similar to the human brain. It uses a huge number 

of simple artificial neurons to mimic the ability of a biological neural network. Artificial neurons 

are the simple simulation of biological neurons. They receive information from the outside 

environment or other artificial neurons, and make a very simple operation, and output the results to 

the external environment or other artificial neurons. Detailed algorithms can be found in the 

literature (Haykin 2007).  

The classical back-propagation multilayer perceptron (MLP) (Haykin 2007) was employed. To 
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Optimal design of reinforced concrete plane frames using artificial neural networks 

evaluate the robustness of network architectures and parameters in building neural networks, we 

used the same architectures and parameters for RC beams, columns, and frames. The following 

network architectures were used: one hidden layer with eight processing elements using sigmoid 

transfer function. The following parameters were used: learning cycle = 5000 times; the range of 

initial weights = (-0.3, 0.3), initial learning rate = 1.0, learning rate reduction factor = 0.95, 

learning rate lower limit = 0.1, initial momentum factor = 0.5, momentum factor reduction factor = 

0.95, and momentum factor lower limit = 0.1. We found that these network architectures and 

parameters are rather robust in building accurate neural networks. 

 

 
2.3 The optimization and genetic algorithms 
 
In dealing with a constrained optimization problem, DAMDO adopts the exterior penalty 

function method to convert the constrained optimization problem into an unconstrained 

optimization problem. The principle of the method is adding the penalty function to the objective 

function when some constraint functions are violated. The algorithm is as follows (Yeh 1999): 

(1) Convert the constrained optimization problem into an unconstrained optimization 

problem: 

Minimize the objective function:  

φ( ) = F( ) + κP( )x x x  (1) 

Maximize the objective function:  

φ( ) = F( ) - κP( )x x x  (2) 

where the penalty function is: 

   
2s

j

j=1

P( )= Max 0, gx x  (3) 

where, )(xg j is an inequality constraint function, 0)( xg j ; and s is the number of inequality 

constraint functions 

(2) Solve the unconstrained optimization problem by unconstrained optimization techniques.  

(3) Increase the penalty factor by 

  c                                             (4) 

where, c is the amplification factor, and c > 1. 

(4) Repeat step (2) ~ (3) until convergence is reached. 

Furthermore, the RC frame optimal design problem is a discrete optimization problem because 

the number of reinforcement steels and the increment of width and depth of RC members are 

discrete. To solve the discrete optimization problem, DAMDO adopts the genetic algorithms (GA) 

(Goldberg 1989) to solve the abovementioned unconstrained optimization problem. The greatest 

advantage of genetic algorithms is their native discrete optimization characteristic, which makes 

them able to easily solve the discrete optimization problems. Detailed algorithms can be found in 

the literature (Goldberg 1989). 

To run the genetic algorithm, some control parameters need to be specified. To evaluate the 

robustness of these parameters, we used the same parameters for RC beams, columns, and frames. 

The control parameters in this study are as follows: population size = 100; crossover rate = 60%; 

mutation rate = 0.5%; initial penalty factor =1.0; amplification factor=1.1; evolution generation = 
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100. We found that these parameters are rather robust for the optimization of RC members and 

frames. 

 
 
3. RC beam design 

 

3.1 Method 

 Design variables 

The design variables of the RC beam include width of beam (X1), effective depth of beam (X2), 

number of tension reinforcement steels (X3), size of tension reinforcement steel (X4), number of 

compression reinforcement steels (X5), size of compression reinforcement steel (X6), yield strength 

of reinforcement steel (X7), and compressive strength of concrete (X8). A typical RC beam is 

shown in Fig. 3. 

 Objective function 

The objective function is the total cost of the reinforcement steel and concrete. 

Cost ＝ Cc ×  b ×  h ＋ Cr × (As+ As') (5) 

Where Cc = unit price of concrete; Cr= unit price of reinforcement steel; b=width of beam; 

h=depth of beam; As=total area of tension reinforcement steel; As'= total area of compression 

reinforcement steel. 

 Constraint functions 

There are three types of inequality constraints formulated according to the requirements 

presented in the design code. 

(1) Minimum resisting moment 

The strength requirement for flexure takes the inequality form of 

un MM   (6) 

where, ϕ =0.9 is the strength reduction factor for flexure; Mn is the nominal resisting moment; 

uM
 is the factored bending moment. Although the strength reduction factor in the current ACI 

code is a function of the strain in the extreme tensile reinforcement, which varies from 0.65 to 0.9, 

the RC design code in Taiwan (Civil 401-86a) fixes the factor to 0.9 for RC beam members. 

(2) Maximum reinforcement steel ratio 

The RC design code in Taiwan (Civil 401-86a) limits the amount of tension steel to not be 

more than 75% of that required for a balanced section, that is, 
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max   (7) 

where 

          
bd

As  (8) 

 

             ρmax =0.75ρb +ρ' ( fs'/ fy) 
(9) 

 

 

 
Fig. 3 RC beam 

 
Table 1 Minimum width of beam (cm) 

# of reinforcement 

size of reinforcement 
2 3 4 5 6 7 8 9 10 

#5 15 20 24 28 32 37 41 44 49 

#6 17 20 25 29 34 38 43 47 51 

#7 17 22 27 30 36 41 46 51 56 

#8 18 23 28 33 38 43 48 53 58 

#9 19 24 30 36 42 47 53 58 64 

#10 20 27 33 39 46 52 58 65 71 

#11 20 28 36 42 50 57 64 71 79 
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Table 2 The range of design variables of RC beam 

design variables range 

width of beam (cm) (X1) 15~78 

effective depth of beam (cm) (X2) 20~83.5 

number of tension reinforcement steels (X3) 2~9 

size of tension reinforcement steel (X4) #5~#11 

number of compression reinforcement steels (X5) 2~9 

size of compression reinforcement steel (X6) #5~#11 

yield strength of the reinforcement fy (ton/cm
2
) (X7) 2.8, 3.5, 4.2, 5.6 

compressive strength of concrete fc' (kg/cm
2
) (X8) 140, 175, 210, 280, 350, 420 

 

Table 3 The optimal design of RC beam 

Design variables or functions 
This study Literature  

(Yin, 2009) Sol. 1 Sol. 2 

width of beam (cm) (X1) 36 35 28 

effective depth of beam (cm) (X2) 52 50 72.5 

number of tension reinforcement steels (X3) 4 4 3 

size of tension reinforcement steel (X4) 11 11 11 

number of compression reinforcement steels (X5) 2 2 4 

size of compression reinforcement steel (X6) 7 9 8 

yield strength of reinforcement steel (ton/cm
2
) (X7) 5.6 5.6 5.6 

compressive strength of concrete (kg/cm
2
) (X8) 420 420 350 

Exact resisting moment nM  100.3 100.3 98.71 

Objective function (NT dollar/meter of beam) 451 427 487 

(3) Minimum width of beam 

To ensure the effect of the bond between the reinforcement steel and concrete, there must be 

adequate spacing between reinforcement steels. Therefore, the greater the reinforcement steel 

number and size, the greater the required width of beam. 

              minbb   (10) 

where minb = required minimum width of beam shown in Table 1. 

 

3.2 Case study 
 
The RC beam in the literature (Yin 2009) is used as a test problem. Based on the often-used 

materials and customs in Taiwan, this paper selects four kinds of yield strength of the tension 
reinforcement steel: 2.8, 3.5, 4.2, 5.6 ton/cm

2
, and six kinds of compressive strength of the 

concrete: 140, 175, 210, 280, 350, 420 kg/cm
2
. The ranges of design variables of the RC beam are 

listed in Table 2. The factored bending moment is 100 m-ton. The ratio of price per m
3
 of  
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Fig. 4 The concept of DAMDO for RC beam 

 
 

reinforcement steel to concrete is taken as 8 to 1. The price of concrete is 2000 NT dollars per 
cubic meter. 

 The optimum design procedure used in this case study is shown in Fig. 4 and 5 and 
summarized as follows. 

 Step 1. Design 
To collect data to build a predictive model, 100 designs of the RC beam were randomly 

generated in the ranges of design variables. 
 Step 2. Analysis 
The 100 designs were analyzed by a RC beam analysis program to obtain their nominal 

resisting moment. 
 Step 3. Modeling 

The 100 data composed of design variables and nominal resisting moment were employed as the 
training data of the artificial neural network to build the model which can mimic the function of 
the RC beam analysis program; that is, the inputs X of the model are the width of beam (X1), 
effective depth of beam (X2), number of tension reinforcement steels (X3), size of tension 
reinforcement steel (X4), number of compression reinforcement steels (X5), size of compression 
reinforcement steel (X6), yield strength of reinforcement steel (X7), and compressive strength of 
concrete (X8); and the output Y of the model is the nominal resisting moment. To overcome the  
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Fig. 5 The flowchart of DAMDO for RC beam 
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Fig. 6 RC column 

 
 
over-learning trap, cross-validation methodology was adopted. If the correlation coefficients are 
above 0.9, then go to the next step 4; otherwise, randomly generate 100 designs of RC beam, and 
go to step 2. 

 Step 4. Definition 
The design variables X and the response variables Y were employed to define the objective 

function and constraint functions of the RC beam according to the Equation (5)~ Equation (10). 
 Step 5. Optimization 
The optimization software was used to solve the optimization problem consisting of the 

objective function and constraint functions to produce the optimum design variables X*. 
 Step 6. Validation 
The optimum design was analyzed by a RC beam analysis program to obtain their exact 

nominal resisting moment. If all the design constraints are satisfied, then output the optimum 
design; otherwise, randomly generate 100 designs of RC beam which are close to the current 
optimal design, and go to step 2. 

Because the genetic algorithms can generate many optimized solutions, Table 3 shows the best 
two solutions of the RC beam design problem. The results show that the two optimum designs 
obtained by the neural network are better than those in the literature (Yin 2009), which proves that 
the DAMDO approach is feasible and excellent. 
 

 
 
4. RC column design 
 

4.1 Method 

 
Traditionally the RC columns can be designed by looking up the interactive diagram of axial 

force and bending moment, but the process cannot obtain the optimum design. This section will 

explore the feasibility of using the DAMDO approach to obtain the optimal design of the RC 

column. 
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 Design variables 

The design variables of the RC column include width of column (X1), depth of column (X2), 

number of reinforcement steels (X3), size of reinforcement steel (X4), yield strength of 

reinforcement steel (X5), and compressive strength of concrete (X6). A typical RC column is 

shown in Fig. 6. 

 Objective function 

The objective function is the total cost of the reinforcement steel and concrete. 

Cost ＝ Cc ×  b ×  h ＋ Cr ×  As (11) 

where, Cc = unit price of concrete; Cr= unit price of reinforcement steel; b=width of column; 

h=depth of column; As=total area of reinforcement steel. 

 Constraint functions 

There are four types of inequality constraints formulated according to the requirements 

presented in the RC design code in Taiwan (Civil 401-86a) 

Minimum resisting moment 

The strength requirement for the bending moment takes the inequality form of 

un MM   (12) 

where, ϕ =0.65 is the strength reduction factor for the column; Mn is the nominal resisting moment; 

uM is the factored bending moment. 

 

 
Table 4 The range of design variables of RC column 

design variables range 

width of column (cm) (X1) 15~78 

effective depth of column (cm) (X2) 20~83.5 

number of reinforcement steels (X3) 2~9 

size of reinforcement steel (X4) #5~#11 

yield strength of the reinforcement fy (ton/cm
2
) (X5) 2.8, 3.5, 4.2, 5.6 

compressive strength of concrete fc' (kg/cm
2
) (X6) 140, 175, 210, 280, 350, 420 

 
Table 5 The optimal design of RC column 

Design variables or functions This Study 
Literature 

(Song 1996) 

width of beam (cm) (X1) 23 27 

effective depth of beam (cm) (X2) 74 73 

number of reinforcement steels (X3) 6 6 

size of reinforcement steel (X4) #10 #9 

yield strength of reinforcement (ton/cm
2
) (X5) 5.6 5.6 

compressive strength of concrete (kg/cm
2
) (X6) 420 420 

Real resisting moment nM  80.0 80.0 

Real resisting axial force nP  110.8 101 

Objective function (NT dollar/meter of column) 499 518 
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(1) Minimum resisting axial force 

The strength requirement for axial force takes the inequality form of 

when                      
bu PP   : 

un PP     (13) 

when                      
bu PP   : 

un PP     (14) 

where,  =0.65 is the strength reduction factor for the column; nP
 is the nominal resisting axial 

force; 
uP is the factored axial force; 

bP  is the balanced axial force. Although the strength 

reduction factor in the current ACI code is a function of the strain in the extreme tensile 

reinforcement, which varies from 0.65 to 0.9, the RC design code in Taiwan (Civil 401-86a) fixes 

the factor to 0.65 for RC column members. 

(2) Minimum width of column 

To ensure the effect of the bond between the reinforcement steel and concrete, there must be 

adequate spacing between reinforcement steels. Table 1 shows the required minimum width of the 

column. 

(3) Limits of reinforcement steel ratio 

The design code limits the reinforcement steel ratio of column to 1%~8%. 

08.001.0 
bh

As
 (15) 

 
4.2 Case study 

 
The RC column in the literature (Song 1996) is used as a test problem. The ranges of design 

variables of the RC column are listed in Table 4. The factored bending moment is 80 m-ton, and 

the factored axial force is 100 ton. The ratio of price per m3 of reinforcement steel to concrete is 

taken as 8 to 1. The price of concrete is 2000 NT dollars per cubic meter. 

The optimum design procedure used in this case study is similar to that used in the RC beam 

case study. Table 5 shows the results. The optimum design obtained by the neural network is better 

than those in the literature (Song 1996), which proved that the DAMDO approach is feasible and 

excellent. 

 

 
5. RC frame design 
 

5.1 Method 
 

 Design variables 

The design variables of the RC beam include width of beam, depth of beam, number of tension 

reinforcement steels, size of tension reinforcement steel, number of compression reinforcement 

steels, and size of compression reinforcement steel. The design variables of the RC square-type 

column include width of column, number of reinforcement steels, and size of reinforcement steel. 

 Objective function 

The objective function is the total cost of the reinforcement steel and concrete of all the beams 

and columns. 
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 Constraint functions 

The constraint functions of beams and columns are the same as those in Section 3 and 4. 

Moreover, the depth of the beam must be smaller than double the width of the beam, and the depth 

of the column must be the same as the width of the column. 

There are three case studies in this section. 

Case 1. All floor one size design with 5 cm size Increment 

Case 2. One floor one size design with 5 cm size Increment 

Case 3. One floor one size  

 

 
Table 6 The seismic force of each floor 

Floor seismic force (ton)  

Floor 6 65.66 

Floor 5 44.93 

Floor 4 36.37 

Floor 3 27.82 

Floor 2 19.26 

Floor 1 10.7 

 

Table 7 The range of design variables of RC frame 

design variables range 

width of beam (cm) (X1) 15~60 

effective depth of beam (cm) (X2) 20~83.5 

number of tension reinforcement steels (X3) 2~9 

size of tension reinforcement steel (X4) #5~#11 

number of compression reinforcement steels (X5) 2~9 

size of compression reinforcement steel (X6) #5~#11 

width (depth) of column (cm) (X7) 20~120 

number of reinforcement steel of column (X8) 2~30 

size of reinforcement steel of column (X9) #5~#11 

 

 
Fig. 7 RC plane frame 

458



 

 

 

 

 

 

Optimal design of reinforced concrete plane frames using artificial neural networks 

5.2 Case 1. All floor one size design with 5 cm size Increment 
 

In this case study, all members of all floors have the same size. Therefore, there are 6 design 

variables for the beam and 3 design variables for the column, 9 design variables in total. The 

ranges of design variables are shown in Table 7. The size increment is 5 cm for the width and 

depth of beams and columns. 

The optimum design procedure used in this case study is summarized as follows. 

 Step 1. Design 
To collect data to build a predictive model, 100 designs of RC plane frame were randomly 

generated in the ranges of design variables. 

 Step 2. Analysis 
Each RC plane frame was analyzed by the ETABS structural analysis package to obtain the 

internal force of all members. And all the RC beams and columns in each design were analyzed by 

a RC beam and column analysis program to obtain their nominal resisting moment and axial force. 

 Step 3. Modeling 
The 100 data composed of design variables, internal force, and nominal resisting moment and 

axial force were employed as the training data of the artificial neural networks to build the models 

which can mimic the functions of the RC beam, column, and frame analysis package; that is, the 

inputs X of the model are width of beam, depth of beam, etc. The outputs Y of the model are the 

internal bending moment of each beam, the internal bending moment and axial force of each 

column, nominal resisting moment of each beam, and nominal resisting moment and axial force of 

each column. To overcome the over-learning trap, cross-validation methodology was adopted. If 

the correlation coefficients are above 0.9, then go to the next step 4; otherwise, randomly generate 

100 designs of RC frame, and go to step 2. 

 Step 4. Definition 
The design variables X and the response variables Y can be employed to define the objective 

function and constraint functions of the RC frame according to the design conditions presented in 

Ssection 5.1. 

 Step 5. Optimization 
The optimization software can be used to solve the optimization problem consisting of the 

objective function and constraint functions to produce the optimum design variables X*. 

 Step 6. Validation 

The optimum design was analyzed by the ETABS structural analysis package to obtain the 

exact internal force of all members. And all the RC beams and columns were analyzed by the RC 

beam and column analysis program to obtain their exact nominal resisting moment and/or axial 

force. If all the design constraints are satisfied, then output the optimum design; otherwise, 

randomly generate 100 designs of RC frame which are close to the current optimal design, and go 

to step 2. 

Table 8 shows the optimum design obtained by the neural network. We also used the 

perturbation approach, which check all the designs close to the above optimum design, to find the 

alternative optimum design as shown in the last column of Table 8. The optimum design obtained 

by the neural network is better than the one obtained by the perturbation approach, which proves 

that the DAMDO approach is excellent. 
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Table 8 The optimal design of RC frame of Case 1 

Design variables or functions This study 
perturbation 

approach 

Design 

variables of 

beam 

width of beam (cm) (X1) 40 40 

effective depth of beam (cm) (X2) 75 80 

number of tension reinforcement steels (X3) 4 4 

size of tension reinforcement steel (X4) 11 11 

number of compression reinforcement steels (X5) 2 2 

size of compression reinforcement steel (X6) 6 5 

Design 

variables of 

column 

width of column (cm) (X7) 100 95 

number of tension reinforcement steels (X8) 18 16 

size of tension reinforcement steel (X9) 10 11 

Objective function (NT dollar) 825926 846519 

 

Table 9 The optimal design of RC frame of Case 2 

Design variables or functions 
Floor 

1 2 3 4 5 6 

Design 

variables of 

beam 

width 35 40 35 35 35 30 

effective depth 65 75 70 70 70 60 

number of tension rein. 3 4 4 4 4 3 

size of tension rein. 11 11 11 11 11 11 

number of compression rein. 2 2 3 2 2 2 

size of compression rein. 7 9 6 7 5 5 

Design 

variables of 

column 

width 100 95 90 85 75 50 

number of tension rein. 16 14 10 12 6 6 

size of tension rein. 11 9 10 9 11 10 

Objective function (NT dollar) 573193 

 

Table 10 The optimal design of RC frame of Case 3 

Design variables or functions 
Floor 

1 2 3 4 5 6 

Design 

variables 

of beam 

width 30 38 37 36 35 29 

effective depth 60 76 74 72 70 58 

number of tension rein. 3 4 4 4 3 3 

size of tension rein. 11 11 11 11 11 11 

number of compression rein. 2 3 4 2 3 2 

size of compression rein. 6 8 6 7 7 5 

Design 

variables 

of column 

width 95 92 88 81 63 47 

number of tension rein. 18 14 8 12 6 6 

size of tension rein. 11 9 11 9 10 11 

Objective function (NT dollar) 561630 

 

 

5.3 Case 2. One floor one size design with 5 cm size Increment 
 

In this case study, each floor has one size for beams and for columns. Therefore, there are 6 

design variables for the beams of each floor and 3 design variables for the columns of each floor. 

Because there are 6 floors, we have (6+3)*6=54 design variables in total. The ranges of design 
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variables are the same as those in Case 1. The size increment is 5 cm for the width and depth of 

beams and columns. 

Table 9 shows the optimum design obtained by the neural network. The cost of the optimal 

design of case 2 is 30.6% cheaper than that of case 1, which points out that using various designs 

for each floor can significantly reduce the cost. 
 

5.4 Case 3. One floor one size design with 1 cm size Increment 
 

In this case study, each floor has one size for beams and for columns. The size increment is 1 

cm for the width and depth of beams and columns.  

Table 10 shows the optimum design obtained by the neural network. The cost of the optimal 

design of case 3 is 32.0% cheaper than that of case 1. However, comparing the results with those 

in Case 2 which reduces size increment to 1 cm for the width and depth of beams and columns 

cannot significantly reduce more cost. 
 

 

6. Conclusions 
 
To solve structural optimization problems, it is necessary to combine a structural analysis 

package and an optimization package. Since most structural analysis packages suffer from 

closeness of systems, it is very difficult to combine them with an optimization package. To 

overcome the difficulty, we proposed a feasible alternative approach, DAMDO, which combines 

Design, Analysis, Modeling, Definition, and Optimization phases into an integrated environment. 

The RC beam, column, and plane frame optimization problem were examined to evaluation the 

DAMDO approach. According to the results, the following conclusions can be obtained: 

1. The optimal designs of the RC beam, the RC column, and the RC frame obtained by the 

DAMDO approach was better than the optimal designs in some literature, which showed this 

approach is an effective methodology to solve the optimization problem of RC members and 

frames. 

2. The DAMDO approach can employ neural networks to indirectly integrate the structural 

analysis package and the optimization package. Therefore, this approach is promising in many 

engineering optimization domains where it is very difficult to directly combine the structural 

analysis package with the optimization package to obtain the optimum solutions. 
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