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Abstract.  Modern trend in structural design is to use smaller elements in order to ensure several purposes 
such as economy, functionality and aesthetic in appearance. However, because of decreasing rigidity of the 
structural elements, the system displacements increases and displacements become an important subject in 
this kind of structures takes into account both geometrical changes and the carrying capacity of the material 
after linear-elastic boundary. In this study, a method is proposed to calculate the failure loads and to analyse 
the reinforced concrete space frame systems. The numerical examples gathered from the literature survey are 
solved with this method utilising the prepared computer program and the comparable results are presented. 
The results show that the method is sufficiently accurate. 
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1. Introduction 

 
In the last quarter of the last century, rapidly evolving computer technology has been enabled 

enough to develop nonlinear calculation methods and their usage in application. RC structural 
members show a linear behavior under increasing loads and it is possible to build slender 
structures more economical by using elasto-plastic analysis methods considering the bearing 
capacity after linear elastic boundary. Economical and sufficient reliable solutions can be obtained 
with the use of nonlinear analysis methods in order to determine the actual behaviour of structures 
subjected to external influences. 

A number of researches (Wen and Farhoomand 1970, Otani 1980, Argyris et al. 1982, Mo and 
Yuh 1989, Pagnoni et al. 1992, Izzuddin and Smith 2000, Mwafy and Elnashai 2001, Barros and 
Almeida 2005, Habibi and Moharrami 2010, Quaranta et al. 2012, Stramandinoli et al. 2012) have 
been carried out to investigate the nonlinear analysis of RC frame systems. Habibi and Moharrami 
(2010) studied nonlinear sensitivity analysis of reinforced concrete frames. It was proposed that an 
analytical sensitivity technique for reinforcement concrete moment resisting frames (RCMRF) 
accounts for both material nonlinearity and geometric effects under pushover analysis. In another 
study, Mwafy and Elnashai (2001) conducted a static pushover versus dynamic collapse analysis 
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of RC buildings, where the applicability and accuracy of inelastic static pushover analysis in 
predicting the seismic response of RC buildings were investigated. A meshfree method for 
nonlinear analysis of two-dimensional reinforced concrete structures subjected to monotonic static 
loading was presented by Quaranta et al. (2012). Here, the concrete model was implemented in the 
context of the smeared rotating crack approach. The proposed meshfree methodology was used to 
study the nonlinear behavior of reinforced concrete shear walls. A new study by Stramandinoli et 
al. (2012) illustrated the development of a FE model for nonlinear analysis of reinforced concrete 
beams considering shear deformation. The model was implemented into a computer program 
named as ANALEST, developed by the authors, which allows for material and geometrical 
nonlinear analysis of RC beams and frames. In an earlier work presented by Pagnoni et al. (1992), 
a nonlinear three-dimensional analysis of reinforced concrete based structures on a bounding 
surface model was performed. The work addressed the formulation of finite element procedure for 
the nonlinear analysis of general three-dimensional reinforced concrete structures. Similarly, a 
finite element analysis of two- and three-dimensional elasto-plastic frames was investigated by 
Argyris et al. (1982). In the study, limit state functions applied to different loading conditions and 
frame geometries were implemented into a computer program and a number of test examples 
illustrated practical applications.  

Another study exemplifying the nonlinear analysis of RC frames carried out by Izzuddin and 
Smith (2000) showed the use of adaptive analysis concepts. The first two components of the 
proposed adaptive method, namely the elastic and elasto-plastic beam–column formulations, were 
described in details. 

Various researchers developed models, methods and/or algorithms for advanced analysis of RC 
frames (Uzgider 1980, Arnesen et al. 1980, Saka and Ulker 1992, Dinno and Mekha 1993, 1995, 
Thanoon et al. 2004, Krätzig and Pölling 2004, Arslan 2007, Lepage et al. 2010, Akhaveissy and 
Desai 2012, Birely et al. 2012). Thanoon et al. (2004) investigated the infuence of torsion on the 
inelastic response of three-dimensional RC frames. In this study, a three-dimensional reinforced 
concrete framed building was modelled by using finite element method. Recently, Akhaveissy and 
Desai (2012) made an application of the DSC (disturbed state concept) model for nonlinear 
analysis of reinforced concrete frames, in which a nonlinear finite element method with eight-
noded isoparametric quadrilateral elements for concrete and two-noded elements for reinforcement 
was used to predict the behavior of reinforced concrete frame structures. Similar to this study, 
Krätzig and Pölling (2004) developed an elasto-plastic damage model for reinforced concrete with 
minimum number of material parameters, where  the material behavior of all reinforced concrete 
components -concrete, reinforcement and bond-, based on a fully 3-D elasto-plastic damage theory, 
was realistically modelled for biaxial loading including cyclic action. Different models for 
nonlinear seismic response of reinforced concrete frames were presented by Lepage et al. (2010). 
The proposed models can accurately identify the optimal combination of hysteresis-modeling and 
damping parameters for use in practical nonlinear dynamic analysis to obtain satisfactory 
correlations in both amplitude and waveform between the calculated and measured seismic 
response of reinforced concrete frames. Additionally, a new model was developed by Birely et al. 
(2012) to simulate the nonlinear response of planar reinforced-concrete frames including all 
sources of flexibility. In the study, conventional modeling approaches consider only beam and 
column flexibility by using concentrated plasticity or springs to model this response. A sensitivity 
of the Drucker–Prager modeling parameters in the prediction of the nonlinear response of 
reinforced concrete structures was investigated by Arslan (2007). The Drucker–Prager yield 
criterion was evaluated by using finite element simulation with optimum mesh size for reinforced 
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concrete beams having different geometrical and material properties. Saka and Ulker (1992) 
developed a structural optimization algorithm for geometrically nonlinear three-dimensional 
trusses subjected to displacement, stress and cross-sectional area constraints. This method was 
obtained by coupling the nonlinear analysis technique with the optimality criteria approach. The 
advantage of the proposed algorithm is that it takes into account the realistic behaviour of the 
structure, where an optimum design might lead to erroneous result without it. In a similar way, 
Dinno and Mekha (1995) developed an algorithm for the inelastic analysis of reinforced concrete 
frames. In the study, a typical reinforced concrete frame was analyzed under different load 
combinations to show the features of the developed algorithm. They presented (1993) elsewhere a 
new algorithm in performing inelastic analysis for the optimal design of RC frames. In another 
work, Arnesen et al. (1980) developed two different computer programs for nonlinear analysis of 
reinforced concrete structures. The first program handles plane stress problems. Flow theory of 
plasticity was used in modelling of concrete and reinforcement. The second program was 
developed for analysis of plates and shells. Endochronic theory was used in the constitutive law 
for concrete whereas an overlay model was utilized for the reinforcement. The plane stress 
program was used for analysis of a beam and two different corbels, while the shell program has 
been applied to a square plate and a shell with geometric nonlinearities. Meanwhile, Uzgider (1980) 
developed a numerical method for the analysis of three-dimensional frames loaded dynamically 
into the inelastic range. The elasto-plastic force-deformation behaviour at the ends of the frame 
members was represented by an equation corresponding essentially to the inverse of the Ramberg-
Osgood representation. The system stiffness matrix was formulated as a tangent stiffness by taking 
into account P-Δ effect. The inelastic interaction of biaxial end moments and axial force were 
included for the elasto-plastic behaviour of the frame members. 

In this study, a method is proposed to calculate 3D RC frame systems under increasing loads 
and to determine failure load by considering nonlinear moment-curvature relationship and second 
order effects. 

 
 
2. Material and method 
 

2.1 Equation of bending moment-curvature in RC cross-sections 
 
Experimental studies conducted by researchers indicated equation of bending moment-

curvature of RC cross sections as shown in Fig. 1 (Çelik 1977 and Deeble 1973). This diagram 
shows a linear feature in region OA. Outside fibers under the tensile stress initiate cracking around 
point A. When these cracks evolve, bending stiffness is reduced till to the middle point B and 
shows a variation close to a line. Scaled sections made based on elastic calculations are seen in this 
region. When the outermost tension reinforcement reaches the limit of yield stress, bending 
stiffness reduces rapidly making M-  curve between B-C close to a horizontal shape. In this 
region, the reason of a slight increase in moment is due to a shift towards neutral axis to 
compression zone which leads an increase in moment arm and hardening in tension reinforcement. 
Leading cause of the collapse of the section which is in the limit positions is the concrete crush in 
compression zone (point D). In the meantime, a small amount of unloading is also observed 
between C and D points. 

Fig. 1 shows that the bending moment-curvature diagram for RC cross sections can be 
idealized in three line segments as in Fig. 2. 
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Fig. 1 The diagram of bending moment-curvature (M-) of RC cross sections 
 

 
Fig. 2 Diagram (M-) idealized for RC cross-sections 

 
 
When it comes to defining the parameters specified in the idealized diagram in Fig. 2; moment 

and curvature values when the first crack occurs in cross-section are donated as crcrM , (the 
coordinates of point A); bending stiffness of uncracked cross-section is 1)(EI ; bending moment 
and curvature values when outmost tension reinforcement reaches yield stress are yM , y (the 
coordinates of point B); bending stiffness of cracked cross-section is cEI )( (gradient of AB line 
segment); in addition, limit value of bending moment and curvature are rM , r  (the coordinates 
of point D); bending stiffness of outermost tension reinforcement after it starts yielding is uEI )(
(gradient of BD line segment); and notional curvature at point C is r  (Çelik 1980). 

Assumptions considering an analysis made for obtaining failure loads of RC frame; 
 Concrete in the compression zone is elastic till it reaches to the yield stress of outmost 

tension bar.  
 Till cracks occur, bending stiffness of uncracked cross-sections 1)(EI remains constant. 

 Cracks begin to occur when the concrete reaches to tensile strength. 
 Curvature is merely the function of bending moment; and normal force is assumed to be 

zero (only to be valid for beams). 
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2.1.1 Uncracked situation 
 
Bending stiffness of uncracked cross-section 1)(EI  is obtained by multiplying modulus of 

elasticity of concrete cE with total moment of inertia (steel bar included) of the section, GI . 

1)(EI cE GI                               (1) 

When the first crack occurs, the bending moment is; 

ectkcr wfM                                (2) 

In these expressions, ctkf  represents tension strength of the concrete, ew  represents the 

moment of resistance of uncracked cross-sections. Curvature at the time of cracking is; 

1)(EI

M cr
cr                                 (3) 

 
2.1.2 Cracked situation 

 
Due to presense of uncracked areas in cracked areas, the behavior of structural members is 

quite complex (Fig. 3). Bending stiffness varies from point to point with a sudden change which 
makes exact calculation impossible in theory. To simplify the solution of the problem and to allow 
practical application, an empirical formula offered by Monnier (1970) is suitable to calculate 
bending stiffness value cEI )( in this region. In the study conducted by Monnier, value of cEI )(  is 

expressed as follows; effective height of beam is  1d , steel bar ratio is   and section thickness 

is  b and finally the equation is denoted as; 

263
1

2 10)1.19.195.2()( mmNdbEI c                    (4) 

Eq.4 indicates that steel bar diameter and quality of concrete have a slight effect on cEI )(

hence it can be neglected. For normal RC cross-sections, effective height 1d  may be taken as the 
distance between tension bar and compression hedge. For multi-row rebar sections, effective 
height 1d  may be taken as the distance between the centre of gravity of tension forces and the 
compression hedge. Cracked position continues till point B as in Fig. 2. This point symbolizes the 
time when the outmost tension reinforcement begins yielding. As it can be seen from Eq.4, the 
behavior of this section in AB region is accepted as linear.  

Assuming that concrete in compression hedge is still elastic and that My and y values 

determine point B and if 
c

s

E

E
n  and

bd

As  , then bending moment when tension 

reinforcement reaches yield stress is obtained as; 
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Fig. 3 General view of a cracked RC element 
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and from Fig. 2, curvature is obtained as; 

c

cry
cry EI

MM

)(


 

                          
 (6) 

Here sA  and yf refer to area of tension bar and yield stress of tension bar, respectively. 

 
2.1.3 Limit position 
Limit position infers the position of RC cross section reaching bearing capacity. Maximum 

moment that a section can bear is obtained with the help of rM  and limit curvature, r  
iteratively equivalence and compatibility conditions. In due course of these processes distribution 
of compression stresses in concrete, resultant of these stresses and the place of the resultant are 
determined by 1, 2   parameters. These parameters and ultimate strain of concrete can be 
calculated in terms of concrete cube strength with the help of emprical formulas provided by 
Hognestad (1955); 

700
5.01

cuf
                              (7a) 

 cu

cu

f

f





3.28

27.027
2                            (7b) 

57000
004.0 cu

cu

f
                           (7c) 

in which, it is taken into account that    diagram of the bar is not linear. 
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When an equation of equilibrium is written along rod axis, it will be as;  

cu

y
ycu f

fd
xfdbxbfTC

2
2 


 

               

 (8) 

From the the general similarity of triangle in strain diagram, compatibility requirement is 
obtained as; 

xdx
scu





   

x

xd
cus


                        (9) 

If the location of neutral axis location is x , then it can be determined by iterative approach as 
follows; 

1. 21 ,  and cu  calculated from Eqs. (7a), (7b), (7c) and it is assumed 0xx   

2. s is computed from Eq.9.  

3. New value of x is computed as nx from Eq.8. 

4. New and old values of x are compared. If the difference is less than a certain tolerance, 
iteration is terminated. Otherwise, it is assumed that 0xx  and the iteration is continued starting 

from the second step. After the calculation of x , moment bearing capacity of the section, rM  is 
calculated from moment equivalance requirement as; 

)( 11 xdfdbM yr                           (10) 

Limit curvature is obtained from    diagram of the steel as; 

dscur /)(                              (11) 

When M  diagram in Fig.2 is idealized as OACD, then r  at the against point of C is 

obtained in the same way as y obtained (Eq.6) which is calculated by the equation below; 

c

crr
crr EI

MM

)(


                          (12) 

 
2.2 Compensating loads 
 
A change of stiffness of an element in isostatic structural systems does not have impact on 

either internal force of that element or other elements but on deformations just because internal 
force in this type of structures can be calculated only by equation of equilibrium. If the structure 
system is not determined statically (hyperstatic system), a change in any element’s stiffness leads 
to internal force deformation changes both in that element and other elements of structure. In this 
kind of systems if it is not required to change internal force and deformation positions of other 
elements in the structure, although rod stiffness is changed, ‘Compensating  Loads’ are used at 
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joint points of the rod to eliminate the effect of changing stiffness (Çelik 1982). It is possible to 
define compensation loads as the equivalent force of rod I’s stiffness variation.  

When a space frame rod is taken into consideration, the rod has three rotation freedoms and 
three drift freedoms at each end. These freedoms which are 12 in total for two members end 
correspond to 12 member end forces. Assuming that i rod section, which is under the influence of 
external forces and belongs to a system whose member end force and displacement position is 

known, is changed. With the change of rod section, characteristics of the section ( 1A cross-section 

area, ıı II 21 , moment of inertia, ıJ torsional moment of inertia) will get their new values. 
If the section is assumed to become smaller, expressions below are obtained. 

AAAAAAA )1(;/; 1
1

1
1                   (13) 

121112111 )1(;/; IIIIIII ıı                   (14) 

232223222 )1(;/; IIIIIII ıı                  (15) 

JJJJJJJ ıı )1(;/; 44                   (16) 

In these expressions 4321 ,,,   rates can be given as change ratio of the section 

characteristics. If the characteristic values of new section are replaced in rod’s stiffness equations 
provided that member end displacements remain constant, new member end forces of the rod can 
be obtained in terms of old member forces and change ratio of the section characteristics. A change 
in forces of the rod will change the balance of joint. When joint points make additional 
displacements with other rods combined to them as well as rod i there will be moment increment 
providing balance. This event also means that system’s status of internal forces and deformations 
will change. It is obvious that compensating loads will be the variant between old members and 
new end forces of rod i. In this case, it is possible to obtain compensating load vector by 
subtracting new member end forces vector, which is computed after section characteristic change, 
from old member end forces vector. 

If the vectors below are defined as; 

iP  : Unchanged rod’s end forces vector 

YiP  : Changed rod’s end forces vector 
Then it can be written as; 

TiYii PPP                              (17) 

From this equation, compensating load vector TiP  is obtained as; 

  YiiTi PPP                              (18) 

Besides, if iP  and YiP are substituted in Eq.18, it is simply;  
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iiTi PP                              (19) 

where equations obtained for TiP  is for local axis of rod i and by multiplying this equation with a 
transformation matrix should be expressed in global coordinate system in application. 
 
 
3. Addition of compensating loads to computer program 
 

Compensating loads should be added to the computer program (Çoşgun, 2001) which is 
developed to obtain computation under increasing loads and failure loads of space frame systems 
considering their nonlinear moment-curvature relationship and second order effects. For this, if it 
is assumed that at a certain stage ( = cri status) loading which has impact on structure systems 
has reached critic moment crM on any rod, then bending stiffness changes from cEI )( to yEI )( . 

Solution at  = cri should be equal to other solutions at  = cri . However, solutions which 
are found at new and old stiffness will be different. This problem can be solved when the load 
equivalent of difference between cEI )( and yEI )( is acted to the joint points where the rod 

combines.  

If stiffness value is assumed to become smaller as 
c

yc

EI

EIEI 
 as (20) 

Then new stiffness becomes; 

           cy EIEI )1()( 
                          

(21)  

As Z defines end deflection vector, k defines stiffness matrix and P defines member end 

force vector, then before change EI is like; 

P  = Zk                                (22) 

And after change EI , when Z is constant, it will be; 

ZkP ı )1(                              (23) 

From Eq.21 and Eq.22, it can be written as,  

PP ı )1(                               (24) 

To protect the values of other parts of the structure from this change, the loads below is;  

            
 jiij

ı MMQPPP   )(
                   

 (25) 

or, in global coordinates loads below it should be acted with external loads to joint points where i 
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and j combines with the rod as follows; 

 jiijpijpijijpjip
ı MQlQmMQlQmPPP   )(    (26) 

When compensating loads are taken into consideration, solution at cr   which is found by 

using changed EI coincides with the solution found by using unchanged EI . 
 
 

3.1 A proposed algorithm for failure load analysis of reinforced concrete frames 

 
The principle of the proposed method is to obtain frame’s entire load-deflection relation 

passing from one critical point to another on moment-curvature diagram until failure occurs for a 
spesific load factor. The method is similar to elastic-fully plastic analysis method applied to steel 
frame, but plastic hinge used for the method in question is changed with critical point concept in 
presented method. The critical point is defined as the intersection point of two linear segments at 
moment-curvature diagram. When a critical point of any member on the frame is reached, bending 
stiffness of that rod, EI , is applied to gradient of next linear segment of rod’s M-  diagram. The 
lowest load factor necessary to reach next point on any rod is obtained by extrapolation. Loads in 
this load factor are calculated and they are attiributed to the frame. Finally, accurate value of this 
load factor is computed by iteration. Similar procedure is carried out for the next critical point. 
Algorithm based on computer program made for this kind of analysis is as follows; 

Step 1) At the beginning, frame is considered to be elastic. The stiffness matrix is obtained by 
using EI values of the rods and it is assumed that normal forces are zero. 

Step 2) Joint equation of equilibrium, XKL  , is solved for a given load factor 1  and X is 

obtained  as joint displacement. Then, rod end forces are obtained from XAkP  . Effective 

moments are derived for each rod by means of end moments. Here, Adenotes transformation 

matrix, P denotes end forces vector. 
Step 3) Load factor, necessary for effective moment of each rod to reach next critical point on 

M- diagram of that rod, is computed by linear extrapolation. The smallest load factor () is the 
load factor expected to be obtained first on the frame. This load factor is applied to frame as new 
load factor and load acting on the frame, L  is computed.  

Step 4) Normal forces having effect on rods under   are obtained by extrapolation of values 
at Step 2. Newly found values are used at calculation of stability functions  of each rod and new 

stiffness matrix, K is obtained with the help of stability functions and current EI values. 

Step 5) XKL   equation set calculated for  is solved. The calculated joint displacements 

X are used in calculations of new moments and normal forces. These obtained moments will be 
used to compute new effective moments and normal forces will be used in computing new stability 
functions. 

Step 6) The process is repeated starting from Step 3. When j is calculated from iteration j and 
the relative difference between this value and the value of iteration calculated previously is lower 
than a certain tolerance, which means that the critical point at any rod is reached, for instance rod 
k. 
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Step 7) As soon as effective moment on rod k reaches a critical point on M- diagram of the 
rod, bending stiffness EIk of the rod is equal to the curve of linear region which is right after that 
point. Making use of new and old values of EIk change ratio is calculated as follows;            

old

oldnew

k EI

EIEI

)(

)()( 
                          (27) 

Besides, compensating loads which correspond to this ratio is obtained from Eq.24.  
To determine the new critical point, the load factor is increased slightly. External loads 

corresponding to this are calculated. While new compensating loads are added to external loads, 
old ones are removed. Normal forces are kept constant for the first iteration and the search of new 
critical point continues starting from third step. Whenever the critical point is reached, 
determinants of global stiffness matrix are calculated by using new bending stiffness of rod k. If 
the mentioned determinant is negative, the iteration is stopped. This situation determines that the 
structure is collapsed. Calculation can be made for any load factor, as well as collapse. This load 
factor is the multiplier of constant external loads acting on structure. Internal forces and 
displacements occur when the iterations brought to a halt are the solution of structure under given 
loads. 
 
 
4. Numerical example 

 
By means of computer program developed by considering presented calculation steps, failure 

load of six-storey RC space frame system under the influence of instant vertical loads and 
increasing horizontal loads will be determined by elasto-plastic calculation analysis according to 
second-order theory. Floor formwork plan of observed structure is given in Fig. 4, dimensions of 
beam and column cross-section are given in Tables 1 and 2, and properties of used cross section 
are given in Table 3 (Girgin, 1996). 

Longitudinal reinforcement of beam and column of RC space frame system at X ve Y directions 
are given in Tables 4-6. It is adopted that all beams have 212 web reinforcement. It is taken into 
consideration that there are three different regions at placement of beam reinforcement. 
Diameter/spacing of transverse reinforcement at beams and columns is taken as 10/200 (at 
densification regions 10/100). 

Vertical load values acting on beams in both directions of structure are given in Table 7. Loads 
act on the system 1m. intervals and the horizontal loads acting on the structure in two directions 
are given in Fig. 5. 

By means of the proposed method, failure load of reinforced concrete space frame system 
under the influence of constant vertical loads and increasing horizontal loads is obtained as 
=1.562 by elasto-plastic calculation analysis according to second-order theory. The locations of 
50 sections with plastic hinges occurred before the failure are illustrated in Fig. 6 (due to overlap, 
all plasticization couldn’t be demonstrated in the figure). 

Failure load factor with vertical load factor where the initial plastic section occurs is obtained 
as a result of analysis of the system of structure under the influence of vertical loads and horizontal 
loads acting in both directions and it is compared with calculations made by Girgin (1996) 
formerly which is presented in Table 8.   
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Load factor-horizontal deflection curve (-) which is obtained for X direction under the 
influence of constant vertical and increasing horizontal loads is given in Fig. 7. The difference 
between value of failure load (curve number II) calculated by Girgin (1996) and value obtained 
from presented study (curve number I) remains at the order of 1.7%. 
 
 

 
Fig. 4 Floor formwork plan of six-storey RC system 

 

Fig. 5 Horizontal loads acting on the structure 
 

Fig. 6 Locations of plastic sections 
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Fig. 7 Horizontal load factor–horizontal deflection curve (-) 

 

Table 1 Beam cross-section dimensions 

Storeys Axle h (mm) b (mm) bw  (mm) hf  (mm) 

1-6 

A 600 660 300 150 

B,C 600 1020 300 150 

1 600 600 300 150 

2 600 900 300 150 

 
Table 2 Column cross-section dimensions 

Storeys mm/mm A1 B1 C1 A2 B2 C2 

6-5 h/b 400/300 400/300 400/300 400/300 400/300 400/300 
4-3 h/b 400/300 500/300 500/300 500/300 600/300 600/300 
2-1 h/b 400/300 600/300 600/300 600/300 800/300 800/300 

 
Table 3 Properties of cross-section 

Material fyk (N/mm2) Es (N/mm2) su  fck (N/mm2) Ec (N/mm2) co cu 

Steel 420 2x105 0.010     
   Concrete    20 2.85x104 0.002 0.006 

 

Table 4 Longitudinal bars in beams (Direction-X) 

Storeys in support areas (up)  
in support areas 

(down)  
in span       

areas (up)  
in span  areas 

(down) 

1-4 314+220 416 314 416 
5-6 212+218 316 212 316 
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Table 5 Longitudinal bars in beams (Direction-Y) 

Storeys in support areas (up)  
in support areas 

(down)  
in span   areas (up) 

in span   areas 
(down) 

1-4 314+322 416 314 416 
5-6 212+218 316 212 316 

 

Table 6 Longitudinal bars in columns (Direction-X) 

Storeys 
in support areas 

(up)  
in support areas 

(down)  
in span   areas 

(up)  
in span  areas (down) 

1-4 314+220 416 314 416 
5-6 212+218 316 212 316 

 
Table 7 Vertical loads acting on beams 

Location Axle P1 (kN) P2 (kN) P3 (kN) P4 (kN) 

Normal storeys  

A 2.82 10.13 16.74 19.97 
B,C 3.92 16.88 30.10 36.56 

1 2.82 10.13 16.60 - 
2 3.95 16.88 29.82 - 

Roof storey 

A 7.15 20.13 28.70 32.89 
B,C 4.61 20.88 38.02 46.40 

1 7.15 20.13 28.52 - 
2 4.61 20.88 37.65 - 

 

Table 8 Formation of plastic sections, load factors and failure loads 

Direction Load factor () 
Number of plastic 

section 
Load factor for initial plastic 

section 

X 1.562 (1.535) 52 (50) 1.171 (1.163) 

Y 1.581 (1.553) 83 (81) 1.192 (1.189)  

 
 
5. Conclusions 
 

In the present study conducted by using the proposed method, it is articulated that sizing the 
structure systems on the basis of failure load for both safety and economic aspects is a necessity. 
As a result of analysis of structural systems with second order effects, it is determined that there is 
10% reduction at bearing capacity of the system and it is also indicated that if the capacity of 
rotation in plastic sections is exceeded, the structure can come to a state of collapse. After the 
analysis, it comes into foreground once again that strong column and weak beam approach should 
be taken into consideration. Consequently, it is observed that while sizing structures, an adequate 
safety and the economy can be made providing a sizing method based on failure load as well as 
proposed method and other similar methods considering real effects and behavior.  
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Appendix : Notation 

A  Cross section area l  Rod length 

A  Displacement transformation matrix M  Bending moment 

E  Modulus of elasticity yM  Yield moment 

I  Moment of inertia rM  Moment bearing capacity of section 

K  Overall stiffness matrix P  Member end forces vector 

k  Member stiffness matrix X  Displacement matrix 

L  Load vector   Load factor 
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