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Abstract.  In this paper, a theoretical and experimental study of the sectional behaviour of reinforced 
concrete beams subjected to short-term loads is carried out. The pure bending behaviour is analysed with 
moment-curvature diagrams. Thus, the experimental results obtained from 24 beams tested by the authors 
and reported in literature are compared with theoretical results obtained from a layered model, which 
combines the material parameters defined in Model Code 2010 with some of the most recognized tension-
stiffening models. Although the tests were carried out for short-term loads, the analysis demonstrates that 
rheological effects can be important and must be accounted to understand the experimental results. Another 
important conclusion for the beams tested in this work is that the method proposed by EC-2 tends to 
underestimate the tension-stiffening effects, leading to inaccuracies in the estimations of deflections. Thus, 
the actual formulation is analysed and a simple modification is proposed. The idea is the separation of the 
deflection prediction in two parts: one for short-term loads and other for rheological effects (shrinkage). The 
results obtained are in fairly good agreement with the experimental results, showing the feasibility of the 
proposed modification. 
 

Keywords: reinforced concrete; moment-curvature; tension stiffening; beam growth; serviceability; 

shrinkage; eurocode 2; Model Code 2010; effective modulus of inertia 

 
 
1. Introduction 
 

The curvature analysis is a consolidated tool in current engineering practice, Ghali et al. 

(2012). For a reinforced concrete (RC) section the curvature express the inclination of the strain 

plane and is related to the deformations and deflections of linear elements as beams or columns.  

Traditionally, the analysis related to RC elements where carried out neglecting the contribution 

of cracked concrete. However, nowadays, there is the consensus that tension-stiffening effects can 
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influence significantly the deformational behaviour of RC elements in the service range. A large 

number of publications confirm this fact, Bazant and Oh (1984), Vecchio and Collins (1986), Hsu 

(1996), Kaklauskas (2001) and Kaklauskas et al. (2011c), Gilbert (2007 and 2008), Bischoff 

(2008) and Balázs et al. (2013), among others. 

In addition, rheological effects can have a considerable influence in the serviceability range 

introducing additional deformations, as indicated by Ghali et al. (2001) and Gilbert (2001). 

Shrinkage-induced camber occurs in asymmetrically-reinforced or cracked beams. On the other 

hand, creep increases the curvatures and the deflections. 

The combined effect of shrinkage deformations and tension-stiffening was studied by Gilbert 

(2001); Bischoff (2001) and Kaklauskas and Gribniak (2011a). One of the most interesting effects 

is called “negative tension-stiffening”, as indicated by Gribniak (2009) and Zanuy (2010), which is 

produced by a release of compressive strains induced in the bar reinforcement by restraining 

shrinkage of concrete at the moment of cracking that hampers interpretation of the experimental 

measurements. This fact has to be assessed in order to obtain confident results of constitutive 

modelling. However, current design codes as EC-2 (2004) or ACI-318(2011) use interpolation 

equations empirically deduced from test data of shrunk RC elements and, therefore, the prediction 

models introduce the shrinkage effect in an integral manner. In some cases, this may lead to 

critical predictions of serviceability parameters (deformations or crack opening widths) of RC 

structures. 

It can be stated that until now there is not a universally accepted tension-stiffening model, 

which can be applied with confidence in current professional practice. Thus, this paper is focused 

in the analysis of this problem combining experimental evidence and some of the most recognised 

analytical models. The major topics of the analysis carried out in this paper are: 

1) Experimental study: deformation measurements and curvature analysis. 

2) Influence of shrinkage on the experimental results. 

3) Tension-stiffening models and their adequacy analysis. 

4) Influence of the tension-stiffening effects on the curvature predictions. 

 
 
2. Methodology 
 

2.1 Numerical simulation procedure 
 

The classical hypothesis used in serviceability (Ghali et al. (2012)) are a linear-elastic 

behaviour for steel in tension and compression and concrete in compression, neglecting the tensile 

strength (State II). On the other hand, the non-linearity for concrete, in compression, can be 

accounted by using the constitutive equation proposed by Sargin as proposed by Model Code 2010 

(2012). However, in the serviceability range this equation does not significantly differs from 

elastic behaviour, at least up to a stress of 0.5fcm. 

The tensile behaviour of concrete is the source of major uncertainties. In general, there are four 

main approaches to consider the tension-stiffening (Gribniak (2009)): 1) Stress transfer, 2) 

Fracture mechanics, 3) Average stress-average strain laws attributed to tensile concrete and 4) 

Average stress-average strain laws attributed to reinforcement. Focussing on the latter two smeared 

approaches and using experimental data collected by the authors, this paper investigates the 

versatility of the expressions proposed in the current regulations [by simple interpolation between 

uncracked (I) and fully cracked (II) deformation states of RC] and well-known tension-stiffening 
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models. 

Most of the tension-stiffening models, applying the constitutive equation for concrete (Bazant 

and Oh (1984), Vecchio and Collins (1986), Hsu (1996), Kaklauskas and Ghaboussi (2001), 

Gribniak (2009)) or steel (Kaklauskas et al. (2011c), Model Code 2010 (2012)) are equivalent. 

However, among the models there are two sub-types assuming that the tensile behaviour is 

independent (Vecchio and Collins (1986), Collins et al. (1996) and Hsu (1996)) or dependent 

(Kaklauskas (2001)) on the tensile reinforcement steel ratio. In this study, the following tension-

stiffening models are considered: 

Vecchio (1986) & Collins (1996) 
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The method proposed by EC-2 (2004), also included in MC2010 (2012), is based on the 

interpolation between States I and II. This interpolation can be applied to stresses, axial forces and 

bending moments. The formula is, 
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(4) 

where κm is the effective curvature interpolated between the values obtained for State I (non-

cracked) κI and State II (fully cracked) κII. The interpolation factor ζ depends on two non-

dimensional factors, β1 and β2, both equal to 1 for short-term loads, and the relation between the 

cracking moment, Mcr and the actual moment M. 

Walraven (CEB-FIP (2009)) proposes a simplified method based on the formulation of the 

Model Code 90 (1990), equivalent to that of Model Code 2010 (2012). 

The ACI 318 technique (2011) is based on the method proposed by Branson (1963, 1977), 

which uses the concept of the effective moment of inertia. 
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Here Ig is the moment of inertia for uncracked concrete section ignoring reinforcement; III is the 

moment of inertia for the fully cracked section; M is the applied moment at centre span for simply 

supported beams or at the embedment for cantilevers (slightly more elaborated formulations are 

applied for undetermined structures) and Mcr is the cracking moment.  

 

2.2 Curvature analysis 

 

To obtain a moment-curvature relationship it is necessary to solve a normal stresses problem 

(Ghali et al. (2012)); namely, the equilibrium of a RC cross-section subjected to an axial force and 

a bending moment. Thus, as established by the continuum mechanics, it is necessary to solve at the 

same time a set of constitutive, compatibility and equilibrium equations. The resolution of the 

problem provides the parameters, which define the strain-plane: baricentric strain and curvature. 

To solve the sectional problem, the method chosen in this work is the well-known multilayer 

method (Kaklauskas (2004)), in which the cross section is divided into a series of layers with a 

reduced thickness whose properties can be easily determined assuming that the fibres are 

rectangular and that an effective elastic modulus represents the whole behaviour of the fibre. 

The compatibility equations used in this paper are the classical adopted in literature for service 

analysis. The first hypothesis is perfect bond (the “no-slip” condition) between concrete and steel. 

It implies that the steel and the surrounding concrete have the same strain. The second is the 

Navier-Bernoulli hypothesis, which from a practical point of view implies that the strain-profile 

can be represented as a plane. 

  0( ) refy y Y    
                            

(6) 

Finally, it is necessary to solve the equilibrium equations for axial forces and bending moments, 

which are obtained equating internal and external forces as follows, 
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Combining all the equations (constitutive, compatibility and equilibrium), the following system 

is obtained: 
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(8) 

Eq. (8) provides the parameters, which define the strain-plane: baricentric strain and curvature; 

and consequently the moment-curvature and the moment-baricentric strain diagrams can be 

obtained. The parameters EAh, EBh and EIh are the area and the first and the second cross-section 

moment of inertia respectively, homogenized with respect some material (generally concrete) and 

multiplied by the elasticity modulus of this material. When the materials behave elastically these 

coefficients are constant and the system is easily solved. Something similar happens if the classical 

hypothesis applies because the nonlinear system it is easily solved by a second-degree equation 

whose unknown is the neutral fibre location in pure bending (Ghali et al. (2012)) or a third-degree 

equation (for a rectangular cross-section) in case of axial force combined with bending (Perez 
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Caldentey et al. (2012)). Once location of the neutral fibre is known, since it is assumed the 

concrete cannot resist tensile forces, only the concrete under compression must be used to obtain 

mechanical properties of the cracked concrete cross-section and the system is solved immediately. 

However, if complex constitutive equations are used to simulate the plastic range of the materials 

or tension-stiffening effect iterative methods are required to solve Equation (8). 

In case of using the classical hypothesis, time-dependent effects can be introduced in Equation 

(9) in a simple way, using the Trost method (Trost (1967), Bazant (1972)). In this method, the 

instantaneous elastic modulus of concrete Ec0 is replaced by an effective modulus Ec which is 

expressed as Ec=Ec0/(1+), being  the ageing coefficient (whose value is approximated to 0.80) 

and  the creep coefficient. Thus, Equation (8) becomes, 

 
0

0

h h c cs

h h c cs

EA EB EA

EB EI M EB

 

  

  

  
                        

(9) 

The parameters EAh, EBh and EIh are the same defined before, now using the modulus Ec, 

adjusted to the time period in which the shrinkage takes place. A group of fictitious internal forces, 

which represent the imposed deformation effects, must be accounted in order to determine 

correctly the strain planes (Ghali et al. (2012)). The parameters EAc and EBc are the area and the 

first cross-section moment of inertia of the concrete cracked section, respectively, without 

considering the steel reinforcement contribution. These parameters are multiplied by the free 

shrinkage strain εcs to obtain the corresponding fictitious axial force and bending moment to be 

added to external forces. 

 

2.3 Inverse (constitutive modelling) technique 
 

Unlike the deformation (direct) analysis, which is used for prediction of structural response 

using a specified constitutive model, the inverse analysis aims at determining parameters of the 

model based on the response of the structure. Kaklauskas and Ghaboussi (2001) haveformulated 

the principles of the inverse technique for deriving tension-stiffening relationships using test data 

of RC flexural members. For a given moment-curvature diagram, an average stress-average strain 

tension-stiffening relationship was computed from the equilibrium equations of axial forces and 

bending moments using the layer section model (Kaklauskas (2004)). The layer section model was 

employed for computation of the internal forces. The inverse analysis was performed with 

incrementally increasing bending moment. The equilibrium equations (8) were solved for each 

loading stage yielding a solution for the coordinate of the neutral axis and the concrete stress in the 

extreme tension fibre. Since the extreme fibre had the maximum strain, other tension fibres of 

concrete had smaller strains falling within the portion of the already determined stress-strain 

diagram. The derived model enables to simulate the same moment-curvature response as was 

obtained in the tests. The inverse analysis is based on the following approaches and assumptions: 

 Average strain, also called as smeared crack, approach. 

 Linear strain distribution within the depth of the section implying perfect bond between 

layers. 

 All concrete layers in the tension zone follow a uniform stress-strain law. 

The latter assumption of a uniform stress-strain tension-stiffening law for different layers 

allows reducing the dimension of the solution to a single non-linear equation. The following 

experimental data of flexural RC members can be used for the inverse technique: 

803



 

 

 

 

 

 

Javier Ezeberry Parrotta et al. 

 Bending moment vs. average strain of the extreme fibre of compressive concrete; 

 Bending moment vs. average strain of the extreme fibre of tensile concrete; 

 Bending moment vs. average strain of the tensile reinforcement; 

 Bending moment vs. mid-span deflection; 

 Bending moment vs. curvature; 

 Average stress vs. average strain of tensile reinforcement. 

Recent investigations (Kaklauskas et al. (2011b)) have demonstrated that the inverse technique 

may serve as a powerful tool for constitutive analysis of flexural RC members. It may be relatively 

easy extended to other tension-stiffening approaches, such as steel-related or stress transfer 

models. The current study deals with the inverse technique modified by Gribniak (2009) and 

Kaklauskas and Gribniak (2011a), and applies two most effective inverse techniques 

1) A steel-related modelling (Kaklauskas et al. (2011c)) is used for analysis of the tension-

stiffening stresses induced in the section by varying arrangement of rebars; 

2) A concrete-related modelling algorithm (Kaklauskas et al. (2009)) is used for the 

“elimination” of the shrinkage effect from the test data (Kaklauskas and Gribniak (2011a)). 

 
2.4 Assessing the effect of shrinkage 
 

It is known that, even at first loading, free shrinkage of concrete may well exceed the cracking 

strain. The shrinkage strain, restrained by reinforcement, significantly affects the cracking 

resistance and short-term deformations of RC members. Kaklauskas and Gribniak (2011a) have 

developed a numerical procedure for the “elimination” of the effect of shrinkage from 

experimental moment-curvature and tension-stiffening diagrams. In this manuscript, these 

modified relationships are referred to as “free-of-shrinkage”. The shrinkage elimination procedure 

is performed in the following steps sketched in Fig. 1. 

Step 1. Using the moment-curvature diagram (Fig. 1a), the stress-strain relationship is derived 

(Fig. 1b) by the inverse technique. 

Step 2. Using the derived stress-strain (tension-stiffening) relationship, the moment-curvature 

diagram is calculated by the technique described in Section 2.2. In order to eliminate the effect of 

shrinkage, the shrinkage strain of concrete is taken positive, i.e. as the expansion strain. The  

 

 

 
Fig. 1 Deriving “free-of-shrinkage” moment-curvature and tension-stiffening relationships 
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Table 1 Geometrical properties of test specimens. 

Cross-section 12-20-00/10/30 12-70-00/10/30 25-20-00/10/30 25-70-00/10/30 

b [m] 0.35 0.35 0.35 0.35 

h [m] 0.45 0.45 0.45 0.45 

d [m] 0.412 0.362 0.4055 0.3555 

c [m] 0.038 0.088 0.0445 0.0945 

 (As1) [mm] 12 12 25 25 

 (As2) [mm] 12 12 12 12 

As1 [cm
2
] 4.52 4.52 19.63 19.63 

As2 [cm
2
] 2.26 2.26 2.26 2.26 

=As1/bd 0.31% 0.36% 1.36% 1.55% 

 

 

calculated free-of-shrinkage moment-curvature diagrams are shown in Fig. 1c along with the 

initially assumed curve. It should be noted that due to the expansion of concrete, an initial negative 

curvature was obtained. In absolute value, it is equal to the initial curvature (the positive one) due 

to shrinkage. 

Step 3. Since an unloaded non-shrunk beam has no curvature, the obtained free-of-shrinkage 

moment-curvature diagram is shifted to the zero point (dashed line in Fig. 1c). Using this diagram, 

the free-of-shrinkage stress-strain relationship is obtained by the inverse analysis. This relationship 

is shown in Fig. 1d along the one obtained from the “test” of shrunk member. 

In the present study, this shrinkage elimination method is applied to correct the experimental 

data using the information provided in Table 1 resulting in “free-of-shrinkage” moment-curvature 

diagrams. In cases when some material parameters were missed, the respective values are 

calculated by equations from the Model Code 2010 (CEB-FIP (2012a, 2012b)). 
 

 

3. Experimental program 
 

Experimental data used in this paper has been obtained in a test program carried out in the 

Structures Laboratory of the Polytechnic University of Madrid by Perez Caldentey et al. (2013) 

during the year 2009. In this program, 12 beams were tested. The beams were designed to study 

the influence of the following parameters on tension-stiffening: 

 /ρeff: half of the beams were reinforced with 425 and the other half with 412. 

 cover: half of the beams had a cover of 20 mm and the other half had 70 mm. 

 influence of stirrup spacing: four beams had no stirrups, four had stirrups spaced at 30 cm 

and the remaining four specimens had stirrups spaced at 10 cm.  

The test configuration is presented in Fig. 2 and corresponds to the well-known “four points 

test”. Hydraulic jacks located at the end of the cantilever spans load a simply supported beam, with 

a load cell in each support. All beams have a central span of 3.42 m and two cantilever spans of 

0.90 m. The jacks apply the load at 0.75 m from each support. Thus, due the fact load is applied 

only at the ends, and dead weight has a small effect, the central span is subjected to a constant 

bending moment that allows studying the mean (smeared) behaviour of the beam. 

In the central span zone at each side of the beams, there are three lines of digital extensometer 
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bases (20 cm base) to measure longitudinal surface strains of concrete. One line is located at the 

side of the beam in correspondence with the location of the compressive longitudinal 

reinforcement; a second is located at the side of the beam in correspondence with the location of 

the tensile reinforcement and a third line is located on the top tension face in the same vertical 

plane as the tensile reinforcement. Four inclinometers were located over the supports (two) and at 

the external surface of the cantilever face (the other two). Deflections were registered in five 

points, below the jacks at quarter and mid-span. 
 

 

Table 2 Concrete properties 

Property Value 

concrete type HA-25/B/20/IIa 

cement type CEM II/AM-VL 42.5R 

Probe cylindrical, 15cm 

water/cement ratio 0.55 

kg cement/m
3
 330 

additive plasticizer  

Abram’s cone [cm] 7.0 

density kg/m
3
 2280 

fcm,7d [MPa] 21.9 

fcm,28d [MPa] 26.9 

 

Table 3 Mechanical properties obtained experimentally 

Cross-section 12-20-00/10/30 12-70-00/10/30 25-20-00/10/30 25-70-00/10/30 

fcm,28d [MPa] 26.9 26.9 26.9 26.9 

without shear reinforcement (XX-YY-00) 

Age [days] 56 91 42 84 

T [ºC] 19.9 22.2 18.8 21.6 

RH [%] 38.2 38.2 38.1 38.4 

Mcr
*
 [kNm] 29.2 29.4 15.9 29.7 

shear reinforcement: 1 stirrup 12 each 30 cm (XX-YY-30) 

Age [days] 63 176 110 120 

T [ºC] 20.3 25.6 23.4 23.9 

RH [%] 38.6 34.2 37.0 36.0 

Mcr
*
 [kNm] 29.9 30.3 37.2 29.8 

shear reinforcement: 1 stirrup 12 each 10 cm (XX-YY-10) 

Age [days] 98 190 112 126 

T [ºC] 22.6 25.5 23.6 24.2 

RH [%] 37.8 34.7 36.7 35.5 

Mcr
*
 [kNm] 29.5 32.3 29.8 26.6 

reference lines (State II) 

Mean Age [days] 72 152 88 110 

*
deduced from the tests 
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Table 4 Mechanical properties estimated from the model code 2010 (CEB-FIP (2012a 2012b)). 

Cross-section 12-20-00/10/30 12-70-00/10/30 25-20-00/10/30 25-70-00/10/30 

without shear reinforcement (XX-YY-00) 

fcm [MPa] 28.5 29.4 27.9 29.3 

fct [MPa] 2.3 2.3 2.2 2.3 

Ec [MPa] 30790 31263 30455 31192 

Shrinkage, cs[µε] -440 -514 -398 -502 

Creep coeff.  2.40 2.75 2.21 2.69 

Aging coeff.  0.87 0.86 0.88 0.86 

Mcr [kNm] 28.4 28.5 32.2 30.9 

EBccs [kNm] 1.1 0.9 7.7 6.3 

shear reinforcement: 1 stirrup 12 each 30 cm (XX-YY-30) 

fcm [MPa] 28.8 30.3 29.7 29.8 

fct [MPa] 2.3 2.4 2.4 2.4 

Ec [MPa] 30915 31754 31420 31488 

Shrinkage, cs[µε] -457 -629 -546 -562 

Creep coeff.  2.48 3.36 2.92 3.01 

Aging coeff.  0.87 0.84 0.85 0.85 

Mcr [kNm] 28.6 29.4 34.0 31.4 

EBccs [kNm] 1.1 1.0 9.0 6.5 

shear reinforcement: 1 stirrup 12 each 10 cm (XX-YY-10) 

fcm [MPa] 29.5 30.4 29.7 29.9 

fct [MPa] 2.3 2.4 2.4 2.4 

Ec [MPa] 31326 31801 31434 31524 

Shrinkage, cs[µε] -527 -642 -550 -571 

Creep coeff.  2.82 3.40 2.94 3.06 

Aging coeff.  0.86 0.84 0.85 0.85 

Mcr [kNm] 29.4 29.5 34.0 31.5 

EBccs [kNm] 1.3 1.0 9.0 6.6 

reference lines (state II) 

Ec [MPa] 31053 31659 31234 31420 

 

 
 

Fig. 2 Test configuration 
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Fig. 3 Test specimen cross-sections 

 
 

4. Experimental results 
 

Strains measured along the reinforcement fibres are useful to obtain the baricentric strains and 

curvatures. On the other hand, measures of rotations and deflections can be used to obtain a second 

estimate of the curvatures and allow a comparison with the strains measured in the reinforcement 

fibres, thereby testing the quality of the measured data. 

In the central span of the specimens of Table 1, there are 17 extensometric bases of 20 cm. 

Thus, the curvature, κ, can be obtained for each station i and, consequently, the mean value can be 

determined. In the same way, the rotation variation between the supports is related with this 

curvature as expressed in Mohr’s first theorem. 

Also assuming a linear variation of curvatures in the cantilevers, a relation between the rotation 

in the outer faces and the supports can be obtained: 

    ,
0 0 0 0

1 1

2 2

v v vL L L L

cant AB m m m m vx dx dx dx dx L L              
        

(10) 

Finally, the half-span deflection can be obtained by a double integration of curvatures, 

  
2

2 2

50%
0 0

1 1
,

2 2 2 2 2

L L

L A A m A AB m

L L L
f x dxdx L             

        
(11) 

In Equation (11), it is necessary to know the value of the rotation over the supports, which can 

be obtained from the measures carried out with inclinometers or from the curvatures, using the 

Mohr’s first theorem.   

The use of different sensors allows the detection of inaccuracies during the test by simple 

comparison between measurements. Fig. 4 shows the correlation between the rotations measured 

by inclinometers and the rotations obtained by integration of curvatures (left) and the correlation 

between the deflections at mid-span measured by linear variable differential transformers, LVDT, 

and the deflections obtained by double integration of curvatures (right). It can be seen that 

deflections obtained from the measured curvatures are slightly larger than those measured with 

LVDT. 

Fig. 5 shows a summary of experimental results obtained for all specimens from the main  
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Fig. 4 Left: Experimental rotations (abscissa) vs. rotations obtained from integration of 

curvatures (ordinate). Right: Experimental deflections (abscissa) vs. deflections obtained from 

double integration of curvatures (ordinate) 

 

 
Fig. 5 Normalized experimental M-κ relationships obtained from surface strains of concrete 

 

 

experimental program (Section 3.1) in form of moment-curvature relationships (M-κ). For each 

subgroup, a reference line that represents the theoretical behaviour in state II for a concrete with a 

given mean age (see parameters in Tables 3 and 4) is plotted. It is important to note that the 

analytical values presented in these graphs imply the use of classical constitutive equations for 

serviceability as explained in Section 2.2. Thus, the reference line does not reproduce any non-

linearity due to crushing of compressive concrete or yielding of steel. Simply, this curve is 

extended until the maximum value measured experimentally is reached. 

 

 
5. Discussion of results 

 

5.1 Experimental data modified by inverse method (“free-of-shrinkage” diagrams) 

 

As commented previously, even for short-term tests, experimental results obtained from surface 

strains of concrete are affected by rheological strains. Thus, in order to remove these effects and 

obtain a reliable result, the measurements must be modified using the inverse methodology 

described in Sections 2.3 and 2.4. Fig. 6 is the same results as in Fig. 5, but now eliminating the 

shrinkage effect. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

XX-YY-00

XX-YY-30

XX-YY-10

State II

M/bd2fc

·d·1000

25-20

25-70

12-20 12-70

809



 

 

 

 

 

 

Javier Ezeberry Parrotta et al. 

 
Fig. 6 Normalized M-κ relationships. Experimental values corrected by inverse methodology 

 

 

Simple observation of curves presented in Fig. 6 allows identifying a horizontal displacement 

(a reduction) of the values corrected by the inverse technique. This curvature difference is almost 

constant independently of bending moment. For a cross section with tensile reinforcement 

subjected only to a shrinkage deformation, due to perfect bond between concrete and steel, as a 

simplification it can be assumed that there is no increment of concrete strain at the steel fibre 

whereas the imposed strain develops freely in the compressive concrete fibre. The real situation is 

not far from this simplification (Ezeberry Parrotta (2011)). Thus, this curvature difference can be 

estimated approximately as the ratio between the free shrinkage and the effective depth of tensile 

reinforcement. 

As the age at which the test is carried out increases, the shrinkage effect is more pronounced. In 

some cases, this effect, referred to as “negative tension-stiffening”, can produce a reduction of the 

specimen stiffness well below the “fully cracked” behaviour. On the other hand, in case of values 

corrected by the inverse method (“free-of-shrinkage” data), this reduction is not observed. 

However, an additional reduction can occur for large values of bending moment for which the 

materials yield and the classical hypothesis presented in Section 2.2 are no longer valid. It must be 

said that, for Beam 25-20-00, which was accidentally cracked before the loading, it is verified an 

altered behaviour due to its own load history. 

For beams 25-20 and 25-70, there are still some “corrected” experimental points outside the 

zone delimited by reference lines. However, in this case, this is due to nonlinear material 

behaviour of materials (concrete crushing and/or steel yielding) which have not been included in 

the simplified constitutive equations adopted for the reference lines. The results obtained confirm 

the importance of a correct assessment of the shrinkage effect in the deformation analysis of RC 

beams in flexure. 

 

5.2 Moment-curvature relationship 
 

This section is dedicated to analyse the adequacy of the tension-stiffening models summarized 

in Section 2.1. Figs. 7 and 8 present an analytical-experimental comparison using the moment-

curvature diagram for beams 12-20/70-10 and 25-20/70-10, respectively. To clarify the 

presentation analytical results are given in groups of three. In all graphs, there are two reference 

lines, which represent states I and II, and two set of experimental results: the pure experimental 

data obtained from longitudinal surface strains of concrete and the “free-of-shrinkage” values  
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Fig. 7 Normalized M-κ diagrams: comparison for beams 12-20-10 (left) and 12-70-10 (right) 

 

 
Fig. 8 Normalized M-κ diagrams: comparison for beams 25-20-10 (left) and 25-70-10 (right) 

 

 

obtained by the inverse method (Section 2.3). The upper plot present the results obtained using the 

interpolation methods proposed by Branson (1963), EC-2 (2004) and Walraven (CEB-FIP (2009)). 

The lower plot present results obtained for models which modify the tensile constitutive equation 

for concrete: Vecchio and Collins (1986), Collins et al. (1996), Hsu (1996) and Kaklauskas (2001). 
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5.3 Tension-stiffening laws for materials 

 

In a numerical modeling, shrinkage can be taken into account in two ways: directly or 
indirectly. In the first case, it can be assessed as a prescribed deformation or a fictitious force. This 
analysis should be based on material (tension-stiffening) models with the excluded shrinkage 
effect. Such models can be obtained from experimental data with eliminated shrinkage. These are 
hereafter called the free-of-shrinkage relationships. Until nowadays, only a few such models were 
proposed. In this respect, the studies conducted by Gilbert (2001) and Bischoff (2001) should be 
mentioned. In the second case, more general and common for engineering practice, analysis is 
performed using the laws where tension-stiffening is coupled with shrinkage. 

The inverse method allows the determination of the tension-stiffening laws which match the 
experimental results. These laws can be obtained for either concrete or steel. The selection of the 
material in which the law is applied is arbitrary, both laws are equivalent and produce the same 
results. 

Thus, Figs. 9 and 10 show the laws obtained for concrete and steel, respectively. Again, the 
results are presented in four groups. In order to make a comparison, only the analytical law 
proposed by Vecchio (1986) and Collins (1996) is used for concrete and the law recommended by 
the Model Code 2010 (2012) is used for steel. 

Fig. 9 shows that analytical results obtained for 12 mm rebars are closer to experimental data 
than the results obtained for 25 mm rebars. On the other hand, the comparison between analytical 
and experimental values is better for concrete cover of 20 mm than 70 mm. The beam 25-20-00, 
cracked before the test, shows a strong reduction in the tension-stiffening law. 

It is well known that tension-stiffening effect is relatively low (at the same strain level) in RC 
elements with increased area of tensile reinforcement – due to increased stiffness of the section, 
the particular strain is reached at the reduced tension-stiffening stress value. Thus, due to above 
effect and accumulative nature of the computation errors (Gribniak et al. (2012)), the inverse 
procedure is extremely sensitive for increment in reinforcement ratio that may produce distortion 
of the derived concrete-related tension-stiffening laws. 

Fig. 10 shows tension-stiffening laws related to steel. The derived curves can be used for a 
comparative analysis of the tension-stiffening effects assessed for the same level of stress in 
reinforcement. They might be also effective for assessing reduction of stiffness of the cracked 
section with increased deformations of rebars. Fig. 10 evidences that tension-stiffening plays a 
prominent role assessing deformations of lightly reinforced elements (having 12 mm bars).  

Comparison of the laws recommended by Model Code and diagrams derived from the test data 
with eliminated shrinkage effect shows a significant underestimation of tension-stiffening by the 
MC2010 (2012). This reflects the need to improve the Model Code formulation in order to 
adequately assess shrinkage effects. 

It was shown by Kaklauskas and Gribniak (2011a) that, seeking adequacy of serviceability 
analysis results, numerical (finite element) modelling of RC elements should include the shrinkage 
effect separated from the material models. Such separation might be done applying prescribed 
shrinkage deformations contemporarily with the free-of-shrinkage material (tension-stiffening) 
laws. However, common design code models, empirically deduced from the experimental data of 
(shrunk) RC elements, include the shrinkage effect in integral manner and, sometimes, cannot be 
used for the adequate modelling of RC. Therefore, separation of shrinkage from code equations 
becomes of vital importance. The following study deals with the deformation models specified by 
two of the main regulations: EC-2 (or the Model Code 2010) and ACI-318 (Branson). 
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Fig. 9 Inversely obtained average stress-average strain (tension-stiffening) relationships of concrete 

 

 
Fig. 10 Inversely derived stress-strain (tension-stiffening) relationships of steel 
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6. Interpolating deformations between uncracked (I) and cracked (II) states 
 

It was shown by Gribniak et al. (2013b) that, in the cases of high demands on accuracy, 

shrinkage should be taken into account in the numerical analysis (what is not a common practice). 

Using free-of-shrinkage moment-curvature diagrams, the interpolation factor ζ (as specified by 

EC-2) can be assessed from Equation (4)  

 m I

II I

κ κ
ζ

κ κ





                               

(12) 

κm being the free-of-shrinkage curvature obtained from the experimental data by the inverse 

method and κI and κII analytical curvatures obtained for States I and II, respectively. It is 

interesting to keep the mathematical expression presented in Equation 5 and adjust the power a in 

order to match the experimental results. Thus, these values are obtained by using least squares 

approach and experimental data corresponding to greater bending moments measured within the 

serviceability range.  

In case of Branson method, the mean curvatures are obtained by dividing the bending moments 

by the effective modulus of inertia and introduced in Equation (5), together with the values 

obtained for States I and II, to obtain the corresponding value of ζ to be used in the following 

comparisons. 

The first comparison is presented in Fig. 11, where the estimations of ζ using Equation (12) and 

the pure experimental data are presented and compared with EC-2 (Equation 4, a = 2) and ACI 

(Branson, Equation 5, a = 3) estimations. In this case, the values of the optimised values of 

parameter a were difficult to obtain using least squares. In section 5.1 was pointed out that at the 

cracking moment there is a sudden release of compression stresses, produced by the previous 

shrinkage, at the longitudinal reinforcement which induces an increase of curvature. Thus, a lot of 

results fall away of the zone defined by States I and II avoiding the use of Equation (4) to obtain 

the parameter a.   

The comparison between the EC-2 results and the Branson approach allow confirm a well-

known aspect of Branson formulation: for lower steel ratios and relations M/Mcr closer to one, 

Branson approach tends to give a lower curvature compared with EC-2. Thus, estimations of 

deflection based on Branson approach are on the unsafe side in this zone. Experimental results 

obtained for 12-20 specimens confirm this fact; however, this conclusion is not so clear in 12-70 

results. In any case, for elements with lower steel ratios as slabs, deflections should be calculated 

using EC-2 formulation. As the bending moment increase, the difference between both approaches 

reduces strongly. In the same way, for higher steel ratios practically there is not an important 

difference. In both cases, the reason is in the reduction of tension-stiffening effect as the bending 

moment and steel ratio increase. 

In Fig. 12, which has the same shape as Fig. 11, the “free-of-shrinkage” experimental measures 

are presented. Estimations according EC-2 (a = 2) and Branson (a = 3) are included together with 

a new curve which represents the best estimation of the exponential parameter a. 

In each graph the best estimation of the parameter a, adjusted by least squares, is indicated 

above each family of experimental data. For beams 12-20-00/10/30, a = 0.98; for beams 25-20-

00/10/30, a= 0.94; for beams 12-70-00/10/30, a = 1.71 and for beams 25-70-00/10/30, a = 1.41. 

As can be seen, this figure shows clearly how the expression proposed by the EC-2 (a = 2) 

overestimates the value of ζ for this particular set of data. 

Due the reduced number of experiments analysed, the same analysis is repeated for the  
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Fig. 11 Variation of the interpolation coefficient ζ with loading. Pure experimental data 

 

 
Fig. 12 Variation of the interpolation coefficient ζ with loading. Free-of-shrinkage results 

 

 
Fig. 13 Variation of the interpolation coefficient ζ with loading (test data reported by Gribniak) 
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Fig. 14 Variation of the interpolation coefficient ζ with loading (test data reported by Bach and Graf) 

 

 

experimental data described in the Annex. Fig. 13 shows the results obtained from the 

experimental data provided by Gribniak et al. (2013a) that are corrected by the inverse 

methodology (Section 2.4). In this case, all the specimens have the same reinforcement ratio and 

the difference can be found in the type of reinforcement used (GFRP or steel rebars). In general, it 

can be seen that EC-2 gives a better approach for beams reinforced with GFRP bars, whereas, for 

steel reinforced beams, Branson’s model is more accurate. 

Fig. 14 gives the results obtained for the tests made by Bach and Graf (1917), whose main 

characteristics are detailed in Table 5, see the Annex. In all cases, the power a was obtained greater 

than two. As the reinforcement ratio increases Branson and the EC-2 tends to give the same 

results. On the other hand, for R-beams, as the reinforcement is reduced the Branson approach 

tends to give less accurate results compared with the EC-2. It is important to note that the data 

reported by Batch and Graf are not compensated by the shrinkage records resulting in the 

increased power a in respect to other tests.  

 

 
7. A proposal for improvement of the actual EC-2 formulation 

 
From the analysis carried out at previous section, it can be stated that shrinkage effects can be 

eliminated (or separated) from the deflection prediction model of EC-2 by reducing the value of 

the parameter a. However, as showed by the experimental results, shrinkage occurring since the 

concrete casting until the moment in which the loads are applied must be accounted to obtain a 

realistic estimation of the deflections. Thus, in this section a new way of estimate the deflection is 

studied. This method requires the sum of two parts: the first one referring to instantaneous 

behaviour and the second one that quantifies the rheological history of the member until the 

moment in which the external short-term loads are applied.   

In order to find a simplified factor to represent the short-term behaviour, to be used in place of 
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the actual value a = 2, the results obtained in previous section are analysed. In section 5.3 were 

found some discrepancies for tension-stiffening laws obtained for 70 mm concrete cover. Thus, to 

investigate the probable influence of concrete cover, the sensibility of the results obtained to 

parameter d/h is plotted in Fig. 15. In this figure, the relationship between the parameter a and the 

relation d/h for all beams in which the shrinkage effect was removed, is presented. For beams with 

20 mm (d/h = 0.92) concrete cover, excepting the special case of specimen 25-20-00, the value of 

the parameter is close to 1.00 with little scatter, whereas for 70 mm (d/h=0.80) the mean value is 

about 1.50, showing an important scattering. Although, if in this last case a is evaluated using only 

the results from 12-70-10 and 25-70-10, the value of a can be considered closer to 1.00 (0.87-

1.22). These results states that for short-term estimations of deflections and for high relations of 

the parameter d/h (above 0.90) the exponential value could be reduced from 2 to a value near to 1. 

However, for relations above 0.90, the scatter detected avoids a similar conclusion.  

Fig. 16 present the comparison between the coefficient ζ, obtained from the measured 

deflections and the estimations obtained using Equation (4) for the mean values of a obtained in 

previous section (a = 1 for 20 mm concrete cover and a = 1.5 for 70 mm concrete cover, adding a 

= 2 as recommended by EC-2).     

As commented previously, the reduction of the parameter a should be accompanied of an 

additional term related to shrinkage effect. This separation of effects can improve the estimation, 

making it more general to account different rheological situations. In order to quantify the increase 

of curvature due to the negative tension-stiffening effect, the difference between the total 

deflection measured and the deflection obtained from “free-of-shrinkage” curvatures f is 

analysed.  

Fig. 17 represent the relation between this increase of deflection measured and the deflection fcs 

produced by a simplified mean curvature cs
*
 that is obtained as the ratio between the free 

shrinkage strain and the effective depth of reinforcement, cs
*
= εcs/d. This curvature represents a 

simplified value produced by the rotation of the section around the tensile reinforcement (full 

internal constraint to imposed deformation) and the free shrinkage of the upper concrete fibre. In 

the same figure, two horizontal reference curves, which express the difference between the 

deflections obtained in State II and I, are plotted. The numerical values are obtained using the 

hypothesis presented in section 2 (methodology) and the parameters presented in tables 1 to 3, 

solving the Equation (9). The nature of the experimental campaign makes the elastic curvatures 

induced by shrinkage invisible in the measures carried out, so this curvature must be subtracted in 

numerical estimations in order to make the comparison. It is evident that at the time of calculate 

the deflection in real structures the elastic contribution must be taken into consideration.   

As can be seen in Fig. 17, for specimens 12-20 and 12-70 the relations obtained are between 

0.40 and 1.20. Although some points exceed the theoretical value, 0.91 for 12-20 and 1.05 for 12-

70, which should represent an upper limit, the results are acceptable due the uncertainties involved 

in the analysis. On the other hand, for specimens 25-20 and 25-70 the relations obtained are 

between 0.30 and 0.70. In this case the analytical reference curves, 0.53 for 25-20 and 0.72 for 25-

70, are exceeded only for relation M/Mcr greater than 10. The reduction observed in the upper limit 

of these last specimens (25 rebars) reveals the influence of the tensile reinforcement, which 

restraints an important part of the free shrinkage.     

Thus, a safe estimation of the deflection can be made calculating first the deflections produced by 

short-term loads using a reduced value of a, and adding the shrinkage deflection, using the 

classical hypothesis in State II. In Fig. 18 analytical estimations (fest) using a = 1.00 for relation d/h 

= 0.92 (concrete cover 20 mm) and a = 1.50 for relation d/h = 0.80 (concrete cover 70 mm) are  
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Fig. 15 Variation of a parameter with d/h ratio 

 

 
 

Fig. 16 Value of the interpolation coefficient ζ deduced from deflections 

 

 
 

Fig. 17 Additional deflection produced by shrinkage effects 
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Fig. 18 Calculated vs. measured deflections. Left: a = 1.00. Right: a = 1.50 

 

 
Fig. 19 Value of the interpolation coefficient ζ deduced from deflections and ACI (Branson) method 

 

 
compared with measured deflections (fexp). Rheological deflections produced by shrinkage of 

concrete are added using estimations in State II as commented previously (solving Equation (9)).  

As can be seen, in general the values calculated are in the safe side, especially for lower loads 

levels, in which the results are clearly on the safe side. As the load is increased (higher 

deflections), the estimations and the measured deflections tend to be coincident. As commented 

previously, the scatter for relation d/h = 0.80 is important, reducing the accuracy of the 

estimations. However, the results obtained are sufficiently accurate for both situations.   

Actually, the EC-2 and ACI methods have very similar curvature interpolation models. They 
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assume only a different power parameter a for the member M/Mcr, 2 and 3, respectively. Thus, the 

previous analysis carried out for EC-2 can be extended for ACI model. Thus, working in the same 

way that for EC-2 formulation, the power parameter a of Eq. 6 can be adjusted by least squares to 

the experimental data. To differentiate from the previous parameter defined for C-2, the power 

value is recalled here as aB. 

Fig. 19, similar to Fig. 16, present the comparison between the coefficient ζ, obtained from 

Equation 12 and the measured deflections, and the estimations obtained using Equation (6). Three 

values of the power parameter aB are analysed: 1, 2 and 3 (actually, 3 is the value used by Branson 

method). Due the Branson methodology uses the inertial properties related to each section, the 

different families are presented separately.  

In this case, the conclusion is not as evident as was previously for EC-2. The results demonstrates 

that the power parameter aB changes not only with the concrete cover but also with on the amount 

of reinforcement. Besides, not always the value proposed by Branson overestimates the deflections 

obtained. For all these reasons, it is not possible to conclude a proposal for improvement of the 

actual Branson formulation.    

 
 
8. Conclusions 
 

In this paper an analytical-experimental study for deformation behaviour of beams has been 

carried out. This study, focused on short-term loads, has shown that some methods as EC-2 and 

Walraven approach fit better the experimental data of shrunk RC flexural elements. On the other 

hand, Branson approach and the methods proposed by Vecchio and Hsu fit better the experimental 

results after elimination of the shrinkage effect by the inverse methodology. In the case of steel 

related tension-stiffening law proposed by Model Code 2010, the underestimation can be 

significant when compared with free-of-shrinkage experimental results. As the reinforcement 

increases the difference between the accuracy of the different methods disappear due the reduction 

of tension-stiffening effect. 

The interpolation coefficient ζ as specified by the EC-2 (as well as the Model Code) is used to 

analyse the accuracy of the actual codes. To include the ACI-318 normative, the Branson approach 

is adapted to obtain an estimation of ζ. The comparison of results has shown that Branson tends to 

underestimate the curvatures for elements with low reinforcement ratios (as slabs) and relations 

M/Mcr near to one (low load levels). This difference disappears for higher reinforcement ratios and 

load levels. 

The exponential parameter a, used in EC-2 formulation to calculate the interpolation coefficient 

ζ, has been fitted to experimental results using a least squares approach in order to evaluate the 

accuracy of the actual value proposed by the normative (a = 2). The value of the exponent a, 

assessed on the basis of experimental data of shrunk elements, is found to be not less than 2.00. 

However, in case of analysing values of a obtained from “free-of-shrinkage” experimental data, it 

is observed a reduction of the power parameter respect to EC-2 proposal. It was found a good 

correlation between experimental and analytical results using a =1.00 for d/h = 0.92 and a = 1.50 

for d/h = 0.80. These estimations can be improved by adding an additional term which includes 

shrinkage effects based on the classical hypothesis of behaviour for State II. This allows to obtain 

an upper limit for the imposed curvatures.  

Thus, from the results presented in this work it is shown that the existing empirical models 

deduced on the basis of test data of shrunk RC elements can be improved if the estimations are 
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carried out separately for short-term (inverse methodology) and shrinkage effects. In any case, 

given the limited of size of the test sample analysed here more experimental campaigns are needed 

in order to validate the conclusions obtained in this paper.  
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Notation 

 

  strain 

0  strain at the reference fibre Yref 

c  strain of concrete 

cr  strain of concrete for fct 

cs  shrinkage strain 

s  strain of steel 

  interpolation factor  between States I and II 

κ  curvature 

κcr  cracking curvature 

κcs  corrected cracking curvature 

κcs
*
  simplified curvature produced by shrinkage   

κm  mean curvature 

κI  curvature in State I 

κII  curvature in State II 

ρ  reinforcement ratio 

  ageing coefficient 

  creep coefficient 

c  stress in concrete 

s  stress in the reinforcement 

A,B   rotation at supports A and B 

AB  rotation difference between supports AB = B-A  

cant,AB  rotation difference between cantilever ends 

  rebar diameter 

a  exponential parameter which define the parameter  

Ac  concrete cross-section  

As  reinforccement cross-section  

As1  tensile reinforccement cross-section  

As2  compressive reinforccement cross-section  

b  width of the section  

c  geometrical cover of longitudinal reinforcement (c=h-d) 

d  effective depth of reinforcement 
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Es  modulus of elasticity of steel 

Ec  modulus of elasticity of concrete 

Ec0  instantaneous modulus of elasticity of concrete 

Ef  modulus of elasticity of the GFRP rebars 

EAh  Reference modulus (Ec) per homogenized cross-section area 

EBh  Reference modulus (Ec) per homogenized first moment of inertia 

EIh  Reference modulus (Ec) per homogenized second moment of inertia 

EAc  Reference modulus (Ec) per concrete cross-section area 

EBc  Reference modulus (Ec) per concrete first moment of inertia 

f  vertical deflection (camber) 

fcs  vertical deflection produced by cs
*
 

fcm  mean compressive strength of concrete 

fct  tensile strength of concrete 

h  height of the cross section 

Ig  moment of inertia for uncracked concrete section ignoring reinforcement 

III  moment of inertia for the fully cracked section (State II) 

L  beam span length 

Lv  cantilever beam span length 

M  bending moment 

Mcr  cracking bending moment 

N  axial force 

RH  relative humidity 

T  temperature 

y  fibre location at cross section 

Yref  reference fibre location 
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Annex 

Additional experiments 

In order to verify the conclusions obtained in this work, two complementary sets of 

experimental data are analysed. The first set belongs to Gribniak et al. (2013a) and comprises six 

beams of which four were reinforced with glass fibre reinforced polymer (GFRP) bars. These 

experiments have shrinkage compensation using the inverse method. The second set belongs to 

Bach and Graf (1917) and is taken from Rao and Subrahmanyam (1973). These experiments were 

carried out at the beginning of the Twentieth Century without correction of shrinkage effects. The 

main geometrical and mechanical characteristics for both sets are summarized in Figs. 20 to 23, 

together withtables 5 and 6. 

 

 

Table 5 Geometrical and mechanical properties for beams tested by Gribniak et al. (2013a) 

 
Name S2-1 S2-3 S2-4-1nm S2-4-2nm S2-5nm S2-6nm 

b [m] 0.301 0.300 0.304 0.303 0.302 0.303 

h [m] 0.279 0.282 0.273 0.276 0.273 0.273 

d [m] 0.254 0.272 0.275 0.272 0.246 0.243 

c [m] 0.030 0.029 0.028 0.027 0.026 0.029 

As1 [cm
2
] 4.661 4.661 4.524 4.524 4.524 4.524 

As2 [cm
2
] 0.566 0.566 0.566 0.566 0.566 0.566 

ρ=As1/bd 0.61% 0.57% 0.54% 0.55% 0.61% 0.61% 

fc [MPa] 49.4 48.1 47.2 49.4 56.0 56.0 

Es [MPa] 210.5 210.5 _ _ _ _ 

Ef [MPa] _ _ 64.7 64.7 64.7 64.7 

cs [] 241 268 318 332 379 379 

Note: the effective depth d is related to the gravity centre of the reinforcement 

 
Table 6 – Geometrical and mechanical properties for beams tested by Bach and Graf (1917) 

Sketch 

 

 

Name R1.68% R1.32% R0.90% R0.65% R0.31% TB50_1.68% TB75_1.68% TB100_1.68% 

b [m] 0.30 0.30 0.30 0.30 0.30 0.20 0.20 0.20 

h [m] 0.30 0.30 0.30 0.30 0.30 0.40 0.40 0.40 

B [m] _ _ _ _ _ 0.50 0.75 1.00 

hs [m] _ _ _ _ _ 0.10 0.10 0.10 

ρ=As1/bd 1.68% 1.32% 0.90% 0.65% 0.31% 0.31% 0.31% 0.31% 

fc  [MPa] 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 

6

6 6 6 6 6 6

14 12 12
16

8
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d
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dh

b B

b
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h

As1

d

cAs2

b
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Fig. 20 Normalized experimental M-κ relationships obtained by Gribniak et al (2013a). Fibre 

reinforced beams 

 

 
Fig. 21 Normalized experimental M-κ relationships obtained by Gribniak et al (2013a). 

Steel reinforced beams 

 

 
Fig. 22 Normalized experimental M-κ relationships obtained by Bach and Graf (1917). 

Rectangular beams 
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Fig. 23 Normalized experimental M-κ relationships obtained by Bach and Graf (1917). T beams. 
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