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Abstract.  Most of the methods presented in the literature to define the target service stresses (Objective 
Service Stage, OSS) of cable-stayed bridges rarely include the time-dependent phenomena effects. 
Nevertheless, especially in concrete structures, this assumption might be on the unsafe side because time-
dependent phenomena usually modify service stresses. To fill this gap, this paper studies the time-dependent 
phenomena effects into service stresses of concrete cable-stayed bridges. After illustrating the important role 
of these phenomena in an asymmetrical cable-stayed bridge without backstay, a new method to include their 
effects into the OSS is presented. An important issue to be considered in this method is the target time in 
which the OSS is defined to be achieved. The application of this method to two different structures showed 
the convenience of defining the OSS to be achieved at early times because that way the envelope of service 
stresses is reduced. 
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1. Introduction 
 

One of the first stages in the design of the construction process of a cable-stayed bridge is the 

definition of a target geometry and/or stress state to be achieved in service. This stage is known as 

the Objective Service Stage (OSS). In this stage, a given load hypothesis is counterbalanced by 

several resistant mechanisms. All these resistant mechanisms are related, to a greater or lesser 

extent, with the tensile forces of the stay cables. Since modern cable-stayed bridges are highly 

statically redundant structures, there does not exist a unique solution for calculating the stay cable 

forces in the OSS. The prestressing forces in stays represent a design parameter that can be tailored 

to achieve an effective design for the bridge. However, as the number of the stay cables increases, 

the evaluation of the proper set of stay cable forces in service becomes a challenging exercise.  
Many of the criteria proposed in the literature to estimate the stay forces in the OSS have been 

reviewed in the literature (see Guan 2000, Chen et al. 2000, Hassan et al. 2012, Lozano-Galant et 

al. 2012a, b). According to these authors, the main criteria are as follows: (1) The Pendulus Rule 

(see SETRA 2001). The pendulus rule is a simplified criterion usually applied by the designers as a 
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first approximation of the stay cable forces in the OSS in nearly horizontal decks. (2) Minimal 

Bending Energy Criterion (see Du 1989). As its name states, this criterion is based on the 

minimization of the bending energy of the structure. (3) Rigidly Supported Continuous Beam 

Criterion (see Chen et al. 2000, and Gimsing 1997). This criterion assumes that the long-term 

behavior of a cable-stayed bridge corresponds with that of an equivalent continuous beam. This 

beam is defined by removing the stay cables and adding fictitious bearings at the connections 

between the bridge deck and the stay cables. In this way, the tensile forces in the stay cables are 

obtained by projecting the vertical reactions of the corresponding fictitious supports into the stay 

cable directions. (4) Zero Displacement Criterion (see Lazar et al. 1972 and Wang et al. 1993). 

This criterion defines the stay cable forces to achieve zero deflections at certain control points of 

the structure. A common criterion consists of defining zero vertical deflection at the deck-stay 

connection and zero horizontal deflection at the top of the pylon in structures with backstays. 

Hassan et al. (2012) and Hassan (2013) introduced B-spline curves to analyze the bridge 

deflections. In these works, genetic algorithms were introduced to define the post-tensioning 

functions that minimized the deck deflections. (5) The Unit Load Method (see Janjic et al. 2002, 

2003). This criterion is based on a linear system of equations that includes a degree of freedom for 

each stay cable force. This system relates the bending moments at some control points for two 

types of load cases: unit prestressing loads at each stay cable and the target load of the 

superstructure. (6) Optimization Criterion (see Negrao and Simoes 1997 and Simoes and Negrao 

2000). In this criterion the prestressing stay cable forces are defined by the minimization of a 

scalar objective function. Different tendencies are used to define these objective functions. Some 

designers base their objective functions on the structural efficiency while some other base it on the 

economy of the structure.  

Many researches (see e.g. Fiore et al. 2012 and Gogic and Sadovic 2012) have stated the 

important role that the time-dependent phenomena might play in the structural behavior of 

presstressed structures. In the case of cable-stayed bridges these effects make that the service stress 

state varies with time, and therefore, the OSS can only be obtained at a certain Target Time, tT. 

Some works have been presented in the literature to study the time-dependent phenomena effects 

in stayed structures. Scotti (2003) defined the stay forces to minimize the creep effects throughout 

time in cable-stayed bridges with vertical stays. Giussani et al. (2004) analyzed the evolution of 

stresses and deformations of cable-stayed bridges over time. Martins et al. (2011) proposed a 

procedure to determine stay forces using an optimization algorithm that included the effects of 

time-dependent phenomena and staggered erection on cantilever. This method enables to define 

the stay forces to correct errors during erection stages. Nevertheless, as far as the authors know, the 

time-dependent phenomena effects are rarely included into the definition of the OSS of cable-

stayed bridges. In addition to this, the effects of the creep and shrinkage in asymmetrical concrete 

cable-stayed bridges without backstays (such as the Alamillo Bridge) have not been conveniently 

reported in the literature. 

To fill these gaps, the aim of this paper is to study the effects of time-dependent phenomena 

(creep and shrinkage) into the OSS of concrete cable-stayed bridges. To do so, a new method is 

proposed to include the effects of those phenomena into the OSS. This method is applied to an 

asymmetrical cable-stayed bridge without backstay and to a real cable-stayed bridge.  

This paper is organized as follows: Section 2 deals with the time-dependent phenomena effects 

in service. In Section 3, a new method to include the time-dependent phenomena effects into 

service stresses is presented. In Section 4, this method is applied to study different tT in two cable-

stayed bridges. Finally, some conclusions are presented in Section 5. 
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2. Time-dependent phenomena effects in service 
 
In this section a procedure to simulate time-dependent phenomena effects is first described. 

Then, a method presented in the literature to calculate the service stresses of cable-stayed bridges 

without taking into account the time-dependent phenomena effects is presented. Finally, a 

parametric analysis is presented to illustrate the important role that time-dependent phenomena 

play in singular cable-stayed bridges. This example (Example 1) shows the necessity of 

developing new methods to include the time-dependent phenomena effects into the definition of 

the OSS. 
 

2.1 Time-dependent phenomena simulation 

 

The behavior of cable-stayed bridges in service may be strongly affected by the time-dependent 

phenomena (see Bazant 1988), such as steel relaxation, in prestressed steel structures, and creep 

and shrinkage in concrete structures. For this reason, many authors have studied these time-

dependent phenomena effects in the last decades (see Xie and Biernacky 2011). Strasky (2005) 

analyzed the redistribution of bending moments due to concrete time-dependent phenomena 

effects in a beam with vertical and inclined stays. Cluley and Shepherd (1996) analyzed the creep, 

shrinkage and relaxation effects in symmetric cable-stayed bridges. This analysis included the 

time-independent nonlinearities of large displacements in the girder and the pylon, sag effects in 

cable-stays and anchorage slip loss. Somja and Goyet (2008) proposed a numerical procedure for 

geometrical and material nonlinear finite element analysis of segmental erected structures 

including cable-stayed bridges. Oliveira Pedro and Reis (2010) analyzed the simulation of 

nonlinearities in composite steel-concrete cable-stayed bridges. Au and Si (2011) proposed a finite 

element analysis of the time-dependent phenomena in prestressed structures based on the time 

integration method. Au and Si (2012) analyzed the time-dependent effects on dynamic properties 

of cable-stayed bridges. In this work, the simulation of the time-dependent phenomena was carried 

out by mean of a time-integration method.  

According to Cluley and Shepherd (1996), for a ratio of the initial prestress to the yield strength 

of the steel lower than 55%, steel relaxation might be neglected. This is the case of stay cables, 

which ratios are limited for fatigue assessment by the 45% of the ultimate strength. For this reason, 

in this paper only the creep and shrinkage effects are studied.  

Many authors have studied the strains in concrete elements throughout time (see e.g. Barros 

and Martins 2012 and Ventura-Gouveia et al. 2011). The total strain in an axially loaded concrete 

element (e.g. the pylon or the deck of a cable-stayed bridge) at time t might be obtained by the 

superposition of elastic, thermal, shrinkage, and creep strains as follows 

0 1( ) ( ) ( ) ( , ) ( , )E T CS Ct t t t t t t                             (1) 

where ε(t) is the total strain, εE(t) is the instantaneous Elastic strain, εT(t) is the Thermal strain, 

εCS(t,t0) is the Shrinkage strain and εC(t,t1) is the Creep strain. The first two strains of Eq. (1) can be 

directly calculated from the geometrical and mechanical characteristics of the structure, the 

concrete stresses and the environmental conditions. Nevertheless, the evaluation of εCS(t,t0) and 

εC(t,t1) throughout time cannot be carried out directly because both strains vary nonlinearly with 

time. For this reason, the simulation of the effects of creep and shrinkage phenomena requires a 

step by step analysis. 
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(a) Calculating χE,i and εE,j (b) Calculating increments of stresses ΔM and ΔN 

Fig. 1 Procedure to simulate creep effects 

 

 

The step by step analysis to evaluate the shrinkage effects at time t0+Δt might be described as 

follows. Firstly, the increment of shrinkage strain, ΔεCS,i, between time t0 and t0+Δt is calculated for 

each ith element. These increments might be calculated as presented in Eq. (2). Secondly, these 

increments of strains are introduced as imposed strains in a FEM to calculate the increments of 

stresses due to shrinkage. Finally, to obtain the stresses at time t0+Δt, these increments of stresses 

are added to the stresses at time t0. It is important to highlight, that, unlike creep, shrinkage effects 

do not depend on the stresses of the structure.  

, , 0 , 0( , ) ( , )CS i CS i CS it t t t t                               (2) 

The creep strain between time t1 in which a constant load is applied and evaluation time t, 

εC(t,t1) depends linearly on the applied Elastic strain at t1, εE(t1), as follows: 

1 0 1 0 1( , ) ( , )? )C Et t t t t t t                                 (3) 

in which φ(t-t0,t1-t0) is known as the creep coefficient at time t when a load is introduced at time t1 

in a concrete age t0. Most of the methods proposed in the literature include the Dischinger’s 

hypothesis (also known as “Rate of Creep”, see Bazant 1988) to approximate the creep coefficient.  

To simulate the creep effects throughout time, the procedure described in Fig. 1 might be used. 

This procedure is summarized as follows: (1) Firstly, the elastic curvatures, χE,i, and the elastic 

strains, εE,i, in every ith beam element at time t0 are calculated. For a certain stress state, these 

strains might be calculated from the average bending moments, 𝑀𝑖
    and the average axial forces, 

𝑁𝑖
  in each beam element. The calculation of these average values is illustrated in Fig. 1(a). This 

figure includes the bending moment diagram at the deck and the axial diagram at the pylon for 

permanent loads. The first beam element (named beam i) is located at the deck and their both 

edges are called i and i+1, respectively. If a short length of the beam i is assumed, 𝑀𝑖
    might be 

approximated from the bending moments at both edges of the elements (Mi+Mi+1) as presented in 

Eq. (4). With Ec,i and Ic,i being the Young’s modulus of the ith beam element, χE,i might be 

estimated from 𝑀𝑖
    as presented in Eq. (5) and Fig. 1(a). This figure also shows the calculation of 

the 𝑁𝑖
  in a jth beam element from the axial forces in both edges Nj and Nj+1 as presented in Eq (6). 

With Ac,i being the area of the jth element, εE,i might be estimated from 𝑁𝑖
  as presented in Eq. (7) 

and Fig. 1(a). Once the elastic curvatures and strains are calculated, (2) the increment of curvature, 

Δχi, and strain, Δεj, in each element due to creep between time t1 and t1+Δt might be calculated. 

These increments are calculated as presented in Eqs. (8)-(9), where the elastic curvatures and 
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strains are amplified by an increment of creep factor, Δφ defined from codes. With φ(t1+Δt, t1) 

being the creep coefficient at time and t1+Δt of a structure loaded at time t1 and φ(t1, t1) being the 

creep coefficient of the same structure at time t1, the increment of creep coefficient between time t1 

and t1+Δt, might be calculated as presented in Eq. (10). After calculating Δχi and Δεj. (3) these 

increments might be introduced as imposed loads into the Finite Element Model (FEM) to 

calculate the increments of stresses produced by creep between time t1 and time t1+Δt. The 

obtained increments of bending moment, ΔM and axial forces, ΔN, in the edges of beam elements i 

and j, when Δχi and Δεj are introduced as imposed loads are illustrated in Fig. 1(b). (4) Finally, the 

stresses at time t1+Δt are calculated by adding the increments of stresses produced by creep effects 

to the stresses at time t1. 
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1 1 1 1( , ) ( , )t t t t t                                  (10) 

The increments of time used to simulate creep effects might be chosen to keep Δφ constant. In 

this way, these increments are selected smaller at short times and they are increased throughout 

time. In this paper, the formulation of the Model Code (2012) has been considered to calculate 

both ΔεCS and Δφ. 

 

2.2 Optimization objectives 

 

According to the Rigidly Continuous beam Criterion (Lazar 1972) the stay cable forces in the 

Objective Service Stage (OSS), can be defined as the projections into the stay direction of the 

reactions of an equivalent continuous beam. This beam is obtained by substituting the stay cables 

by fixed supports. The N stay cable forces can be clustered into a vector, {N
OSS

}. These forces can 

be obtained by the sum of a passive, {NP}, and an active state, {NA}, as presented in Eq. (11). On 

the one hand, {NP} includes the passive stay cable forces produced when a certain Target Load, 

TL, is applied into the structure. On the other hand, {NA} includes the effects of prestressing 

operations in the stay cables. 
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          OSS OSS
P A PN N N N N                             (11) 

The forces in {NA} can be simulated by introducing a set of imposed strains, {ε
OSS

}, into the 

stay cables. These must take into account the stiffness of the whole structure. To do so, an 

influence matrix, [ΔN] is required. This matrix includes the effect of the prestressing of every 

single stay in the rest of stays in terms of stay forces. The only unknown of Eq. (11) is {ε
OSS

}, and 

it can be directly defined by mean of the inverse of [ΔN], [ΔN]
-1

 as presented in the following 

equation: 

        1OSS OSS
PN N N


                                (12) 

Once calculated, the strains {ε
OSS

} can be used to simulate the construction process of cable-

stayed bridges as presented in Lozano-Galant et al. 2013. Moreover, the procedure explained in 

this section can be adapted to deal with the effects of the staggered erection of the superstructure 

of cable-stayed bridges (see Lozano-Galant et al. 2014). Nevertheless, up to now, this procedure 

has not been adapted to deal with time-dependent phenomena effects. In order to show the 

necessity of dealing with these effects, the following example is analyzed. 
 

2.2.1 Example 1: Alamillo bridge 

This example illustrates the important role of time-dependent phenomena effects in an 

asymmetrical concrete cable-stayed bridge without backstays. Furthermore, a parametric analysis 

that shows how the pylon weight and stiffness affect the creep and shrinkage effects is presented. 

The analyzed structure is based on a simplified model of the Alamillo Bridge in Spain (see 

Casas and Aparicio 1998). This model has a 80 m long concrete deck, three stay cables arranged in 

harp and an inclined pylon (60 m long and 51 m high). This pylon has an inclination α of 120º. The 

geometry of the structure is summarized in Fig. 2. In this analysis, no staggered erection of the 

superstructure is considered and all the stays are assumed to be prestressed in a single operation at 

28 days. 

To model adequately the effects of creep and shrinkage the FEM of the bridge includes 143 

beam elements (80 are used for the deck, 60 for the pylon and 3 for the stay cables). The area, 

Young’s modulus, and inertia, of the deck and the pylon are 1m
2
, 35000MPa and 1 m

4
, respectively. 

The concrete strength is 45MPa. The humidity corresponds with the 70% and the notational size of 

the deck and the pylon is 250 mm. The stays are characterized by an area of 0.003 m
2
, a Young’s 

modulus of 195000MPa and null inertia.  

The stay forces of this bridge are defined by the Rigidly Continuous Beam Criterion for a 

permanent load of 25 kN/m. Taking into account these forces, the weight of the pylon is calculated 

according to the three following criteria: (1) Criterion C-1: Equilibrium of horizontal forces in the 

pylon. This criterion results in a light pylon whit a weight of 71.5kN/m. This weight is 2.85 times 

higher than that of the deck, that is to say a weight ratio of 2.85 is obtained by this criterion. (2) 

Criterion C-2: Null bending moment at the pylon abutment. This criterion produces a weight ratio 

of 3.81. Finally, (3) Criterion C-3: Minimal area of the bending moments. Application of this 

criterion results in a heavier pylon with a weight ratio of 4.19.  

A parametric analysis is carried out to evaluate the creep and shrinkage effects. In this analysis 

a set of 17 different models are studied. Differences between these models refer to: (1) Criterion  
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Fig. 2 Simplified model of the Alamillo Bridge (Spain) 

 

  
(a) Bending moments creep (b) Increment of stay forces creep 

  

(c) Bending moments shrinkage (d) Increment of stay forces shrinkage 

Fig. 3 Simplified model of the Alamillo Bridge (Spain) 

 
Table 1 Imposed strains in the stays at the OSS in the models with a light pylon (C-1). The term S. Ratio 

indicates the stiffness ratio. The material of the deck and the pylon is also included 

Model SD/SP Deck Pylon ε 1·10-3 ε2·10-3
 ε 3 10-3 

1.1 1 Concrete Concrete -5.844 -5.822 -6.619 

1.2 1 Steel Concrete -5.797 -5.783 -6.588 

1.3 1 Concrete Steel -2.983 -2.632 -3.104 

1.4 2 Concrete Concrete -4.101 -3.878 -4.477 

1.5 5 Concrete Concrete -3.055 -2.712 -3.192 

1.6 7.5 Concrete Concrete -2.822 -2.452 -2.906 

1.7 10 Concrete Concrete -2.706 -2.323 -2.764 

489



 

 

 

 

 

 

Jose Antonio Lozano-Galant and Jose Turmo 

used to define the pylon weight (C-1, C-2 or C-3), (2) Stiffness of the pylon. The models include a 

different ratio between the stiffness of the pylon (sp) and the stiffness of the deck (sd). The 

analyzed ratios are 1 (flexible pylon), 2, 5, 7.5 and 10 (rigid pylon). (3) Material of the deck 

(concrete or steel). (4) Material of the pylon (concrete or steel). For the sake of simplicity, the last 

two differences are only analyzed in a structure with a light (weight ratio from C-1) and flexible 

(unitary stiffness ratio) pylon. 

The strains used to simulate the stay prestressing in each of the different models are calculated 

by the application of Eq. (12) at 28 days. As the structure is erected at that time, the calculated 

strains do not include the effects of the time-dependent phenomena. The obtained strains for the 7 

different models with a light pylon (weight ratio from C-1) are summarized in Table 1. These 

models are named from 1.1 to 1.7. Table 1 also includes the main characteristics of the different 

models. 

The analysis of Table 1 shows the effect of the pylon weight and stiffness in the prestressing 

strains. Obviously, the stiffer the pylon, the lower the prestressing strains. For example, this is 

appreciable by the comparison of model the model 1.1 (with a stiffness ratio of 1) and 1.4 (with a 

stiffness ratio of 2). In this case, double inertia of the pylon reduces the strains of the stay cables 

29.8, 33.3 and 32.4 %, respectively. The comparison of the obtained strains in models based on C-

1, C-2 and C-3 shows that the heavier the pylon, the lower the prestressing strains.  

Once the structure has achieved the OSS at 28 days, the effects of the time-dependent 

phenomena in concrete at 10000 days are simulated. For each of the analyzed models, the creep 

and shrinkage effects are studied separately. In the analysis of each of these phenomena, the deck 

bending moment diagrams are used to evaluate the effects of the pylon weight as well as the 

different materials of the deck and the pylon (Figs. 3(a)-(c)). The effects of the pylon stiffness are 

evaluated by mean of the changes in the stay force with time for each pylon weight criterion (Figs. 

3(b)-(d)). 

The bending moment diagram in the deck obtained after adding the creep effects are 

summarized in Fig. 3(a). This figure includes the bending moment diagram of the OSS at 28 days 

(that corresponds with that of a continuous beam), the bending moments diagram obtained by each 

pylon weight criterion (C-1, C-2 and C-3) with a unitary stiffness ratio and the bending moment 

diagram obtained when the pylon and the deck material is changed to steel in C-1 with a unitary 

stiffness ratio. In the figure, the latter two stages are named “C-1 Pylon Steel” and “C-1 Deck 

Steel”, respectively. The analysis of Fig 3(a) shows the following conclusions: (1) The stress 

redistribution due to creep at the pylon is of primary importance. This is appreciable by the 

comparison of the results obtained by models with different materials (C-1 Pylon Steel, C-1 Deck 

Steel and C-1). When the pylon is made of steel (C-1 Pylon Steel), the maximum creep 

redistribution (154.37kNm) only represents the 14.41% of the maximum bending moment in the 

OSS (-1.11MNm). This value is found at the mid span and it is caused by axial creep shortening of 

the deck. In those cases where the pylon is made of concrete (C-1 Deck Steel and C-1) the 

redistribution of stresses due to creep is significantly higher. The maximum redistribution in C-1 

(3091.76kNm) is found at the anchorage of the third stay and it represents the 288.56% of the 

maximum bending moment in the OSS. In the case of C-1 Deck Steel the maximum redistribution 

(3970.78kNm) is found at the mid span and it represents the 376.91% of the maximum bending 

moment in the OSS. It is important to highlight that in those cases where the pylon is made of 

concrete, the creep redistribution of the structure also produce changes in the sign of the bending 

moments of the deck (e.g. at the stay anchorage the hogging moments are changed to sagging 
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ones). These changes are mainly caused by the stress redistribution of the light pylon, which is 

subjected to high stresses at 28 days. (2) The favorable effect of the redistribution of stresses due 

to creep when the deck is made of concrete. This is appreciable by comparing the results of C-1 

Deck Steel and C-1. In the latter case, redistribution of stresses at the deck reduces the effects of 

the redistribution of stresses at the pylon. (3) It is convenient to reduce the stresses of the pylon at 

the OSS to minimize its redistribution throughout time. This can be carried out by using heavier 

pylons as shows the comparison between models C-1, C-2 and C-3. In C-2 the maximum 

redistribution (863.09kNm) is found at the anchorage of the third stay and it represents the 80.55% 

of the maximum moment in the OSS, while in C-3, the maximum redistribution (414.00kNm) is 

found at the anchorage of the first stay and it represents the 38.17% of the maximum moment in 

the OSS.  

A parametric analysis is also presented to illustrate how the pylon stiffness influences the stress 

redistribution due to creep phenomenon. This analysis is summarized in Fig. 3(b) in terms of the 

absolute percentage of variation of the axial force of the third stay between 28, N28, and 10000, 

N10000, days. The analysis of this figure shows an additional conclusion: As expected, (4) the 

stiffness of the pylon produces a favorable effect into the stress redistribution due to creep in all 

the criteria. Nevertheless, increasing the stiffness might not be enough to minimize the 

redistribution of stresses due to creep. This is appreciable by the comparison of the results 

obtained by C-1 and C-2. For a unitary stiffness ratio, the variations of the stay forces throughout 

time represent a 28.37% (C-1) and a 9.68% (C-2) of the stay force at 28 days. When the stiffness 

ratio is increased to 10, these percentages are reduced to 12.23% (C-1) and 4.21% (C-2). This 

analysis shows again the important role of the pylon weight in the stress redistribution due to creep. 

When this weight is calculated to minimize the bending area of the pylon (C-3), the variation of 

the stay force in the third stay throughout time varies from 2.20% (stiffness ratio=1) to 0.97% 

(stiffness ratio=10). These values are significantly lower than those obtained by the rest of criteria. 

Placing a backstay produces a similar favorable effect that using the heavy pylon proposed in C-3.  

The bending moments obtained in the deck after adding the shrinkage effects are presented in 

Fig. 3(c). The analysis of this figure shows the following conclusions: (1) The shrinkage does not 

depend on the stresses that the pylon is subjected to. This is appreciable by the fact that the same 

bending moments are obtained for the different analyzed pylon weights (C-1, C-2 and C-3). In 

these models, the maximum differences with the bending moments of the equivalent continuous 

beam (559.01 kNm) are found at the mid span. This value represents a deviation of the 52.18% of 

the maximum bending moment in the continuous beam. (2) The shrinkage phenomenon depends 

on the materials of the bridge. This is appreciable by comparison of the bending moment diagrams 

of the C-1, C-1 Pylon Steel and C-1 Deck Steel. Nevertheless, the effects of changing the deck or 

the pylon material are not as significant as in the creep redistribution of stresses. 

The parametric analysis that shows the effect of pylon stiffness on the stress redistribution due 

to shrinkage is summarized in Fig. 3(d). This figure includes the variation of the stay force in the 

third stay throughout time for different stiffness ratios. The analysis of Fig. 3(d) shows that, (3) 

Independently of the pylon weight, the pylon stiffness increases the perceptual difference with the 

stay force in the OSS. For example, the differences obtained for a unitary stiffness ratio, (2.07%) 

are increased to 9.08% for a stiffness ratio of 10.  

This example illustrates the necessity of including the time-dependent phenomena effects into 

the definition of the OSS. To fill this gap, a new criterion is proposed in the following section.  
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3. New method to include time-dependent phenomena effects into the OSS 
 

When time-dependent phenomena are included into the simulation of the OSS, Eq. (12) cannot 

be directly applied to calculate the .ε
OSS

} because of the nonlinear effects produced by the time-

dependent phenomena. These effects depend, to a great extent, on the structural system in which 

the different loads are applied. Furthermore, it is important to highlight that the OSS is only 

achieved at a certain Target time tT. To solve all these problems, Eq. (11) might be rewritten as 

         , , , , ,
·T T T T TOSS t K N t N t K N t N t t

N N N N N
        

 
              (13) 

in which the stay cable forces at tT, {N
OSS,tT}, obtained by the sum of two different vectors of stay 

forces {N
K-N,tT}, and {N

K-N,tT}. With K being the number of construction stages and N being the 

number of stays, the former of these vectors represents the stay cable forces after the first K-N 

tensioning operations. In these stages changes in the structural system are simulated both during 

the staggered erection of the superstructure and during the prestressing of the stay cable system. 

These forces include the effects of the time-dependent phenomena from the beginning of the 

staggered erection of the superstructure until tT. The effect of the application of the remaining of 

the permanent loads at time tPL might also be introduced into the simulation of the stay forces of 

this vector. On the other hand, the vector {N
K-N,tT} represents the stay forces in the last N tensioning 

operations (last re-tensioning operation) after including the time-dependent phenomena at time tT. 

As in common practice, the structural system in these operations is assumed to correspond with 

that of the complete structure (with all stay cables and no temporary supports). The vector {N
K-N,tT} 

might be expressed as the sum of an influence matrix in terms of increments of stay forces, [ΔN
N,tT], 

and a vector of imposed strains, {ε
t
}.This vector {ε

t
} represents the strains to be introduced into 

the last tensioning operation of each stay at their respective prestressing times.  

If the stay cables are installed in two tensioning operations, that is to say, K=2N, Eq. (13) might 

be developed as presented in Eq. (14). The time of each tensioning operations is named tk,m. The 

first sub-index refers to the prestressed stay and the second one to the number of its tensioning 

operation. For example, t1,2 indicates the time in which the second tensioning operation of the first 

stay is carried out. The sub-indices in vectors {N
OSS

} and {N
K-N,tT} refer to each of the stay cables. 

For example, the stay forces in the OSS in the nth stay is called Nn
OSS,tT. Each nth column of matrix 

[ΔN
N,tT] corresponds with the forces in all stay cables at time tT when a unitary strain, εn

tn,2, is 

introduced in the last tensioning operation of the nth stay at time tn,2. The nomenclature used in 

each of the terms of this matrix is as follows: the first super-index corresponds with the 

construction stage in which the nth stay is re-stressed, the second super-index refers to the 

evaluation time, tT, the first sub-index corresponds with the unitary strain introduced in the stay at 

the time of the re-stressing operation tn,2, and the second sub-index refers to the stay in which the 

increment of stay force is calculated. The vector {ε
t
} is divided into the imposed strains to be 

introduced into each stay n in its last tensioning operation at time tn,2. 
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Fig. 4 Definition of stay forces in {N
K-N, 

tT
 } and in [ΔN

N, tT
] for a 2-stay cable-stayed bridge 

 

 

To illustrate the different terms of Eq. (14), this equation is applied to a two-stay cable-stayed 

bridge as presented in Eq. (15). The tensioning process of this structure includes four tensioning 

operations. In the first two operations the two stays are placed at times t1,1 and t2,1, while in the last 

two tensioning operations the stay forces are adjusted at times t1,2 and t2,2. In this case, the stay 

cable forces in the OSS of every stay, that is to say, N1
OSS,tT and N2

OSS,tT, might be calculated by 

projecting the reactions of an equivalent continuous beam into the stay cable directions. The stay 

forces after the first two tensioning operations (first K-N=2 tensioning operations) at time tT, N1
2,tT 

and N2
2,tT, are obtained when the effects of the time-dependent phenomena are added to the results 

of the first tensioning operation. The calculation of the terms of the stay forces after the first K-N 

tensioning operations at time 𝑡𝑇  is summarized in Fig. 4. 
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                  (15) 

In Eq. (15), the forces in [ΔN
N,tT] include the effects of the last N = 2 tensioning operations. 

Terms of each column of this matrix represents the last N tensioning operations. The first column 

corresponds with the first re-tensioning operation (Stage 3 at time t1,2),while the second one 

corresponds with the second re-tensioning operation (Stage 4 at time t2,2). Each of these operations 

is simulated by mean of an independent FEM as presented in Fig. 4. The FEM of the first column 

of [ΔN
N,tT] includes the increments of stay forces produced by a unitary strain applied at the first 

stay cable at time t1,2. This strain produces some active forces (highlighted in red) in the first stay 

and some passive forces (highlighted in discontinuous blue) in the second stay cable. Then, the 

creep effects produced until tT are introduced. The FEM of the second column includes an imposed 

strain at the second stay cable. The increment of forces of this tensioning operation only include 

the effects of the time-dependent phenomena from time t2,2 to tT as presented in Fig. 4. 

The only unknown of Eq. (13) is the vector of imposed strains {ε
t
}. This vector might be 

obtained by mean of the inverse of the influence matrix of stay forces [ΔN
N,tT]

-1
 as follows 

      
1

, , ,T T TN t OSS t K N tt
N N N


    

 
                     (16) 
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The set of strains in vector {ε
t
} might be used to simulate the effects of the time-dependent 

phenomena into the OSS. For example, the bending moments at time tT, {M
OSS,t

T}ight be simulated 

by the following equation 

     , , ,
·T T TOSS t K N t N t t

M M M
     

 
                      (17) 

in which {M
K-N,tT} is a vector that includes the bending moments after including the effects of the 

time-dependent phenomena into the last K-N stages at time tT and [ΔM
N,tT] is an influence matrix 

that includes the bending moments in the last N tensioning operations when a unitary strain is 

introduced into each stay and after adding the effects of the time-dependent phenomena at time tT. 

 
 

4. Application of the new method 
 

In this section two structures (Example 2 and Example 3) are analyzed by the method presented 

in the preceding section. On the one hand, in Example 2 the method is applied to assure the 

achievement of the OSS in 10000 days. Furthermore, the effects of the pylon stiffness are also 

analyzed. On the other hand, is Example 3 the strains in the OSS are defined for two different 

criteria (OSS130 and OSS10000). Differences between these criteria refer to the target time (130 and 

10000 days, respectively) in which the OSS is defined to be achieved.  

In Examples 2 and 3, the staggered erection of the superstructure and the tensioning operations 

of the stay cables are not considered. That is to say, it has been assumed that the structure is 

erected in a single operation at 28 days. 

 

4.1 Example 2: Alamillo bridge 
 

The mechanical and geometrical characteristics of this structure correspond with those 

presented in Example 1, for a unitary stiffness ratio between the pylon and the deck. As in the 

pointed example, the pylon weight is defined by different criteria (C-1, C-2 and C-3). The model 

obtained for each of the three different pylon weights are named from 2.1 to 2.3. The OSS of each 

of the models might be characterized by a set of imposed strains {ε
t
}.These strains have been 

calculated to assure the achievement of the OSS at 10000 days. The calculation of these strains has 

been carried out by Eq. (16).  

The main characteristics and the obtained strains for each of the analyzed models are 

summarized in Table 2. The analysis of this table indicates that the heavier the pylon, the lower the 

required strains. For example, the average strain in the model with a light pylon (model 2.1) is 

8.98 times higher than the average strain in the model with a heavy pylon (model 2.3).  

 

Table 2 Strains in the different stays  

Model Pylon weight S.Ratio ε1·10
-3 

ε2·10
-3

 ε3·10
-3

 

2.1 C-1 1 -15.514 -16.181 -17.527 

2.2 C-2 1 -5.634 -5.747 -6.651 

2.3 C-3 1 -1.681 -1.571 -2.230 
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(a) Pylon and deck bending moments (b) Stay cable forces 

Fig. 5 Comparison between cases 2.1, 2.2 and 2.3 at 28 days for a tT of 10000 days 

 

 

The different strains presented in Table 2 might be used to simulate the stresses of the structure 

at any time. For example, the bending moments might be calculated by application of Eq. (16). 

The pylon and deck bending moment diagrams at 28 days obtained for the different cases are 

presented in Fig. 5(a). These bending moment diagrams are also compared with those obtained at 

10000 days at the OSS (minimal bending energy). The analysis of this figure shows that the lighter 

the pylon, the higher the value of bending moments required at 28 days to assure the achievement 

of the OSS at 10000 days. This is appreciable by comparing the maximum differences of the 

bending moments between 28 and 10000 day obtained by models 2.1 and 2.3. In the case 2.1, the 

maximum differences at the deck (11.01MNm) are 9.90 times the maximum bending moment in 

the OSS (-1.11MNm). These differences are reduced to 0.79MNm in model 2.3. This value 

represents 71.2% of the maximum bending moment at the OSS.  

The stay forces in each of the analyzed cases at 28 days are presented in Fig. 5(b). This figure 

also includes the stay forces in the OSS. The analysis of this figure shows similar results than those 

obtained by the analysis of the bending moment diagrams. The higher differences are found in case 

2.1 in which the maximum stay force (-2330.82kN) represents a deviation of the 73.79% of the 

corresponding force in the OSS. On the contrary the maximum differences at the first stay in case 

2.3 (-1236.68kN) represents a deviation of the 8.15% of the stay force in the OSS.  

Fig. 5 illustrates the important role that the pylon plays in the redistribution of stresses due to 

the time-dependent phenomena effects. In this kind of structures it is convenient to define the 

weight of the pylon by minimizing the area of the pylon bending moment diagram (criterion C-3). 

In this case, the variation of the structural behavior throughout time due to time-dependent 

phenomena effects is reduced when compared with the other analyzed criteria.  
 

4.2 Example 3: Wuxi bridge 

 

The cable-stayed bridge analyzed in this section is presented in Fig. 6 and corresponds with a 

simplified model of a project for the city of Wuxi in China. The model has a concrete pylon 55m 

high, a 180m long concrete deck and N = 19 stay cables arranged in a fan symmetric form. The 

self weight of the bridge deck, g1, and the target load, TL, are 135kN/m and 202.5kN/m, 
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respectively. The stay cables are uniformly anchored every 9 m along the deck. In service the 

structure includes a live load of 40 kN/m. 

The FEM of the whole bridge includes 489 beam elements (360 for the deck, 110 for the pylon 

and 19 for the stays). The area, Young's modulus and inertia of the deck are 5.4 m
2
, 33500MPa and 

4.2 m
4
, respectively. The mechanical properties of the pylon are 8.54 m

2
, 33500MPa and 14.4 m

4
. 

The concrete strength is 45MPa, the relative humidity is 70% and the notional size of the deck and 

the pylon is 500 and 1900 mm, respectively. The stays have an area of 0.0072 m
2
, a Young's 

modulus of 195000MPa and null inertia. 

Two different criteria are used to define the prestressing strains in the OSS. The first criterion, 

OSS130, defines these strains to achieve the OSS at 130 days while the second criterion, OSS10000, 

defines these strains to achieve the OSS at 10000 days. 

Application of Eq. (15) provides the strains summarized in Fig. 7(a). In the OSS130 the strains 

vary from -1.511·10
-3

 at the central stay to -3.576·10
-3

 at the edged stays. These strains are 

increased to -1.516·10
-3

 at the central stay and to -3.842·10
-3

 in the criterion OSS10000. The 

maximum differences between strains of both cases are found in the 15
th
 stay (C15). The strain of 

this stay in OSS10000, -2.634·10
-3

, is 14.71% higher than that obtained by OSS130. 

The creep and shrinkage effects produce changes in the forces of the stays due to permanent 

loads in service. This is appreciable in Fig. 7(b), where the differences in stay forces between 130 

and 10000 days are presented for the two criteria. The analysis of this figure shows that in the 

OSS130 stay forces in the proximities of abutments are reduced with time. The maximum reduction 

(327.25kN) is found at C19 and it represents a 6.91% of its stay force in the OSS. In the proximities 

of the pylon, stay forces are increased. The maximum increase (45.84kN) is found in C12. This 

value represents the 2.91% of its stay force in the OSS. The effects throughout time when the stay 

forces are defined by OSS10000 are the opposite ones. This means that the stays in the proximities of 

the abutments increase its force with time and the stays in the proximities of the pylon reduce its 

force with time. 

The pylon and deck bending moment diagrams for permanent loads obtained by both criteria at 

130 and 10000 days are presented in Fig. 7(c). In the OSS130 criterion, the bending moment 

diagram of the equivalent continuous beam (with maximum sagging and hogging moments of 

1293.96 and -1758.58kNm at deck, respectively) is achieved at 130 days. At this time no bending 

moments appear at the pylon. Then, creep and shrinkage effects modify successively bending 

diagrams and at 10000 days the maximum sagging and hogging moments are increased to 4603.66 

and -3178.85kNm in the deck and to -6006.30kNm in the pylon. In the OSS10000 criterion, the 

continuous beam behavior is achieved at the deck at 10000 days. In this case the maximum 

sagging and hogging moments (with a value of 4479.94 and -6679.11kNm, respectively at the 

deck and 12911.08kNm at the pylon) are achieved at 130 days. Analysis of these results shows that 

higher changes in the bending moment diagram throughout time are produced when the strains are 

defined to achieve the OSS at 10000 days (OSS10000 criterion). 

The Envelopes in Service (EnvS) of the deck bending moment diagrams at 130 and 10000 days 

obtained by OSS130 are presented in Fig. 7(d). This figure also includes the bending moment 

diagrams for permanent loads at 130 and 10000 days. This figure shows that the creep and 

shrinkage effects increase the sagging bending moments in the proximities of the abutments. These 

increments produce unfavorable effects in the minimum envelope of negative bending moments, in 

which the maximum differences (-4065.51kNm) throughout time are found between the 17
th
 and 
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(a) Strains (b) Stay forces 

  
(c) Bending moments at the deck and the pylon (d) Envelopes of bending moments in service  

Fig. 7 Simulation of time-dependent phenomena effects of OSS130 and OSS10000 

 

 

the 18
th
 stay anchorages. It is important to notice that in structures suspended on multiple stay 

cables, the bending moments due to the dead load are very small compared to those produced by 

live load (see Strasky 2005). In fact, these differences represent a 292.89% of the maximum 

bending moment of the OSS and only the 11.31% of the maximum sagging moment of the 

envelope. 
 

 

5. Conclusions 
 

This paper studies the creep and shrinkage effects in service stresses of concrete cable-stayed 

bridges. To illustrate the importance of these phenomena, a parametric analysis of an asymmetrical 

cable-stayed bridge without backstay is presented. In this analysis the influence of the pylon 

weight and stiffness is analyzed. This analysis shows that in this kind of structures, creep of the 

pylon is the phenomenon that produces the greater effects in service. Furthermore, pylon weight 

proved to be of primary importance to reduce the creep redistribution of stresses. To minimize this 

redistribution, the pylon weight must minimize the bending area of the pylon in the Objective 

Service Stage (OSS). Despite the fact that the pylon stiffness presents a favorable effect, this might 

not be enough to minimize the redistribution of stresses due to creep in light pylons. In these cases, 

the placement of a backstay is advised. Due to the large bending moments that the pylon is 

subjected to, in the analyzed example shrinkage effects are lower in magnitude than creep effects. 

Regarding this phenomenon, the same results are obtained independently of the pylon weight.  

Despite of its importance, most of the criteria presented in the literature to define the OSS do 

not include the time-dependent phenomena effects. To fill this gap, a new method has been 

proposed to include these effects into the definition of the OSS. To illustrate the application of this 

method, two structures were analyzed. The first structure (Example 2) shows that in asymmetrical 

bridges without backstay is not adequate to define the OSS to be achieved when the time-

dependent phenomena effects have been completely developed because large stresses are obtained 
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in early times. This is especially problematic in structures with flexible pylons. This example also 

shows that when the pylon weight is defined to minimize the area of the pylon bending moment 

diagram, the structural response in service is significantly improved as it remains practically 

constant in time. The analysis of the second structure (Example 3) also recommended the 

definition of the OSS in early times.  
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