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Abstract.  This paper summarizes available literature on the optimization of reinforced concrete (RC) 
beams. The objective of optimization (e.g. minimum cost or weight), the design variables and the constraints 
considered by different studies vary widely and therefore, different optimization methods have been 
employed to provide the optimal design of RC beams, whether as isolated structural components or as part 
of a structural frame. The review of literature suggests that nonlinear deterministic approaches can be 
efficiently employed to provide optimal design of RC beams, given the small number of variables. This 
paper also presents spreadsheet implementation of cost optimization of RC beams in the familiar MS Excel 
environment to illustrate the efficiency of the exhaustive enumeration method for such small discrete search 
spaces and to promote its use by engineers and researchers. Furthermore, a sensitivity analysis is performed 
on the contribution of various design parameters to the variability of the overall cost of RC beams. 
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1. Introduction 
 

Reinforced concrete (RC) is now widely used in a variety of structures owing to its versatility, 

high compressive strength, durability and resistance to fire and water damage. The vast usage of 

concrete structures calls for economical design, and thus, many attempts have been made to 

optimize the structural design of RC structures (Structural Engineering Institute 2002), including 

the fundamental design of RC beams as primary bending elements. 

Conventional structural design of steel reinforced concrete beams involves iterative design and 

checks for section dimensions and the amount of steel reinforcement. The process usually starts 

with a trial section, where the depth of the beam is selected based on guidelines for deflection 

control. The composite flexural resistance of the trial section is checked against the applied 

bending moment, considering the effects of the self-weight. This is then followed by checks for 

shear resistance, deflection and other code requirements. This practice usually requires many 

repeats and takes considerable time until a section is found that satisfies both ultimate (strength) 

and serviceability limit states prescribed by design codes. The resultant design, while complying 
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with all the code requirements, by no means provides an optimal solution. 

Advancement in computer technology and analysis has led many researchers to develop 

modern techniques for economic design of RC members and structures, yet early research studies 

on the optimization of RC beams date back to 1960s (Norman 1964), when access to machine 

computing was very limited. For that reason and many others, the objective of the optimization, 

the restrictions applied and the methods employed to find the optimized solution has varied widely 

among different research works. This paper, therefore, aims to provide a review of the literature on 

the structural design optimization of steel reinforced concrete beams. The problem formulation by 

different researchers and various optimization techniques applied to RC beam design are studied 

and presented in the following sections. Finally, a simple Excel based optimization tool is 

developed and illustrated with an example. 
 
 
2. Problem formulation 
 

The flexural design procedure for reinforced concrete beams now established in most building 

codes around the world, including the Eurocode 2 (British Standards Institution, 2007), ACI 318-

05 (American Concrete Institute 2005) and CSA A23.3-04 (Canadian Standards Association 2004), 

is based on the ultimate strength design method. This procedure accounts for the nonlinear 

material properties, and recognizes the difference in certainty of various load types (e.g. dead and 

live loads) by considering different safety factors for the load types and their combinations. Based 

on this design method, RC beam sections have to satisfy ultimate (strength) and serviceability 

limit state criteria, which, respectively, account for the ultimate failure of the structure and its 

functionality for the intended routine use.  

While the design criteria for steel reinforced concrete beams are well established, the optimal 

design problem requires to be clearly defined by its objective(s), design variables and the 

constraints enforced by codes or prompted by practical restrictions. A typical optimization problem 

can be formulated mathematically as (Structural Engineering Institute 2002): 

Minimize (or maximize) 𝑓(𝑥) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       
𝑔𝑗  𝑥 = 0  ,   𝑗 = 1,… , 𝑝         

𝑔𝑗  𝑥 ≤ 0  ,   𝑗 = 𝑝 + 1,… ,𝑚
                   (1) 

𝑥 =  𝑥1 , … , 𝑥𝑛   

𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈  , 𝑖 = 1,… , 𝑛 

where 𝑓(𝑥) is the objective function, which may require minimization (cost, weight, etc.) or 

maximization (benefits); 𝑔𝑖(𝑥) is an equality or inequality constraint;𝑥𝑖𝐿  and 𝑥𝑖𝑈  are the lower 

and upper bounds for the design variable 𝑥𝑖 ; and 𝑛,𝑚 and 𝑝 are the number of design variables, 

total constraints and equality constraints, respectively. 

For the optimization problem of a RC beam design, various research studies over the years 

have adopted different design variables as well as objective functions and constraints. The 

following sections present a summary of such problem formulations.  
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Optimal design of reinforced concrete beams: A review 

2.1 Design variables 

 

The design variables in optimization of RC beams are generally associated with the dimensions 

of the beam and the area of steel reinforcement bars (tensile, compressive, and shear reinforcement) 

as well as their arrangement (see Table 1). Although rarely adopted, the strength of the materials 

can also be considered as variables (Goble and Moses 1975). The number of variables considered 

in various research studies are normally limited to a handful. In a very early study, Norman (1964) 

chose the depth of the beam as the only design variable for singly reinforced rectangular and T-

beams, while more than 30 years later, Rajeev and Krishnamoorthy (1998) envisaged seven design 

variables that included the width and depth of the beam and the area of five reinforcement groups 

to allow for a non-uniform distribution of tensile and compressive reinforcement along the length 

of the beam. Nevertheless, the main variables are typically one or both dimensions of a rectangular 

beam and the area of tensile reinforcement (Chakrabarty 1992b, Camp et al. 2003).The depth of 

the beam is either expressed as the effective depth (d) (i.e., depth of tensile reinforcement from the 

top compression edge) or as the overall height of the beam (h), as shown in Fig. 1(a). Nonetheless, 

the thickness of concrete cover can be assumed fixed and dictated by durability and other 

construction requirements. For T-beams, it is usually assumed that the thickness of the flange (hf) 

is determined by the depth of the floor slab and therefore assumed to be fixed (Chou 1977, 

Balaguru 1980b, Prakash et al. 1988).  

Rectangular or T-beams are the most commonly practiced shapes; however, in a recent study 

Narayan and Venkataramana (2007) attempted to optimize the shape of a RC beam. Referring to 

the pioneer study in shape optimization by Michell (1904), they argued that shape should be 

considered as a primary variable in design of structures. Due to concrete cracking, RC design 

approaches ignore the insignificant strength of concrete in tension zone. Thus, to reduce the 

concrete in tensile zone and incorporate it in the more efficient compression zone, Narayan and 

Venkataramana assumed a trapezoidal shape for the RC beam (Fig. 1(b)). They adopted the depth 

of the beam and α (the angle in Fig. 1(b)) as the design variables. Comparing the costs of 

rectangular and trapizoidal beams, Narayan and Venkataramana concluded that trapezoidal RC 

beams are more economical and their usage should be encouraged. 

 

 

 

 

 

(a) Rectangular and T-beams 
(b) Trapezoidal beam assumed by 

Narayan and Venkataramana (2007) 

Fig. 1 Cross-sectional dimensions of reinforced concrete beams 
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Table 1 Design variables adopted by various research studies 

Study Design variables 

Norman (1964) D 

Sandhu (1971) As 

Friel (1974) D, As 

Goble and Moses (1975) b, D, As - also suggest provisions for fc 

Chou (1977) T beams – D and As 

Balaguru (1980a) b, D, As, A’s 

Balaguru (1980b) T beams – bw, D and As 

Colin and Macrae (1984) As and A’s for RC beams of I, T or rectangular shapes 

Prakash et al. (1988) D/b ratio and As. D is assumed to be fixed. 

Chakrabarty (1992a) b, D, As 

Chakrabarty (1992b) b, D, As 

Adamu and Karihaloo (1994b) D, As (As is allowed to change freely along the beam) 

Adamu and Karihaloo (1994a) D, As (each variable is allowed to change freely along the 

beam) 

Adamu and Karihaloo (1994c) b, D, As (each variable is allowed to change freely along the 

beam) 

Chung and Sun (1994) b and As 

Al-salloum and Siddiqi (1995) D and As 

Coello and Hernández (1997) b, D, As 

Rajeev and Krishnamoorthy (1998) b, D and 4 other variables for area of steel reinforcement 

along a continuous beam: Top and bottom continuous bar 

diameter, additional top reinforcement at support, and  

additional bottom reinforcement at mid-span 

Ceranic and Fryer (2000) D, As 

Dole et al. (2000) D, As 

Camp et al. (2003) b, D, As, A’s 

Ferreira et al. (2003) Ratio of A’s/ As 

(Although not declared as variable, considered 8 cases for the 

position of neutral axis and depth of the flange of T-beam.) 

Lee and Ahn (2003) b, D, As, A’s 

Lepš and Šejnoha (2003) b, D, As, A’s 

Guerra and Kiousis (2006) b, D, As, A’s 

Narayan and Venkataramana (2007) D and angle α in Fig. 1(b). 

González-Vidosa et al. (2008) b, D and other variables for area of steel reinforcement along 

a continuous beam: Top and bottom continuous bar diameter, 

additional top reinforcement at left and right supports, and  

additional bottom reinforcement at mid-span 
 

D: beam depth (h or d) 

b: beam width 

bw: T-beam web width 

As: area of tensile steel reinforcement 

A’s: area of compressive steel reinforcement 

fc: Concrete strength 
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Table 2 Optimization objective function as adopted by various research studies 

Study Optimization objective Included in the objective function 

Norman (1964) Minimum cost Cs, Cc and Cf 

Sandhu (1971) Minimum cost Cs, Cc and Cf 

Friel (1974) 

Minimum cost 

Cs, Cc, Cf and the cost of increase 

in the building height due to beam 

depth 

Goble and Moses (1975) Minimum cost Cs, Cc and Cf 

Chou (1977) Minimum cost Cs and Cc 

Balaguru (1980a) Minimum cost Cs, Cc and Cf 

Balaguru (1980b) Minimum cost Cs, Cc and Cf 

Colin and Macrae (1984) Minimum cost 

Also suggest alternative 

objectives such as minimum 

weight, concrete volume or 

steel reinforcement 

Cs, Cc and Cf 

Prakash et al. (1988) Minimum cost Cs and Cc 

Chakrabarty (1992a) Minimum cost Cs, Cc and Cf 

Chakrabarty (1992b) Minimum cost Cs, Cc and Cf 

Adamu and Karihaloo (1994b) Minimum cost Cs, Cc and Cf 

Adamu and Karihaloo (1994a) Minimum cost Cs, Cc and Cf 

Adamu and Karihaloo (1994c) Minimum cost Cs, Cc and Cf 

Chung and Sun (1994) Minimum weight Weight of concrete and steel 

Al-salloum and Siddiqi (1995) Minimum cost Cs, Cc and Cf 

Coello and Hernández (1997) Minimum cost Cs, Cc and Cf 

Rajeev and Krishnamoorthy (1998) Minimum cost Cs, Cc and Cf 

Ceranic and Fryer (2000) Minimum cost Cs and Cc 

Dole et al. (2000) Minimum cost Cs and Cc 

Camp et al. (2003) Minimum cost Cs, Cc and Cf 

Ferreira et al. (2003) Minimum Reinforcement Area of steel reinforcement 

Lee and Ahn (2003) Minimum cost Cs, Cc and Cf 

Lepš and Šejnoha (2003) Minimum cost Cs and Cc 

Guerra and Kiousis (2006) 

Minimum cost 

Cs, Cc, cost of formworks as a 

function of beam width and cost of 

placing concrete and vibrating, 

including labour and equipment as 

a function of cross-sectional area 

Narayan and Venkataramana 

(2007) 
Minimum cost Cs, Cc and Cf 

González-Vidosa et al. (2008) Minimum cost Cs, Cc and Cf 

Cs: Cost of steel - constant per weight 

Cc: Cost of concrete - constant per weight 

Cf: Cost of formworks - constant per surface area 
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2.2 Optimization objectives 
 

Design optimization of structures is evidently driven by economic implications of building 
construction. Yet, the objective function for design optimization of RC beams is defined differently 
by various researchers (see Table 2). Chung and Sun (1994) for example, adopted minimization of 
the overall weight of the beam as the objective. Acknowledging that weight does not appropriately 
represent the cost of material, they performed a comparative study with three ratios for cost per 
unit weight of concrete (Cc) to that of steel (Cs). The maximum cost reduction was obtained for the 
case where the cost of concrete was ten times compared to steel. However, when steel was 
assumed to cost ten times compared to concrete, the optimum cost showed an increase and the 
upper limit of the beam width was reached, implying that, owing to the high Cs, increasing the 
width of concrete beam did not sufficiently increase the resistance of the section. Nevertheless, 
realistic cost ratios of concrete and steel are far from Chung and Sun’s assumptions, with Cs being 
of the order of a few tens of Cc (Camp et al. 2003). 

Naturally, the majority of the available literature has adopted cost minimization as the objective 
of optimal design. Some research works only included the cost of concrete and steel in the analysis 
(Chou 1977, Prakash et al. 1988, Ceranic and Fryer 2000, Lepš and Šejnoha 2003). Prakash et al. 
(1988) argued that a weight-base optimization is better suited to high-rise buildings where the 
same component recurs in all stories; nonetheless they used the minimum cost criterion as the 
basis of their optimization approach. They stated that the cost of formwork (Cf) is also one of the 
main factors to be considered, but they neglected it in calculations to simplify the problem. To 
cover the practical variety, Prakash et al. considered the cost ratio of the unit volume of steel to 
concrete to vary in the range 50 to 100. 

Most other studies accounted for the cost of formworks as well as the material, assuming 
constant values for the cost per unit weight of material and per unit area of formwork (Norman 
1964, Sandhu 1971, Goble and Moses 1975, Balaguru 1980b, Al-salloum and Siddiqi 1995). Friel 
(1974) also considered in the objective function, the cost of the increase in the building height due 
to the beam depth. In a more recent study, Guerra and Kiousis (2006) incorporated the cost of 
placement, labour, equipment and accessories in the construction costs in addition to the material 
costs. Moreover, they defined the cost of forming and placing concrete as a function of cross-
sectional dimensions, introducing a non-linear cost coefficient in the objective function. 

 
2.3 Constraints 

 

Optimization constraints are the functional and structural requirements of the structure 

expressed as equality or inequality equations. Design constraints for RC beams can either be 

induced by practical restrictions, for example on constructability and transportability, that limit the 

design variables, or be enforced by code requirements on structural response of the structure (see 

Table 3). As mentioned before, the code requirements on a RC beam are of two types: ultimate 

limit states (ULS) -also called strength limit states- and serviceability limit states (SLS). As 

outlined below, there are three main flexural ULS requirements for a RC beam.  

 

1. The moment resistance capacity of the cross-section should be higher than the applied 

bending moment. The applied bending moment generally includes the effects of the self-weight of 

the beam. The bending moment capacity imposes a nonlinear constraint to the optimization and 

can be expressed as 
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Table 3 Optimization constraints as adopted by various research studies 

Study Constraints 

Norman (1964) As is at balanced design, b is constant 

Sandhu (1971) X1 

Friel (1974) X1, X2, X3 

Goble and Moses (1975) Not reported 

Chou (1977) X1, X2, X3 

Balaguru (1980a) X1, X2, X3 

Balaguru (1980b) X1, X4, reinforcement ratio is fixed at maximum allowable 

Colin and Macrae (1984) X1, X2, X3, X11 

Prakash et al. (1988) X1, X3, X4 

Chakrabarty (1992a) X1, X5 

Chakrabarty (1992b) X1, X6 

Adamu and Karihaloo (1994b) X1, X2, X3, X8, X9, X11, X12 

Adamu and Karihaloo (1994a) X1, X2, X3, X8, X9, X11, X12 

Adamu and Karihaloo (1994c) X1, X2, X3, X6, X7, X8, X9, X11, X12 

Chung and Sun (1994) X1 (expressed in terms of tensile and compressive stresses), X2, 

X3, X6, X7 

Al-salloum and Siddiqi (1995) X1, X2, X3, X9 and suggested but not used X8 

Coello and Hernández (1997) X1, X4, X5, X6 

Rajeev and Krishnamoorthy (1998) X1, X2, X3, X4, X5, X6, X7, X8, X9, X10 

Ceranic and Fryer (2000) X1, X2, X3 

Dole et al. (2000) X1, X2 (expressed as maximum depth of the neutral axis) and 

maximum concrete cover which is checked after optimization is 

performed. 

Camp et al. (2003) X1, X2, X3, X6 (to allow minimum reinforcement clear 

spacing), X5, X8 (to control deflection), X9, X12 and maximum 

difference in bar sizes within a single row of reinforcement 

Ferre ira et al. (2003) X1, X3 

Lee and Ahn (2003) X1, X2, X3, X4, X5, X6, X7 and allowable arrangements of bars 

in two rows 

Lepš and Šejnoha (2003) X1, X11, X12 

Guerra and Kiousis (2006) X1, X2, X3, X4, X5, X6 (to allow minimum reinforcement clear 

spacing), X7, X8, X9 and tensile reinforcement area is greater 

that the compressive reinforcement area 

Narayan and Venkataramana (2007) X1, X2, X3, X9, X11 (assuming the effective moment inertia of 

the section is half of the gross moment of inertia) and minimum 

and maximum values for the angle of the trapezoidal beam 

González-Vidosa et al. (2008) X1, X11, X12 

 

X1: Moment resistance capacity 

constraint 

X2: Minimum steel reinforcement 

X3: Maximum steel reinforcement 

X4: Minimum beam width to depth 

ratio 

X5: Minimum beam width to depth 

ratio 

 

X6: Minimum beam width 

X7: Maximum beam width 

X8: Minimum beam depth 

X9: Maximum beam depth 

X10: Maximum beam span to depth ratio 

X11: Maximum allowable deflection 

X12: Shear Capacity constraint 
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𝑀𝑓 + 𝑀𝑠𝑤 ≤ 𝑀𝑟                              (2) 

where 𝑀𝑓  is the factored design bending moment, 𝑀𝑠𝑤  is the bending moment due to self-

weight of the beam and 𝑀𝑟  is the factored bending moment resistance 

𝑀𝑟 = 𝜑𝑠𝑓𝑦𝐴𝑠  𝑑 −
𝑎

2
                                                                 (3) 

𝑎 =
𝜑𝑠𝑓𝑦𝐴𝑠

𝛼1𝜑𝑐𝑓𝑐
′𝑏

                                (4) 

where 

𝜑𝑠  is the resistance factor for steel, 

𝜑𝑐  is the resistance factor for concrete, 

𝑓𝑦  is the yield strength of steel reinforcement, 

𝑓𝑐
′ is the compressive strength of concrete, 

𝐴𝑠 is the area of tensile steel reinforcement, 

𝑏 is the width of the beam, 

𝑑 is the effective depth of the beam, 

𝑎 is the depth of the equivalent rectangular stress block, and 

𝛼1 , 𝛽1 are the equivalent rectangular stress distribution parameters. 

 

2. The area of tension reinforcement (𝐴𝑠) should satisfy a minimum amount to ensure that the 

steel reinforcement compensates the loss of tensile strength caused by cracking in the concrete. 

This nonlinear constraint can be expressed as 

𝐴𝑠 ≥ 
0.2 𝑓𝑐

′

𝑓𝑦
𝑏𝑕                               (5) 

where 𝑕 is the overall height of the beam and 𝐴𝑠,𝑚𝑖𝑛 =
0.2 𝑓𝑐

′

𝑓𝑦
𝑏𝑕 is the minimum reinforcement 

provisioned by CSA A23.3-04 (Canadian Standards Association 2004). 

 

3. The area of tension reinforcement (𝐴𝑠) should satisfy a maximum amount to avoid brittle 

concrete-controlled failure. This constraint is also nonlinear and provided in Eq. (6). 

 
0.75× 700

700+𝑓𝑦
  

𝛼1𝛽1𝜑𝑐𝑓𝑐
′

𝜑𝑠𝑓𝑦
 𝑏𝑑                          (6) 

where 𝐴𝑠,𝑚𝑎𝑥 =  
0.75× 700

700+𝑓𝑦
  

𝛼1𝛽1𝜑𝑐𝑓𝑐
′

𝜑𝑠𝑓𝑦
 𝑏𝑑  is the maximum reinforcement provisioned by CSA 

A23.3-04. 

 

Serviceability limit state requirements are generally of two types: restrictions on maximum 

deflection of the beam and provisions to control the crack width in concrete. Due to formation of 

cracks in concrete, calculating the deflection of RC beams can be tedious. To avoid the 
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cumbersome calculations, design codes (e.g. CSA A23.3-04) allow for an alternative indirect 

approach for deflection control. This approach sets an upper limit on the span to depth ratio of the 

beam and ensures sufficient stiffness in the beam to control the deflection. The indirect deflection 

control is commonly adopted for applications in usual ranges of load and member sizes. The direct 

approach however imposes a complex nonlinear constraint. 

 Practical restrictions generally limit the dimensions of a RC beam, imposing minimum and 

maximum bounds for both width and depth of the beam. Moreover, detailing requirements usually 

set a minimum spacing between the reinforcement bars and therefore dictate more feasibility 

constraints on the design variables.  

Flexural and shear optimization of a RC beam can be done separately one after another. With 

the beams in regular range, flexure dominates the design and should be optimized first. For deep 

beams the procedure might be reversed. Nevertheless, even when flexural design precedes shear 

design, there is an ultimate limit state constraint corresponding to the shear design of the beam that 

can affect the flexural optimization and should be taken into account. This constraint sets a 

maximum limit for the overall factored shear resistance of the section and is prescribed to prevent 

brittle shear compression failure especially in beams heavily reinforced with shear reinforcement. 

This ultimate limit state essentially adds a lower bound limit to the width of the section.  

 

2.4 Continuous and discrete search space 
 

In analytical design of RC beams, for calculation purposes, the design variables (i.e., cross-

sectional dimensions and reinforcements) are assumed to be continuous quantities. However, the 

final dimensions and reinforcements are selected from among practical discrete choices. The cross-

sectional dimensions of concrete beams are rounded to nominal sizes as a result of practical limits 

on the accuracy of formwork measurements and construction. Therefore, although optimization of 

concrete beams can be performed using continuous beam dimensions, the final selection of 

dimensions will be from a discrete set of nominal sizes based on a pragmatic accuracy.  The same 

applies to selection of steel reinforcements. Flexural constraints on the RC beam limit the 

minimum and maximum area of reinforcement. However, to provide the area required, the 

reinforcement bars are selected from discrete nominal sizes available in the construction industry. 

Moreover, the detailing requirements of the design codes restrict the clear spacing between the 

reinforcement. To satisfy such requirements, the mere area of the reinforcement would not be 

sufficient; the size and number of the reinforcement bars should be known.  

Thus, the optimization search space for RC beams is essentially discrete. However, given the 

lower complexity of some continuous optimization techniques the discrete nature of the design 

variables is ignored by many early research studies and it is assumed that treating the design 

variables as continuous leads to sufficiently accurate optimal results (Norman 1964, Sandhu 1971, 

Friel 1974, Chou 1977, Balaguru 1980a, Prakash et al. 1988, Chakrabarty 1992a, Chung and Sun 

1994, Al-salloum and Siddiqi 1995). 

 
 
3. Optimization techniques 
 

Once the optimization problem is fully defined by its objective(s) and constraints, a suitable 

method can be chosen to find the optimal solution. A vast range of optimization techniques are 

available that can be categorized into two main types: linear and non-linear programming 
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techniques. 

Linear programming approaches can be applied to problems where the objective functions and 

constraints can all be expressed by linear equations. The most widely used algorithm for linear 

programming problems with a small number of variables is the simplex method or one of its 

variant (Revelle et al. 2004). However, the RC beam design is usually neither a linear nor a convex 

problem. Regardless of the different problem formulations adopted by various authors, there exists 

nonlinearity in both the objective function and the constraints of the optimization of RC flexural 

sections. Hence, nonlinear methods should be explored. Non-linear programming approaches can 

be divided into three large categories: Enumerative, Deterministic, and Heuristic methods (Garcia 

et al. 2006). The nonlinear methods are further discussed here. 

 
3.1 Enumerative approach 
 

The simplest optimization method is exhaustive enumeration. This method is based on 

generating and evaluating all combinations of the discrete variables. The overall number of 

evaluation 𝑛𝑒  is: 

𝑛𝑒 =  𝑝𝑖
𝑛𝑑
1                                (7) 

where 𝑝𝑖  is the number of possible discrete values for each variable and 𝑛𝑑  is the number of 

discrete variables. The optimal solution is obtained by examining the list of feasible solutions 

against the objective function. This method is conceptually simple and guarantees the global 

optimum, but the computational time can be impractically large.  

To speed up the location of the global optimum, the search space is represented as a decision 

tree where nodes represent discrete variables and edges represent possible values for the parent 

node. With the availability of a bounding function, parts of the search space that do not contain the 

global minimum can be skipped. The base technique is called branch-and-bound. In the worst case 

it amounts to an exhaustive search but performs much better in practice. Several variations have 

been implemented, e.g. branch-and-price, branch-and-cut, and branch-reduce-cut. 

Search strategies for (mixed) integer linear programming can be found in (Linderoth and 

Savelesbergh 1999) and in the reference book (Nemhauser and Wolsey 1999) (see also the more 

recent book (Chen et al. 2010)). A history of integer programming including the latest 

developments can be found in (Juenger et al. 2010), while a very recent survey is available in 

(Burer and Letchford 2012). 

 
3.2 Deterministic approaches 
 
Deterministic methods use a successive search within the solution space which can be based on 

the objective function, its gradient information or both. They focus on optimization of continuous 

variables. The optimization process starts with a possible solution and finds the next iteration 

either by finding a descent direction and computing a step in that directly (line search strategy) or 

Table 4 Deterministic optimization techniques adopted by various research studies by solving a 

simple optimization subproblem (trust region strategy (Nocedal and Stephen Wright 2006)).The 

search continues until a stopping condition is satisfied, typically until a first order optimality 

condition, usually the Karush-Kuhn-Tucker (KKT) condition is found within the admissible error. 

The calculations for search direction can be done through various methods with one of the most  
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Table 4 Deterministic optimization techniques adopted by various research studies 

Study Deterministic optimization technique 

Norman (1964) Simple derivatives (one variable) 

Sandhu (1971) Simple differentiation (one variable at a time) 

Friel (1974) Lagrange multiplier technique 

Goble and Moses (1975) Penalty function programming 

Chou (1977) Lagrange multiplier technique 

Balaguru (1980a) Lagrange multiplier technique 

Balaguru (1980b) Simple differentiation (one variable at a time) 

Colin and Macrae (1984) Solve a sequence of linearly constrained nonlinear 

programs
†
 

Prakash et al. (1988) Lagrange multiplier technique 

Chakrabarty (1992a) Geometric or standard nonlinear programming 

algorithms 

Chakrabarty (1992b) Geometric programming technique - the newton-

raphson method 

Adamu and Karihaloo (1994b) Discretized continuum-type optimality criteria 

Adamu and Karihaloo (1994a) Discretized continuum-type optimality criteria 

Adamu and Karihaloo (1994c) Augmented lagrangian technique 

Chung and Sun (1994) Sequential linear programming algorithm 

Al-salloum and Siddiqi (1995) Lagrange multiplier technique 

Ceranic and Fryer (2000) Lagrange multiplier technique 

Dole et al. (2000) Polynomial optimization technique 

Dole et al. (2000) Simple differentiation (one variable) 

Guerra and Kiousis (2006) Sequential quadratic programming algorithm 

Narayan and Venkataramana (2007) Sequential unconstrained minimization technique 
†
As specified in (Hock and Schittkowski 1983), the code FCDPAK implements (Robinson 1972) 

 

popular methods being the BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton method 

with line search and Wolfe condition that requires the function and the gradient value at each 

iterate. 

Evidently, the adopted technique by different researchers is based on the complexity of the 

problem formulation (see Table 4). In the simplest case, the design variables are determined by 

simple derivations as only one parameter (or one parameter at a time) is assumed as variable 

(Norman 1964, Sandhu 1971, Balaguru 1980b). Goble and Moses (1975), however, used a penalty 

method to find the optimal dimensions of a RC beam and the area of steel reinforcement, and 

suggested utilizing Powell’s (1964) search method that does not depend on the derivatives of the 

function (modern interior point methods are more appropriate nowadays). Nevertheless, the most 

widely used methods for RC beam optimization are the gradient-based optimization techniques,  

such as the geometric programming technique (Chakrabarty 1992a,b), the sequential linear and 

quadratic programming algorithm (Chung and Sun 1994, Guerra and Kiousis 2006). In the simpler 

case, the KKT optimality conditions can be solved and an analytic solution obtained 
1
explicitly 

(Friel 1974, Chou 1977, Balaguru 1980a, Al-salloum and Siddiqi 1995, Ceranic and Fryer 2000) or  

                                           
1
Solving the optimality conditions of a constrained optimization problem is sometimes called the Lagrangian 

technique (or Lagrange multiplier technique) as it requires writing the Lagrangian, computing its gradient, 

and solving the resulting system. 
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Table 5 Stochastic optimization techniques adopted by various research studies 

Study Stochastic optimization technique 

Coello and Hernández (1997) Genetic algorithm 

Rajeev and Krishnamoorthy (1998) Genetic algorithm 

Camp et al. (2003) Genetic algorithm 

Lee and Ahn (2003) Genetic algorithm 

Lepš and Šejnoha (2003) Simulated annealing 

González-Vidosa et al. (2008) Augmented simulated annealing 

McCluskey and McCarthy (2009) Particle swarm algorithm 

Ozturk et al. (2013) Artificial bee colony (swarm-based) 

Medeiros and Kripka (2013) Simulated annealing 

 

 

with a computer (Prakash et al. 1988). 

Gradient-based optimization techniques are more efficient. They usually enjoy a linear rate of 

convergence for first-order methods and even superlinear rate for second-order methods (Newton 

and quasi-Newton methods) as opposed to a sub-linear rate for the non-gradient-based 

optimization methods. However, since gradient-based methods find iterations based on derivative 

information, they can at best guarantee local optimality. Global optimality can only be achieved 

for convex problems (Nocedal and S. Wright 2006, Theorem 2.5 p.16).Therefore, depending on 

the problem formulation, deterministic optimization methods may not be the best approach for the 

optimal RC beam design. 

 

3.3 Stochastic and heuristic approaches 
 

Stochastic and heuristic methods search for the optimal solution using probability rules and an 

oriented random manner (Sivanandam and Deepa 2008). When deterministic methods fail to find the 

global optimum of the objective function, or they are computationally too expensive and time 

consuming, stochastic methods may be used to provide a satisfactory solution in a timelier manner. 

Stochastic methods are most suited to problems of higher complexity and higher number of variables 

and constraints. Therefore, to satisfactorily scan all the regions of the problem domain for the optimal 

solution, stochastic methods usually require numerous computer calculations. Given the increase in 

computational power, stochastic methods are attracting increasing popularity among researchers in 

engineering. The main advantages of these methods over the conventional optimization techniques 

include the following: they do not require gradient information; constraints do not need to be explicit; 

and restrictions about the search space (e.g. continuity) do not prevent the application of these methods. 

Various heuristic optimization methods have been applied in structural engineering (Hare et al. 2013). 

The most commonly adopted techniques in this category are simulated annealing (Salamon et al. 2002), 

evolutionary algorithms (Sivanandam and Deepa 2008) and swarm-based optimization algorithms 

(Olsson 2011). 

Using stochastic methods for design of RC beams are introduced just before the turn of the century 

by the likes of Coello and Hernández (1997) and Rajeev and Krishnamoorthy (1998) through 

implementation of genetic algorithms (see Table 5). Genetic algorithm (GA) is inspired by the process 

of natural evolution (Goldberg 1989). In this approach, a population of individuals (variables) is 
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evolved to produce better solutions. The evolution progresses in generations. In each generation, the 

fitness of the individuals is evaluated against a fitness function (objective function); better fit 

individuals are selected and randomly modified to produce the next generation; and iterations continue 

until a maximum number of generations are formed or a satisfactory level of fitness is achieved. 

Coello and Hernández (1997) utilize GAs with various representation schemes such as floating 

point and binary representation. They assume a continuous search space and they adjust different 

parameters of the GA to obtain reasonable solutions in shorter times. Rajeev and Krishnamoorthy 

(1998), however, argue that using continuous design variables requires further modification to the 

solution obtained and therefore does not represent the realistic constraints and does not provide rational 

solutions. In their paper, Rajeev and Krishnamoorthy include detailing and other construction related 

constraints in the optimization problem and use GA-based methodologies to optimize the design of 

reinforced concrete frames (including beams and columns) with discrete design variables. Camp et al. 

(2003) and Lee and Ahn (2003) also use discrete variables and implement GAs to provide optimization 

procedures for flexural design of simply supported beams, uniaxial columns and multistory frames.  

The simulated annealing algorithm emulates the physical process of crystallization of a melted solid. 

As the mass cools down slowly, higher energy configuration of crystals reduces and eventually the 

solid reaches the minimum energy configuration. The iterations in this method are based on 

probabilistic information and decisions as to stay in a state or to move to a neighbouring state, which 

should ultimately lead the structure to lower levels of energy. González-Vidosa et al. (2008) use 

simulated annealing procedures to provide optimal solutions to the design of RC walls and frames. 

They reiterate that the restricting constraints in beam design are those related to flexure, shear and 

deflection of the beams. Lepš and Šejnoha (2003) employ a version of the augmented simulated 

annealing method to solve the optimal design of a RC beam with discrete variables, and they account 

for both flexural and shear reinforcements. 
 

 
4. Spreadsheet implementation and illustrative example 

 

The review of the literature suggests that the design optimization of RC beams as isolated 

members can be achieved using deterministic optimization techniques and there is no need to use 

heuristic methods. Although recent advancement in computational power and consequent 

popularity of stochastic and heuristic methods can be attractive, the more reliable deterministic 

approaches can be sufficient for flexural design optimization of RC beams, given the small number  

 

 

 

Fig. 2 A singly reinforced concrete beam 
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(a) Stress-strain diagrams for concrete and steel (b) Actual and equivalent rectangular stress 

distribution 

Fig. 3 Stress distribution in a reinforced concrete beam 

 

 

of variables. The optimization problem can be implemented in the familiar spreadsheet 

environment to promote its use by engineers. This section presents such spreadsheet 

implementation of the RC beam optimization problem and demonstrates, through an example, the 

efficiency of deterministic methods in finding the optimal solution. 

 
4.1 Problem formulation 
 
4.1.1 Design variables 
Assuming the singly reinforced rectangular beam illustrated in Fig. 2, the design variables are 

the beam width, depth and the area of steel reinforcement that can be optimized by applying the  

structural and practical constraints. As mentioned earlier in section 2.4, the values that these 

variables can assume are restricted by practical implementations and are, hence, of a discrete 

nature. To perform the optimization in a discrete search space, the width and depth of the beam are 

expressed as a function of a user-defined precision. This dimension precision refers to nominal 

beam sizes and the practical limit for the accuracy of formwork measurement at the construction 

site. For example, if dimension precision is set to 50mm, the beam dimensions are rounded to the 

nearest 50mm. Therefore, each dimension is expressed as the product of an integer multiplier 

times the dimension precision (see Eqs. (8)-(9)). Therefore, the discrete decision variables to be 

used in optimization are the integer multipliers for width and depth of the beam (𝑏𝑝𝑚 and 𝑕𝑝𝑚 

in Eqs. (8)-(9)). 

𝑏 = 𝑏𝑝𝑚 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛                           (8) 

𝑏 = 𝑏𝑝𝑚 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛                           (9) 

The area of the reinforcement bars is also a function of the area of each bar. The size of the bars 

used is defined by the user; hence, the area of steel can be expressed as: 

𝐴𝑠 = 𝑁𝑏 ∗ 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑒𝑎𝑐𝑕 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑏𝑎𝑟                  (10) 

 

4.1.2 Objective function 
The objective of the optimization is to minimize the overall cost of the beam including both 

material and construction cost. The objective function is expressed in Eq. (11) 

𝑓 𝑏, 𝑕, 𝐴𝑠 = 𝑐1𝐴𝑠 + 𝑐2𝑏𝑕 + 𝑐3(2𝑕 + 𝑏)                  (11) 
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where 

𝑓(𝑏, 𝑕, 𝐴𝑠)is the cost per unit length of the beam, and 𝑐1 , 𝑐2 and 𝑐3 are constant coefficients 

that can be defined by the user:  

𝑐1 is the cost coefficient due to the volume of tensile reinforcement steel 

𝑐2 is the cost coefficient due to the volume of concrete 

𝑐3 is the cost coefficient due to shuttering along the surfaces of the beam. 

 

4.1.3 Constraints 
The constraints of the optimization problem can be divided into three categories: ULS and SLS 

constraints prescribed in CSA A23.3-04 (Canadian Standards Association 2004), and other 
practical constraints resulting from architectural or construction limitations. 

Flexural and shear ULSs ensure that flexural stresses in the RC beam do not exceed the 

material strength. Fig. 3(a) illustrates the material properties of concrete and steel reinforcements. 

The stress-strain relationship of concrete is a nonlinear curve, while the stress-strain relationship 

for steel can be represented by an elastoplastic diagram. Using the actual nonlinear stress-strain 

curve for concrete is not practical for design purposes. Therefore, CSA A23.3-04 allows for an 

equivalent rectangular stress block to be used instead of the nonlinear stress distribution, as 

demonstrated in Fig. 3(b).The depth and magnitude of the equivalent stress block are calculated 

using 𝛼1and 𝛽1, mathematical parameters that ensure the compressive stress resultants of the 

actual and the equivalent rectangular stress distribution are equal. Therefore, in quantifying the 

constraints, the bending resistance of the section is calculated using the equivalent rectangular 

stress distribution. 

Optimization constraints resulting from ULSs can be summarized as: 

1. Maximum bending moment resistance constraint 

2. Minimum reinforcement constraint 

3. Maximum reinforcement constraint 

4. Maximum factored shear resistance constraint 

The following constraints result from SLSs: 

5. Maximum deflection constraint 

6. Maximum crack opening constraint 

Other practical constraints include: 

7. Bar spacing constraint 

8. Minimum and maximum beam width constraint 

9. Minimum and maximum beam depth constraint 

10. Minimum and maximum beam depth to width ratio constraint 

The detailed equations for the constraints are presented in the appendix. 

 
4.2 Spreadsheet implementation 
 
Using the aforementioned objective function and constraints, design optimization of the singly 

reinforced rectangular beam can be implemented in the familiar MS Excel spreadsheet 

environment. A worksheet is assigned to input all the user-defined parameters that define the 

material properties, design requirements and practical restrictions, as depicted in Fig. 4. 

Calculations are accommodated in a separate worksheet and the optimization results are presented 

in the third worksheet (Fig. 5). 

The Solver Add-In embedded in MS Excel can be used to run the optimization. The decision 
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variables and the constraints are added to Solver through a VBA macro assigned to user buttons. 

Running the solver minimizes the objective function and determines the optimal values for the 

design variables. 

The Solver Add-In in MS Excel 2010 offers three techniques for solving optimization problems: 

Simplex method for linear problems, Generalized Reduced Gradient (GRG) algorithm (Lasdon 

and Waren 1978) for optimizing smooth nonlinear problems, and Evolutionary method for non-

smooth nonlinear problems which utilized genetic algorithms. The optimal beam design is a 

nonlinear problem and either the GRG Nonlinear or the Evolutionary options can be used in MS 

Excel. However, given the non-convex nature of the problem, none of the two techniques 

guarantee the global optimum solution. In fact, depending on the starting values of the decision 

variables, Solver may fail to converge to a feasible solution at all. 

A good starting point can help the optimization process. Engineering practice suggests 

estimates for the dimensions of the beam that can be used as starting point. The overall depth of 

the beam (𝑕) can be estimated about 10% of the beam span to make sure that the deflection criteria 

is met. The width of the beam (𝑏) can then be calculated using a depth to width ratio of about 1.5. 

The area of reinforcement (𝐴𝑠) should be selected so that ductile behaviour is ensured. If the onset 

of yielding in tensile reinforcement and crushing in concrete occurs simultaneously, the area 

 

 
 

 

Fig. 4 User-defined input worksheet 
 

User specified material properties

Concrete

Compressive strength f'c 25 MPa

maximum size of aggregate amax 20 mm

Unit weight force wc 23500 N/m3

Material cost 2 $/m3

Steel

Yield strength fy 400 MPa

Modulus of elasticity Es 200000 MPa

Material cost 250 $/m3

Nominal diameter of tensile bars 25 mm

Nominal diameter of stirrups 10 mm

Minimum number of tensile bars 2

Shuttering

Material and construction cost 1 $/m2

Design parameters

Uniformly Distributed Dead Load DL 15 kN/m

Uniformly Distributed Live Load LL 25 kN/m

Concrete cover provided c 30 mm

Maximum allowable deflection Ln/240

Beam dimensions and exposure condition

Exposure class N

Span of the beam L 5 m

Clear span of the beam Ln 4.6 m

Dimension precision 50 mm

Beam width

Minimum 300 mm

Maximum 1000 mm

Beam depth

Minimum 100 mm

Maximum 800 mm

Depth to width ratio

Minimum 0.5

Maximum 3
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Fig. 5 Optimization worksheet 

 

 

of reinforcement is at balanced condition. Using about 40% of the reinforcement at balanced 

condition should result in ductile behaviour. Hence, the initial value of reinforcement can be 

estimated. Running the optimization with the proposed starting point (usually a feasible solution) 

can enhance the optimization process. The effect of the starting point is numerically studied in the 

next section. 
 
4.3 Numerical results 
 
This section presents a numerical example to illustrate the efficiency of various optimization 

methods in quantifying the optimal design of a RC beam. The assumed RC beam spans 5m, is 

rectangular in cross-section and is reinforced with a single layer of tensile steel bars (see Fig. 2). 

The material properties and loading of the beam are presented in Fig. 4. 

Using the Evolutionary and GRG Nonlinear options in Solver, the optimization does not always 

result in a feasible solution, i.e., not all constraints are satisfied. Although using the estimated 

dimensions and reinforcement as the starting point can help converging to a feasible solution, it 

does not guarantee such results. To compare the optimization results with the absolute global 

optimum solution, a VBA code is developed that enumerates all the possible combinations of the 

decision variables and compares the feasible solutions to determine the global optimal design. 

The degree of convergence in Solver is set to 0.001 for both GRG Nonlinear and Evolutionary 

methods. The population size in Evolutionary method is set to 100 and the mutation rate is 0.075. 

The estimated starting point for this example is 𝑏 = 350 𝑚𝑚, 𝑕 = 500 𝑚𝑚, 𝐴𝑠 = 1500 𝑚𝑚2. 

Table 6 presents the result of the three optimization techniques and their processing times. 

According to the exhaustive enumeration, the number of all possible combinations of decision 

variables is 3,150 but only 874 combinations are feasible for this typical RC beam design and with 

such a small search space, the global optimum can be found in less than a second. 

The GRG Nonlinear method fails to provide a feasible solution with the recommended starting 

point; however, if the optimization is run for a second time using the result of the first run as the 

starting point, the program returns the absolute global optimum. The optimization takes less than a  

second to complete with a typical office computer. On the other hand, the Evolutionary method 

takes about 36 seconds to complete and still fails to move from the starting point (which is a  
 

Decision variables

Beam width b 300 mm Width precision multiplier 6

Beam Depth h 500 mm Depth precision multiplier 10

Area of tensile steel reinforcement As 1500 mm2 Number of tensile bars 3

Objective function Min..

Total cost of materials and construction 1.98$              

Material cost of concrete 0.30$              

Material cost of steel 0.38$              

Construction and material cost of shuttering 1.30$              

Constraints RHS

C1 Minimum factored bending moment 194.7 >= 189.6 kNm Pass

C2 Minimum reinforcement 1500 >= 375 mm2 Pass

C3 Maximum reinforcement 1500 <= 2251 mm2 Pass

C4 Maximum factored shear resistance 129 <= 489 kN Pass

C5 Minimum beam width precision multiplier 6 >= 6 mm Pass

C6 Maximum beam width precision multiplier 6 <= 20 mm Pass

C7 Minimum beam depth precision multiplier 10 >= 2 mm Pass

C8 Maximum beam depth precision multiplier 10 <= 16 mm Pass

C9 Minimum depth to width ratio 1.7 >= 0.5 Pass

C10 Maximum depth to width ratio 1.7 <= 3 Pass

C11 Maximum deflection 10.3 <= 20.8 mm Pass

C12 Maximum crack control parameter 20027 <= 30000 N/mm Pass

C13 Maximum number of tensile bars 3 <= 4 mm Pass

C14 Minimum number of tensile bars 3 >= 2 N/mm Pass

Run with recommanded initial 
dimensions

Run with user initial dimensions Run with exhaustive enumeration
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Fig.6 Probability distribution of feasible solutions from GRG Nonlinear Solver 

 

 

Fig. 7 Probability of optimization constraints being met with the solver GRG Nonlinear method 

 
Table 6 Numerical results for optimal design of a singly RC beam using various optimization methods 

Optimization technique 
𝑏 

(mm) 

𝑕 

(mm) 

𝐴𝑠 

(mm
2
) 

Total cost 

(relative) 
Feasible 

Processing time 

(sec) 

GRG nonlinear 300 400 2500 1.97 No 0.16 

Evolutionary 350 550 1500 2.21 Yes 36.64 

Exhaustive 

Enumeration 
300 500 1500 1.98 Yes 0.04 

 

 

feasible solution). Changing the various parameters of the algorithm such as the mutation rate or 

the population size does not change the result, although requiring bounds on the variables will 

reduce the processing time to less than a second. 

Based on the literature reviewed in previous sections, deterministic nonlinear methods should 

be sufficient for finding the optimal solution to the problem of RC beam design with relatively 

limited search space. But is the GRG Nonlinear method of MS Excel suited to solving this 
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problem? To answer this question, the efficiency of the GRG Nonlinear method is examined using 

various starting points for optimization. A VBA code was implemented to feed the spreadsheet 

with all the possible combinations of design variables (based on upper bound and lower bound 

constraints limiting the width and depth of the beam and the number of reinforcing bars) and to 

calculate the results based on the GRG Nonlinear Solver. The optimization results are highly 

dependent on the starting points. Using the input parameters defined in Fig. 4, there are a total of 

3150 possible combinations of design variable; i.e., 3150 possible starting points for the 

optimization. The GRG Nonlinear Solver returns a feasible solution with only 8% of the starting 

points, but 55% of these feasible solutions are equal to the global optimum. In other words, 

although the Solver rarely comes to a feasible solution, if a solution is found, there is a good 

chance of it being the global optimum. Fig. 6 shows the probability distribution of the dimensions 

and reinforcement of the RC beam as returned by the GRG Nonlinear Solver when feasible 

solutions are returned. It is evident that the Solver feasible results are generally very close to the 

global optimum values provided a feasible solution is obtained.  

A closer examination of GRG Nonlinear Solver results with various starting points shows that 

optimization fails to meet the maximum reinforcement constraint with 77% of the starting points. 

This constraint is a critical one that ensures ductile failure of the beam. Fig. 7 demonstrates the 

probability of failure of all the optimization constraints (notations for constraints refer to those 

introduced in Fig. 5). Constraint C13, the maximum number of bars, is next with 51% chance of 

not being satisfied. This constraint refers to the physical possibility of arranging tensile bars in one 

row as defined earlier. Constraints C11 and C12 correspond to serviceability limit states (SLS) of 

deflection and cracking. These constraints are usually governing design factors for long-span 

beams. Hence, with the aim of improving the optimization, it is reasonable to relax these 

constraints from optimization and later check the SLS on the optimal solution.  The analysis is 

repeated with SLS constraints relaxed, however, the results hardly improve. The rate of feasibility 

of GRG Nonlinear solutions is slightly raised to 11%, and the probability of obtaining the global 

optimum is 52% of the feasible solutions. The probability distribution of design variables and 

failure rates of various constraints are also very similar. 

In conclusion, the feasibility rate of the solutions obtained from the GRG Nonlinear method is 

low, while optimality of the feasible solutions is high. The overall results suggest that although 

running the nonlinear optimization method available in MS Excel is quick, it is highly dependent 

on the starting point and not efficiently reliable. In contrast, the exhaustive enumeration technique 

can be efficiently implemented with VBA to provide the optimal design and ensure global 

optimality.  

 

4.4 Sensitivity analysis 
 

To investigate the effect of various input parameters on the overall cost of a RC beam, a sensitivity 

analysis is performed using the developed spreadsheet. The main variable input parameters 

considered are the strength and cost of concrete and steel reinforcement and also the size of 

reinforcing bars. The bending moment demand on the beam is usually the governing factor in 

designing the size and reinforcement of typical RC beam sections. Therefore, to perform the 

sensitivity study, three levels of applied bending moment have been considered: Low, medium and 

high. This is achieved by keeping a constant span and increasing the applied dead and live loads 

on the input worksheet shown in Fig. 4. 

A common sensitivity analysis available in MS Excel is the Pearson correlation method. 
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Pearson correlation coefficient measures the extent of linear correlation between normally 

distributed variables (Veaux et al. 2012). However, when variables are not normally distributed or 

nonlinear correlations are examined, Spearman’s rank correlation coefficient provides a 

moreappropriate method by assessing the degree of monotonic (not necessary linear) correlation 

between two variables. In this study, the input parameters are uniformly distributed and the 

correlation between the input parameters and the overall cost of construction is not necessarily 

linear. Hence, the Spearman’s rank correlation coefficient is applied for sensitivity analysis.  

Table 7 shows the range of the five input parameters that are varied uniformly to produce the 

data. A VBA code is developed to feed the spreadsheet with all the combinations of input variables 

and calculate the respective cost of construction. The procedure is repeated for three levels of 

applied bending moment. The data is then ranked to facilitate the calculation of Spearman’s rank 

correlation coefficient. Fig. 8 shows the results in the form of tornado graphs for the three bending 

moment demand levels (low: 187kNm, medium: 458kNm and high: 743kNm). For all three 

bending moment levels, the input parameter that affects the overall cost is the cost of concrete. The 

rank correlation coefficient for concrete cost is 0.52 for low bending moment, which increase to  

 

 

 
Fig. 8 Percent of contribution of various input parameters to the variability of the overall cost of 

construction for three levels of bending moment demand 

 

Table 7 Range of uniform distribution of input parameters used for sensitivity analysis 

Input 

parameters 

Concrete 

strength f ’c 

(MPa) 

Steel 

strength fy 

(MPa) 

Reinforcing bar 

diameter db 

(mm) 

Cost of 

concrete Cc 

(relative to cost 

of formworks) 

Cost of steel Cs 

(relative to cost of 

formworks) 

Range 25 - 40 250 - 400 10 -55 1 - 5 100 - 300 
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0.58 and 0.63 for medium and high bending moment levels, respectively. The positive value of the 

coefficients means higher values of cost of concrete result in higher value of the overall cost. 

When bending moment demand is high, the diameter of the reinforcing bars is the next most 

influential input parameter on the overall cost of construction of RC beams. The negative value of 

the Spearman’s rank correlation coefficient confirms the higher the diameter of reinforcing bars is, 

the lower the cost of construction will be. With low and medium bending moment levels, higher 

strength of steel and concrete only slightly reduce the overall cost, with a correlation just over 

10%. However, when bending moment level is high, strength of steel plays a significant role in 

reducing the overall cost, with a correlation close to 40%.  

In conclusion, as can also be predicted by inspection, the sensitivity analysis confirms that 

reducing the cost of concrete and steel can significantly decrease the overall cost of construction of 

RC beam. The strength of material within the common range has the minimum effect on the 

overall cost, as long as bending moment demand is considered low or medium. However, with 

high bending moment demand, choosing higher strength steel and larger bar sizes in design of RC 

beams can substantially reduce the overall cost of construction.  

 

 

5. Conclusions 

 
This paper presents a review of the available literature on the design optimization of reinforced 

concrete beams as structural members. A comprehensive optimization of a structure ideally studies 

the structure as one entity and takes into account the cost of materials, construction and 

maintenance, as well as functional and structural constraints. However, given the complex nature 

of many concrete structures, it is common to optimize the design of individual components of a 

structure to achieve a more economical design for the whole structure. The optimal design of 

concrete beams, either individually or as part of a frame, has been addressed by many research 

studies using various optimization approaches depending on the problem formulation. The 

objective of optimization (e.g. minimum cost, weight ...), the design variables and the constraints 

considered by different studies vary widely and hence, different optimization methods have been 

employed to provide the optimal design. The review suggests that cost optimization of a concrete 

beam is a discrete, but nonlinear and non-convex problem in nature, yet it can be achieved using 

deterministic approaches rather than heuristic ones, especially when the beam is considered as an 

isolated member and the number of design variables is limited.  

This paper also presents a spreadsheet implementation of the optimization of concrete beams 

and a numerical example to demonstrate the efficiency of deterministic methods. The results 

indicate that given the small search space of many typical RC beam designs and the instability of 

nonlinear approaches and their dependency on the starting point, exhaustive enumeration is the 

most efficient and reliable method that guarantees global optimality. Exhaustive enumeration 

method is comfortably implemented in the MS Excel spreadsheet using VBA to promote its use by 

engineers. 

Using the enumerative method implemented, a sensitivity analysis is performed to evaluate the 

influence of different input parameters on the optimal cost of construction. The results suggest that 

cost of concrete and steel expectedly have the highest influence on the overall cost of construction 

of RC beam; however, when bending moment demand is high on the beam, using higher strength 

steel and larger reinforcing bar sizes can greatly reduce the overall costs. 
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Appendix 

 
Optimization constraints for a singly reinforced rectangular beam can be expressed as the 

following. 

1. Bending moment resistance: 𝑀𝑓 + 𝑀𝑠𝑤 ≤ 𝑀𝑟  

𝑀𝑓  Factored design bending moment (constant user-defined value) 

𝑀𝑠𝑤  Bending moment due to self-weight of the beam:𝑀𝑠𝑤 =
𝐷𝑤𝑐𝑏𝑕𝐿

2

8
 

𝑤𝑐  Unit weight force of concrete (constant user-defined value)  

𝐷 Load factor for dead load (constant code parameter) 

𝐿 Span of beam (constant user-defined value) 

𝑀𝑟  The factored bending moment resistance: 𝑀𝑟 = 𝜑𝑠𝑓𝑦𝐴𝑠  𝑑 −
𝑎

2
   

𝜑𝑠  Resistance factor for steel (constant code parameter) 

𝑓𝑦  Yield strength of steel reinforcement (constant user-defined value) 

𝑑 Effective depth of beam:𝑑 = 𝑕 − 𝑐 −
𝑑𝑏

2
− 𝑑𝑠 

𝑐 Concrete cover provided (constant user-defined value) 

𝑑𝑏  Diameter of the bending reinforcement bars (constant user-defined value) 

𝑑𝑠  Depth of the equivalent rectangular stress block:  𝑎 = 𝜑𝑠𝑓𝑦𝐴𝑠/𝛼1𝜑𝑐𝑓𝑐
′𝑏 

𝑎 Depth of the equivalent rectangular stress block:  𝑎 = 𝜑𝑠𝑓𝑦𝐴𝑠/𝛼1𝜑𝑐𝑓𝑐
′𝑏 

𝑓𝑐
′ Compressive strength of concrete (constant user-defined value) 

𝜑𝑐  Resistance factor for concrete (constant code parameter) 

𝛼1 , 𝛽1 Equivalent rectangular stress distribution parameters (code prescribed constant 

based on the compressive strength of concrete) 

2. Minimum reinforcement: 𝐴𝑠 ≥ 
0.2 𝑓𝑐

′

𝑓𝑦
𝑏𝑕 

3. Maximum reinforcement: 𝐴𝑠 ≤  
0.75× 700

700+𝑓𝑦
  

𝛼1𝛽1𝜑𝑐𝑓𝑐
′

𝜑𝑠𝑓𝑦
 𝑏𝑑 

4. Maximum factored shear resistance:  0.25𝜑𝑐𝑓′𝑐𝑏𝑑𝑣 ≥ 𝑉𝑓  

𝑉𝑓  Factored design shear (constant user-defined value) 

𝑑𝑣 Effective shear depth: 𝑀𝑎𝑥[0.9𝑑, 0.72𝑕] 
 

5. Maximum deflection: ∆𝑖≤ ∆𝑚𝑎𝑥  

∆𝑚𝑎𝑥  Maximum allowable deflection (code prescribed constant based on beam span) 

∆𝑖  Immediate deflection: ∆𝑖=  
5

48
 
𝑀𝑎𝐿

2

𝐸𝑐𝐼𝑒
 

𝑀𝑎  Unfactored design moment (constant user-defined value) 

𝐸𝑐  Modulus of elasticity of concrete (calculated constant): 𝐸𝑐 = 4500 𝑓′𝑐  

𝐼𝑒  
Effective moment of inertia: 𝐼𝑒 = 𝐼𝑐𝑟 + (𝐼𝑔 − 𝐼𝑐𝑟 )  

𝑀𝑐𝑟

𝑀𝑎
 

3
 

𝑀𝑐𝑟  Cracking moment: 𝑀𝑐𝑟 =
2𝑓𝑟 𝐼𝑔

𝑕
 

𝑓𝑟  Modulus of rupture: 𝑓𝑟 = 0.6 𝑓′𝑐  

𝐼𝑔  Gross moment of inertia: 𝐼𝑔 =
𝑏𝑕3

12
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𝐼𝑐𝑟  Moment of inertia of the cracked section: 𝐼𝑐𝑟 =
𝑏𝑦 3

3
+ 𝑛𝐴𝑠(𝑑 − 𝑦 )2 

𝑛 Modular ratio: 𝑛 =
𝐸𝑠

𝐸𝑐
 

𝐸𝑠  Modulus of elasticity of steel (constant user-defined value) 

𝑦  
Neutral axis depth of cracked section: 𝑦 =

−𝑛𝐴𝑠+  𝑛𝐴𝑠 
2+2𝑏𝑑 𝑛𝐴𝑠 

𝑏
 

 

6. Maximum crack control parameter: 𝑧 ≤ 𝑧𝑢  

𝑧𝑢  Upper limit for crack control parameter (constant code parameter) 

𝑧 Crack control parameter: 𝑧 = 𝑓𝑠 𝑑𝑐𝐴
3

 

𝑑𝑐  The distance from the extreme tension fibre to the centre of the longitudinal bar 

located closest thereto: 𝑑𝑐 = 𝑀𝑖𝑛  𝑐, 50𝑚𝑚 +
𝑑𝑏

2
+ 𝑑𝑠  

𝐴 Effective tension area of concrete surrounding the flexural reinforcement: 

𝐴 =
𝐴𝑒

𝑁𝑏
 

𝐴𝑒  Total effective tension area: 𝐴𝑒 = 𝑏(2𝑑𝑐) for one row of tensile bars 

𝑓𝑠 Stress in steel at maximum service load: 𝑓𝑠 = 0.6𝑓𝑦  

 

  7. Bar spacing constraint: 𝑁𝑙 ≤ 𝑁𝑏 ≤ 𝑁𝑢  

𝑁𝑏  Number of bending reinforcement bars 

𝑁𝑙  Lower limit for number of reinforcement bars (constant user-defined value) 

𝑁𝑢  Upper limit for number of bending reinforcement bars: 

𝑁𝑢 = 𝐼𝑛𝑡  
𝑏+𝑆𝑚𝑖𝑛 −2𝑐−2𝑑𝑠

𝑑𝑏+𝑆𝑚𝑖𝑛
  

𝑆𝑚𝑖𝑛  Minimum clear bar spacing: 𝑆𝑚𝑖𝑛 = 𝑀𝑎𝑥[1.4𝑑𝑏 , 1.4𝑎𝑚𝑎𝑥 , 30𝑚𝑚] 
𝑎𝑚𝑎𝑥  Maximum aggregate size (constant input) 

 

8. Beam width constraint:   𝑏𝑙 ≤ 𝑏 ≤ 𝑏𝑢  

𝑏𝑙 , 𝑏𝑢  Lower and upper limits for beam width (constant user-defined values) 

 

9. Beam depth constraint:   𝑕𝑙 ≤ 𝑕 ≤ 𝑕𝑢  

𝑕𝑙 , 𝑕𝑢   Lower and upper limits for beam depth (constant user-defined values) 

 

10. Beam depth to width ratio constraint:   𝑅𝑙 ≤ 𝑕/𝑏 ≤ 𝑅𝑢  

𝑅𝑙 , 𝑅𝑢   Lower and upper limits for beam depth to width ratio (constant user-defined 

values) 
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