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Abstract.  In this work a numerical method to simulate the response of reinforced concrete structures 
subject to cyclically imposed displacements is proposed. The method consists of a combination of a 
displacement and load controlled version of the Newton–Raphson iterative technique, used for the loading 
and the unloading part of the cycles respectively. The whole procedure is combined with a relatively simple 
concrete model whose only material parameter is its uniaxial compressive strength. The proposed 
methodology may realistically simulate, in an easy way, the physical process of any experimentally tested 
RC structure under imposed displacements cycles. The efficiency of the approach is demonstrated through a 
series of analyses of experimentally tested specimens reported in the literature. 
 

Keywords: reinforced concrete, nonlinear analysis, cyclic loading, smeared crack model, 3D solid finite 
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1. Introduction 
 

During the last decades, the numerical prediction of the response of Reinforced Concrete (RC) 

structures has been a very popular field of research. Most related published work has been based 

on the finite element method of analysis (ACI 1997) using either elements of two/three 

dimensional elasticity or of a more macroscopic nature (e.g. fiber or simple beam elements). 

Although the former ones have considerable computational cost restrictions, they have been 

extensively used for the analysis of simple structures or individual structural members(such as 

beams, columns, shear walls or joints). The choice of these elements is argued by the fact that they 

can give far more realistic results especially when they predict modes of nonlinearity other than 

that of flexure, for example brittle shear failures.  

Most numerical applications are restricted to RC members under monotonic loading, mainly 

due to the complexities involved in the modelling of the material under any arbitrary cyclic 

loading history. When it comes to applications with cyclic loads, most of them have been 

performed with two dimensional elements and only a few use three dimensional solid elements. A 

brief literature review of the pertinent work presented to date is given next. 
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Darwin and Pecknold (1977) use a procedure with 2D four–node isoparametric quadrilateral 

finite elements for simulating the response of cyclically loaded planar RC structures. The 

analytical predictions show reasonable agreement with experimental findings. Rule and Rowlands 

(1992) developed a biaxial constitutive model which they used together with triangular plane 

elements to analyze a deep orthogonally reinforced beam. The results exhibit a good 

approximation compared to experimental data. Ozbolt and Bazant (1992) implemented their 

microplane model into quadrilateral plane stress finite elements after extending it to include cyclic 

loading. They demonstrate applications on plain concrete specimens loaded in bending and 

compression without any sign reversals. Inoue et al. (1997) proposed a nonlinear finite element 

model for the dynamic analysis of a 3D RC shear wall subjected to earthquake motions. An 8–

node plane quadrilateral element is used to model a test specimen of the wall with H–shaped 

section. Comparison with experimental results shows good accuracy. Balan et al. (1997) presented 

a 3D concrete material model for finite element analysis and comparisons with experimental data 

are performed on the material level concluding to quite realistic predictions. Vecchio (1999) 

presented a finite element model that provides analysis capability for arbitrary loading conditions, 

including reversed cyclic loads. He used 2D plane finite elements to analyze a shear wall and three 

large scale panel elements. The resulting analysis procedure exhibited adequate convergence and 

stability characteristics. Ile and Reynouard (2000) propose a constitutive model for predicting the 

cyclic response of RC structures which adopts the concept of a smeared crack approach assuming 

a plane stress condition. Predictions of the model compare quite well with experimental data on 

shear walls under monotonic and cyclic loading and also on a shear wall structure which was 

tested under a large number of cyclic load reversals due to earthquake loading. All analyses use 2D 

plane elements. Balan et al. (2001) presented a hypoplastic model for three dimensional analysis 

under arbitrary loads. Correlation studies with available experimental tests at the material level 

confirm a good model performance. Kwan and Billington (2001) perform an evaluation of finite 

element modelling approaches for predicting cyclic behavior of structural concrete. They also use 

8–node is oparametric plane elements. Kwon and Spacone (2002) use the model, developed by 

Balan et al. (2001), for the analysis of concrete specimens and RC columns subjected to different 

load patterns. Concrete was modelled with 8–node brick elements and only the monotonic loading 

envelope was followed in the numerical simulations. Further2D plane analyses can be found in 

Palermo and Vecchio (2002) and Kwak and Kim (2004).In the framework of 2D applications, Au 

and Bai (2007) added a bond-slip behaviour modelled by contact elements. He et al. (2008) 

employed a more complicated fracture energy based concrete model. A similar model was used by 

Sasmal et al. (2010) to analyze beam-column joints under plane stress conditions. Recently, To et 

al. (2009)incorporated a strut-and-tie model into a conventional planar frame model. Sharma et al. 

(2010) managed to approximate the strength degradation of RC beam-column joints by performing 

a nonlinear pushover analysis. The use of fiber elements for the cyclic analysis of RC beams was 

demonstrated, quite recently, by Melo et al. (2011) in a review article. Some applications with 3D 

solid elements and cyclic loading have been performed by Girard and Bastien (2002), Ozbolt and 

Li (2001), Spiliopoulos and Lykidis (2006), Lykidis and Spiliopoulos (2008). 

The purpose of the present work is to discuss the numerical simulation of cyclic loading 

experiments on RC structures. Experimental data on members under cyclic actions are usually 

presented with load – displacement curves. In many cases there is a gradual degradation of the 

capacity of these members with increasing number of cycles. For this reason a displacement 

controlled method of analysis seems more appropriate for the simulation of such experiments.  

Nevertheless it can be proven that, for both 2D plane and 3D solid elements, if a plain 
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displacement control iterative method of nonlinear analysis is directly employed throughout the 

whole range of loading cycles, unrealistic cracking may lead to unexpected sudden divergence. 

Therefore the application of displacement controlled algorithms is not so straight forward. To the 

authors’ knowledge, this deficiency has not been observed by any of the researchers that have 

performed RC nonlinear analyses. 

In this work, in order to obtain a realistic prediction for such cyclic loading cases, a 

combination of load and displacement controlled iterative procedures, is proposed. It is proved that 

this approach may simulate any cyclic loading experiment under displacement control in a most 

natural way. After a brief description of the employed material and finite element modelling in 

Section 2, the theoretical description of the plain load controlled and displacement controlled 

procedures are presented in Section 3 together with their numerical implementations. The 

suggested methodology with the combination of the two procedures is described in Section 4 and 

numerical applications are presented in Section 5. The technique proves to be stable and can 

provide convergence for RC structures under cyclic load reversals even if extended nonlinearities 

are exhibited. 

 
 
2. Brief review of the material and finite element modeling 

 

The concrete modelling of Kotsovos and Pavlovic (1995), the development of which was based 

on extensive experimental investigation, is used in this work. According to this model, the 

constitutive behaviour is treated in the three–dimensional space with two distinct parts of 

nonlinearity which depend on the stress state. For low stresses microcracking causes small amount 

of nonlinearity, whereas for larger stresses macrocracking causes brittle loss of material continuity. 

Any effect of material strain softening both in tension or compression is therefore ignored. 

The stress state is described with reference to the octahedral stress which may be decomposed 

into a hydrostatic 
0  and a deviatoric part 

0 . The simplicity of the model lies in the fact that 

these stress components are expressed as functions of the uniaxial compressive concrete strength fc 

only.  

It is an experimental fact that the component of the non–linear deformation is much larger 

under
0  rather than under 

0  and therefore it is 
0 that determines whether a crack forms. 

When a stress state reaches the locus of the ultimate deviatoric stresses that defines concrete’s 

failure surface, a crack forms in the direction perpendicular to the maximum principal tensile 

stress. 

The highly non–linear problem is analyzed using incremental steps with iterations. Using the 

material stress state of the last iteration one may evaluate the predicted stress level σpr at the 

current one. The evaluation of the predicted stress at a Gauss point (GP) highly depends on 

whether cracks have already appeared in previous iterations.  

If there was no crack, then a check is made on whether a new crack is currently opening. In 

case the crack criterion is fulfilled, then two actions are taken: 

a) A crack forms at a plane perpendicular to the direction of the maximum principal tensile 

stress. This stress is zeroed resulting to the development of a residual stress vector Δσr. 

b) The material properties of the corresponding concrete element are changed so that no 

stiffness is retained along the axis perpendicular to the plane of the crack. For numerical reasons a 
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small amount of shear stiffness is kept along the plane by multiplying the shear modulus with an 

appropriate shear retention factor.  

If there is still no crack opening at this GP, the GP is checked whether it is in a state of further 

loading or un–loading. Different actions are taken with respect to what state (loading or un–

loading) this GP was in the previous iteration. These actions result to different updates of the 

material properties as well as to residual stresses Δσr. 

In case there are crack(s) at a GP at the previous iteration, it is checked whether the total strains 

perpendicular to the crack plane/planes have now become compressive. Then the crack(s) are 

assumed to close and the material properties that were altered to accommodate the crack(s) are 

recovered. A vector of residual stresses Δσr is also formed. 

Three cracks at different directions are allowed to form at a GP before it loses its load carrying 

capacity. 

Uniaxial truss elements are used to model reinforcement which is considered embedded in the 

concrete element by using the appropriate embedded truss bar formulations of Barzegarand 

Maddipudi (1997). The Menegotto–Pinto model that accounts for the Bauschinger effect is used as 

a constitutive law for reinforcing steel. 

The numerical models are developed with twenty seven–node Langrangian brick elements with 

3x3x3 GPs. Mesh in objectivity inherent to all brittle materials is alleviated by keeping the size of 

the elements in the range of 5-20 cm. It is argued that this corresponds to an equivalent volume for 

each GP approximately of the same size of the concrete specimens that were used in the 

experiments to derive the concrete behavior (Kotsovos and Pavlovic 1995). 

The above procedures have been implemented as an additional module in the finite element 

code FE77. A more detailed description of the above material and finite element modelling 

procedures may be found in Spiliopoulos and Lykidis (2006). 

 

 

3. Numerical approaches used for the nonlinear analysis of RC structures 
 
The Newton – Raphson iterative procedure, commonly used to solve nonlinear systems of 

equations in finite element analyses, may have two alternative forms: (a) with control of the 

applied load and (b) with control of the applied displacement. Following a brief review of the 

basic features of these two methods, their numerical implementations, in conjunction with the 

concrete material behaviour that was described above, are developed. 

 
3.1 Analysis with load control 
 

The following system of non–linear equilibrium equations has to be solved 

fs (u) = R                                 (1) 

where fs is the internal force vector, u the displacement vector and R the external force vector, 

(bold letters denote vectors and matrices). 

The solution may be accomplished through incremental load steps according to the standard 

Newton – Raphson iterative procedure. Linearizing around the displacements of the last converged 

incremental load step, denoted by i, a prediction for the current step i+1 is derived: 

 

346



 

 

 

 

 

 

An efficient numerical simulation of the cyclic loading experiments on RC structures 

 

 (1)

, 1 ( ) Δ
u

f
f f u u

u
i

s
s i s,i

                            

(2) 

Since Eq. (1) should be satisfied at the ends of the previous, as well as of the current step, a 

first estimate of the increments of the displacements may be found from Eq. (3) 

 K
(0)

•Δu
(1)

=Ri+1-Ri                                                (3) 

where sf
K

u
is the tangent stiffness matrix of the whole structure. 

The updated displacements
(1) (1)

i 1 Δiu u u lead to strains and then to stresses, which when 

integrated, result in a first estimate of the internal force vector 
(1)

s,if . 

A linearizing around this update of the displacements results in 

 
(1)

1

(1) (2) (1) (1) (2)

, 1 1 ,1( ) Δ Δ
u

f
f f u u f K u

u
i

s
s i s,i i s

                  

(4) 

Once again the left hand side of (4) should be Ri+1and from this equationthe next update of the 

displacements at the end of the current step is derived. 

The steps of the numerical procedure inside an incremental step,using the nonlinear material 

behaviour described in Section 2, may now be developed 

1. Initialize data: u
(0)

=ui, ΔR
(0) 

= Ri+1- Ri 

2. Calculations for each iteration j = 1, 2, 3, …: 

2.1 Compute K
 (j-1)

 

2.2  Solve ( -1) ( ) ( -1) ( )Δ Δ Δj j j j
K u R u

 

2.3 u
(j)

=u
(j-1)

+Δu
(j)

 

2.4 ɛ
(j)

=ɛ
 (j-1)

+Δɛ
 (j)

 

2.5 
( ) ( 1) ( 1) ( )Δj j j j

prσ σ D ε
 

2.6 Compute residual stresses Δ rσ  and current stresses 
( ) ( ) Δj j

pr rσ σ σ  as suggested in 

Section 2 and in Spiliopoulos & Lykidis (2006). 

2.7  Compute internal forces 
( ) ( )j T j

s dVf B σ . 

2.8 ΔR
(j)

 = Ri+1-
( )j

sf
 

3. Replace j by j+1 and repeat steps 2.1 – 2.8 if convergence is not achieved. 

In all the expressions above, D is the material matrix for either a concrete or a steel element. 

This matrix is updated according to the state of cracked, un-cracked, loading or unloading. B 

denotes the corresponding compatibility matrix used also to form, by integration in the standard 

way, the stiffness matrix of the structure assuming full bond between steel and concrete 
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(Spiliopoulos and Lykidis 2006). A different formulation that assumes partial bond between 

concrete and reinforcement through the use of bond – slip modelling may be found in Lykidis and 

Spiliopoulos (2008). 

 
3.2 Analysis with displacement control 
 

In this case the nodal displacements are partitioned into two groups: u1are the free 

displacements and u2are the prescribed ones 

 u = {u1, u2}
T                                                   

(5) 

At the same time the internal force vector may be also partitioned intofs = {fs1, fs2}
T
. The non–

linear equations of equilibrium may then be written as 

 fs1(u1,u2) = 0                                (6) 

fs2(u1,u2) = F                                (7) 

As seen above, in this work zero applied loading at the free displacement group shall be 

considered. F denotes the reactions at the points where the displacements are prescribed. 

For a given set of prescribed displacements u2Eq.(6)may be solved iteratively to provide the 

displacements u1, which, together with u2, are substituted in Eq. (7)to get the reaction forces 

(Jirasek and Bazant 2002). 

To solve (6), one may linearize around the displacements of the last incremental prescribed 

displacement’s step i, making a prediction for the current onei+1 

  
(1) (1)

1 1

1 2

1, 1 1 1 2 1 2

1 2

( , ) Δ Δ

u u

f f
f f u u u u

u u

s s

,i ,i

s i s ,i ,i ,i

                    

(8) 

and since the internal forces of the previous time step as well as the sought internal forces at the 

end of the current one should be zero 

 
(0) (1) (0) (1)

11 1 12 2Δ ΔK u K u 0
                            

(9) 

where
(1)

2 2 1 2,iΔ ,iu u u is the known increment of the prescribed displacements. 

The following notion has also been used 

1 1
11 12

1 2

,s sf f
K K

u u
                            

(10) 

where the current tangent stiffness matrix K has been partitioned as: 

 
11 12

21 22

K K
K

K K
                              

(11) 

The increment of the displacements
(1)

1Δu  may be calculated from (9) and an update of the 

displacements at the end of the incremental step is derived 
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(1) (1)

1 1 1, 1, i i uu u Δ
                               

(12) 

This may lead to strains and then to stresses, which when integrated, results in a first estimate 

of the internal force vector 
(1)

s,if . 

The linearization around
(1)

1 1, iu , just found, gives 

(1) (1) (1)
1 1 2 1 1 1

(2) (2) (2)
(1) (1) (1)1 1 1

1, 1 1 1 1 2 1 1 2 1, 1

1 2 1

( , ) Δ Δ Δ

u u u

f f f
f f u u u u f u

u u u
,i ,i ,i

s s s
s i s ,i ,i ,i s i  

 
(1) (1) (2)

1, 11 1Δs if K u  (13) 

since there are no further increments of Δu2. 

Once again the l.h.s. of (13) should be zero. Therefore a new update for 
(2) (2) (2)

1 1 1 1 1Δ, i , iu u u  

may be calculated. 

One may now develop the steps of the numerical procedure inside an incremental step: 

1. Initialize data  

  
0 1 (0)

1 1 2 2 2 1Δu u u u u f 0
( ) ( )

,i ,i+1 ,i s, ,  

2. Calculations for each iteration j = 1, 2, 3, … 

2.1 
( )

2Δu 0
j

, for j = 1, 2, 3, … 

2.2 Compute K
(j-1)

and partition
 

2.3 Solve
( -1) ( ) ( -1) ( -1) ( ) ( )

11 1 1 12 2 1Δ Δ ΔK u f K u u
j j j j j j

s  

2.4 
( ) ( -1) ( )

1 1 1Δj j j
u u u  

2.5 
( ) ( -1) ( )Δj j j
ε ε ε  

2.6 
( ) ( -1) ( -1) ( )Δj j j j

prσ σ D ε  

2.7 Compute residual stresses Δσr and current stresses 
( ) ( ) Δj j

pr rσ σ σ as suggested in 

section 2 and in Spiliopoulos and Lykidis (2006). 

2.8 Compute internal forces 
( ) ( )j T j

s dVf B σ . 

3. Replace j by j+1 and repeat steps 2.1 – 2.8 if convergence is not achieved. 

 
 
4. Proposed method for cyclic loading 

 

Many experiments in RC are displacement driven and are controlled by the deflection at the 

point of application. In the analytical simulation of these tests this point is considered as an 

additional support with a prescribed displacement and the force applied on the structure is the 
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(a) (b) 

Fig. 1Typical history of prescribed cyclic displacements imposed at the midspan of a simply supported 

beam 

 

(a) 

 
 

(b) 

 

(c) 

 

 
Fig. 2 Schematic representation of a plain displacement controlled approach 

 

 
Fig. 3 Typical load – displacement curve 

 

Fresidual≠ 0 (Residual Force reaction at δ=0) 
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(a) 

 

(b) 

 

 

(c) 

 

(d) 

 
Fig. 4 Schematic representation of the proposed method for half of the cycle 

 

(a) 

 

(b) 

 
Fig. 5(a) Simply supported beam under cyclically imposed displacements, modeled with 

hexahedral finiteelements (b) Embedded reinforcement element mesh 
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Fig. 6 Load – displacement curves for the analyses of the RC simply supported beam 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 7 Predicted cracking at (a) initial stages of loading, (b) after load reversal at point of zero 

displacement with the plain displacement controlled analysis and (c) after load reversal at point of 

zero displacement with the analysis according to the proposed methodology. 
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reaction generated by the support. Under a monotonic loading a plain direct displacement control 

as the one described above in section3may be used to get an estimate of the limit load as well as, 

possibly, to trace the post–peak range of the load – displacement curve. 

The numerical simulation of a cyclic loading, however, is not so straightforward. A 

combination of displacement controlled/load–controlled procedure needs to be used, which 

simulates the exact physical procedure of a cyclic loading experiment. 

In Fig.1 (a) one may see the application of a cyclically imposed displacement at the midspan of 

a simply supported RC beam during an experiment. This loading would produce, at the two 

displacement peaks, the deformation modes of Fig.1(b).  

Αplain displacement control approach would involve the following phases: 

 (a) positive applied displacement increments at point A up to a certain displacement (say δ1) 

(Fig. 2(a)) 

 (b) negative applied displacement increments at point A (Fig. 2(b)) down to zero 

displacement (Fig. 2(c)) 

 (c) negative applied displacement increments at point B down to displacement –δ1 

 (d) positive applied displacement increments at point B up to displacement zero. 

An expected typical load – displacement curve may be seen in Fig. 3. 

It may be easily realized that such an approach, during the application of negative displacement 

increments of phase (b), would result in forces pulling the concrete, a state which is not only 

highly unrealistic, because such pulling does not occur during an experiment, but also numerically 

may lead to divergence of the analysis, as will be demonstrated below. 

Instead of this approach the following numerical simulation method of such an experiment is 

proposed in this work (Fig. 4): The specimen is being pushed under displacement control (Fig. 

4(a)) up to the displacement δ1. This results to the portion marked as (1) in the load–displacement 

curve of Fig. 3. This force is then recovered (Fig. 4(b)) under force control, resulting to movement 

along (2) in the force–displacement curve. Then the next stage starts, with a displacement control 

strategy, marked along (3), which leads to the opposite displacement –δ1, after passing through the 

end of the half–cycle (δ = 0) (Fig. 4(c), (d)). Similarly a force controlled approach is followed for 

the first reloading path denoted as (4) whereas a displacement controlled one completes the cycle 

along (5). With this procedure the structure is constantly being “pushed” and thus the whole 

physical process is accurately simulated. 

The efficiency of the proposed method is depicted in a set of comparative finite element 

analyses of a simply supported RC beam subject to an applied displacement history from zero to 

+30 mm and then to –20 mm (Fig. 5). This application was chosen as the simplest possible case of 

a cyclically loaded RC member in order to demonstrate how the proposed modelling methodology 

can avoid exhibiting an unrealistic divergence from a reasonable load – displacement prediction. 

The beam has a section of 300 × 600 mm with 2Φ20 mm at the top and bottom and Φ8 mm/150 

mm longitudinal and transverse reinforcement respectively. The first analysis is performed with 

the application of subsequent imposed displacement increments from the top of the beam up to 30 

mm and then negative displacement increments up to 0 mm. After that point, new negative 

displacement increments on the opposite side are applied up to a displacement of -20 mm. The 

second analysis is performed for the same end displacements of +30 mm/-20 mm but with the use 

of load controlled unloading for load reversal as proposed in the previous paragraphs. The results 

of both analyses in terms of load – displacement curves are presented in Fig. 6. 

It may be easily noticed that the plain displacement control analysis exhibits a diverging 

unrealistic behavior exactly after the point of zero load. The negative displacement increments 
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result to forces pulling the concrete nodes thus leading to unrealistic cracking which makes the 

solution to diverge. One such stage, the end of half-cycle, for example, with the analytically 

predicted cracking at midspan may be seen in Fig. 7(b).  

On the contrary, the analysis with the proposed methodology, which genuinely simulates the 

conditions of an experiment, does not exhibit any such unrealistic characteristics (Fig. 7(c)). 

It should be noted that the employment of contact elements on both opposite faces of the 

member could allow a more accurate plain displacement control method which would not exhibit 

the same unrealistic simulation. Nevertheless this would also impose modelling part of the 

experimental set up (contact elements would need to be connected at both of their sides), thus 

making the whole modelling effort more exhaustive. The strategy proposed in this work does not 

require such additional modelling. 

 
 
5. Applications 

 
The above described technique was applied in two types of shear walls for which experimental 

data were available. Applications of cyclic loading on other member types such as beam column 

joints may also be simulated, with the above procedures, for cases where experimental results 

exist, e.g. Lykidis and Spiliopoulos (2008) and Tran (2012). 

 

5.1 Shear walls W2 and W4 of Cervenka (1970) 
 

Two identical shear walls, experimentally investigated by Cervenka (1970) under monotonic 

and cyclic loading, were analyzed first. It should be noted that, in the past, Ile and Reynouard 

(2000) also analyzed these walls, but in that case, a load controlled procedure was employed. 

The shear wall W2, experimentally tested under monotonically increasing applied 

displacement, was analyzed with the plain direct displacement controlled iterative procedure. The 

detailing of the shear wall in terms of dimensions and reinforcement can be seen in Fig. 8. Within 

a zone of 15cm from the bottom, a horizontal reinforcement of 1.84% was provided and in the rest 

of the specimen the reinforcement percentage was equal to 0.92%. The percentage of the vertical 

reinforcement was 0.92% along the whole width of the wall. The compressive concrete strength 

was measured to be fc=26.5MPa, whereas the steel had a yield limit of fsy=360MPa and a Young’s 

elastic modulus of 192GPa. 

Due to the symmetry of the problem half of the wall was modelled using hexahedral solid 

elements (Fig. 9). A monotonic displacement was imposed according to the loading history of the 

experiment and the results of the analysis can be seen in Fig. 10. One can easily see the good 

matching between the experimental and analytical results, with respect both to stiffness and 

strength.  

The shear wall W4 that was experimentally tested under cyclic loading by the same researcher 

(Cervenka 1970), was analyzed next. The geometry is the same with the wall W2 but the 

horizontal and vertical reinforcement is of the order of 1.2%. The displacement history was 

imposed, under the proposed strategy, and the results appear in Fig. 11. As one can see, analytical 

results match very well with the behaviour of the specimen both in terms of stiffness, strength and 

dissipated energy during the large cycle of loading. 
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Fig. 8 Dimension and reinforcement detailing of shear wall W2 experimentally tested by Cervenka(1970) 

 

 
Fig. 9 Finite Element model of shear walls W2 and W4 of Cervenka(1970), concrete elements 

(left) and embedded reinforcement mesh (right) 

 

  
(a) Experimental and analytical load – 

displacement curves 

(b) crack pattern prediction at the last steps of the 

analysis 

Fig. 10 Shear wall W2, experimentally tested under monotonic loading. 
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(a) Experimental and analytical load – 

displacement curves 

(b) crack pattern prediction at the last steps of the 

analysis 

Fig. 11 Shear wall W4 experimentally tested under cyclic loading. 

 

 
Fig. 12 Dimension and reinforcement detailing of shear wall SW33 experimentally tested by Lefas 

and Kotsovos (1990) 

 

 
Fig. 13 Finite element model of shear wall SW33 of Lefas and Kotsovos(1990), concrete elements 

(left) and embedded reinforcement mesh (right). 
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(a) Experimental and analytical load – displacement curves 
(b) crack pattern prediction at the last steps 

of the analysis 

Fig. 14 Shear wall SW33 

 

 

5.2 Shear wall of lefas and kotsovos (1990) 
 
The shear wall SW33 that was experimentally investigated by Lefas and Kotsovos (1990) was 

also analyzed using the proposed methodology. The details of reinforcement of the shear wall are 

depicted in Fig. 12. Rebars of Φ8 mm, Φ6.25 mm and Φ4 mm had a yield and strength limit of fsy 

= 470MPa / fsu = 565MPa, fsy = 520MPa / fsu =610MPa, fsy =4 20MPa /fsu = 490MPa respectively. 

The compressive strength of concrete was 49.20MPa.  

Contrary to the previous example, such an experiment may be performed through a 

monolithically connected rigid block which remains virtually uncracked throughout the duration of 

the test. In this case, one would include additional FE discretization of the block. However, no 

extra discretization is needed if one uses the proposed procedure, thus showing its versatility. The 

specimen was modeled with hexahedral elements according to Fig. 13. A cyclic displacement was 

imposed on the top beam ends. The results of the analysis and the comparison with experimental 

data may be seen in Fig. 14.  

Although stable hysteresis loops are obtained, for this extreme magnitude of applied 

displacements there is a weakness of the analysis to give satisfactory predictions. The pinching of 

the load – displacement curves is significantly underestimated (width of the hysteresis loop 

appears to be greater than the experimental one) and the specimen’s ultimate strength is 

underestimated with the progress of the cycles. This appears to be due to the fact that after the first 

cycle at displacements corresponding to the ultimate limit state, extensive cracking (Fig. 14(b)) in 

the compressive zone of the lower sections near the base indicate significant failure. Consequently, 

concrete capacity in this area remains very low and therefore the only elements contributing in the 

behaviour are the reinforcing bars. As the analysis exhibits a stable solution, without the iterative 

procedure diverging, this inadequacy to provide a more realistic description of concrete under 

extreme compressive cyclic stresses should be regarded as a weakness of the employed concrete 

model and not a deficiency of the proposed numerical methodology presented in this paper. 
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6. Conclusions 
 
In the present work a numerical strategy that deals with the nonlinear analysis of RC structures 

subjected to cyclic actions is proposed. The strategy is based on a combination of a displacement 
controlled procedure used for the loading part and a force controlled procedure used for the 
unloading part of each cycle. For each one of these loading/unloading procedures, the boundary 
conditions at the points of application are modified appropriately in order to reflect the exact 
physical conditions of a displacement controlled cyclic loading RC structure experiment. No extra 
rigid or contact elements are required to simulate the experimental set up.  

The proposed numerical strategy is combined with an existing concrete nonlinear material 
model which has proved to successfully model brittle crack opening and closure under load 
reversals. The effectiveness of the combined approach is demonstrated with the analysis of two 
types of shear walls for which experimental data were available. 
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