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Abstract.  Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of 
soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and non-
linear regression approach were applied to predict the compressive strength of ready-mixed soil material 
containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from 
our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil 
(e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, 
whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering 
properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical 
pulse velocity–strength correlation was established by regression method. Next, three topologies of neural 
network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models 
are back-propagation feed-forward networks, and the other one is radial basis neural network. The results 
show that the compressive strength of ready-mixed soil material can be well-predicted from neural 
networks. Among all currently proposed neural network models, the ANN-I gives the best prediction 
because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other 
factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better 
evaluation than interpolated from pulse velocity only. 
 

Keywords:  ready-mixed soil material; ultrasonic pulse velocity; neural network; back-propagation; radial 

basis function 

 
 
1. Introduction 
 

Ready-mixed soil material (RMSM) is known as a kind of controlled low-strength material (CLSM) 
(ACI 229 2005) when a large amount of soil is used as fine constituent. RMSM is a new combination 

of soil and cement; and it has been successfully applied to numerous fields such as backfill wall or 
trench fill, void filling, and pavement bases (Green 1999, Wu 2005, Finney et al. 2008, Wu and Lin 
2011). Similar to general CLSM, RMSM has some advantages, viz. easy to deliver, self-compacting 
capacity, safety, speed of construction, and environment-friendly, etc. Therefore, using 
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RMSM will reduce the labor cost and equipment cost compared to compacting conventional 
materials (Chen and Chang 2006, Lachemi et al. 2010). This material is neither concrete nor soil 
cement material, and may be named as soil-cement slurry or plastic soil-cement. Generally, 
RMSM mixture consists of quite small amount of Portland cement, fly ash or similar products, and 
a huge quantity of fine aggregate (soil), as well as tap water. Its 28-day unconfined compressive 
strength is 2 to 30 times greater than soil cement and can reach up to 5 MPa (Chen and Chang 
2006). If future re-excavation is expected, the long-term compressive strength should be less than 
1.4 MPa (Taha et al. 2007, Lachemi et al. 2010, Wu and Tsai 2009). This strength satisfies the 
demands of most compacted soil or granular fill. In recent years, spoil pile (e.g., native soil, 
reservoir, dreg silt) has been reported from literatures to be a feasible source for producing RMSM 
(Green 1999, Wu 2005, Wang and Tsai 2006, Finney et al. 2008, Wu and Lee 2011). In Taiwan, as 
a potential solution using on-site surplus earth, RMSM can be used as a backfill substituting for 
natural standard material (Chen and Chang 2006, Wu and Lin 2011, Sheen et al. 2012). The use of 
residual soil after excavation would provide a great benefit in reducing cost and consumption of 
natural recourses. Moreover, RMSM can be added several percentages of slag depending on 
specific task requirements. Slag in this paper refers to ground-granulated blast furnace slag, which 
is an industrial by-product obtaining from blast furnace in the production of cast iron. Slag is often 
used in concrete as supplementary cementitious material with a partial replacement to Portland 
cement to improve the workability and durability (Bouikni et al. 2009, Muhmood et al. 2009). The 
combined-cementitious application was well-known to provide an important key for both goals of 
economic and environmental protection. 

In this study, an experimental plan was launched on RMSM using combination of river sand 
and on-site surplus soil as fine aggregate; slag was used as a cement substitution for partially 
replacing Portland cement with different levels (e.g., 0%, 10%, 20%, and 30%). Testing 
procedures were conducted on RMSM samples as per ASTM to evaluate its major engineering 
properties, viz. flowability, unconfined compressive strength, and ultrasonic pulse velocity (UPV). 
The findings from the experiment exhibit a potential solution of waste material consumption, 
which is necessary for sustainable development. 

Predicting the compressive strength of RMSM from UPV is main aim of our work. To do this, 
two approaches were considered for analyzing. First, nonlinear regression method (RM) was used 
to build up the empirical UPV–strength relationship based on test data as usual. Second, artificial 
neural network (ANN) using combination of pulse velocity and other factors such as curing time, 
and mixed-composition as input of network was employed to interpolate the strength. Two kinds 
of back-propagation feed-forward neural network and one radial basis function neural network 
were applied to develop ANN models. Finally, the performance of two approaches (RM and ANN) 
in predicting was compared with the experimental results by measuring the statistical parameters. 

 

 

2. Ultrasonic pulse velocity test 
 

Among the available non-destructive test methods, ultrasonic pulse velocity technique is widely 
employed due to its advantages (Kawalramani and Gupta 2006, Trtnik et al. 2006, ASTM C597 
2009). This approach based on measuring travel time over the previous known distance (known as 
velocity) in samples of compressive stress waves (P-waves). The ultrasonic pulse equipment 

consists of transmitter from which ultrasonic are transmitted, a receiver and timer. The quality, 
elastic properties of some materials are closely related to the pulse velocity (ASTM C597 2009). 
The compressive strength known as one of the most important characteristic in concrete is 
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conventionally evaluated from the empirical velocitystrength relationships often given by 
manufactures of device or built up by users. 

 
 
3. Prediction models for compressive strength of RMSM 

  

3.1 Artificial neural networks – FFNN and RBNN 
 
Artificial neural networks, as the name implies, are simulating the functioning of human brain. 

The most important feature of biological brain is its ability to “learn” and “adapt” (Haykin 1999). 
In recent years, there have been many successful applications of artificial neural network in civil 

engineering. Some of them are aimed at predicting engineering properties of concrete material 
(Kawalramani and Gupta 2006, Trtnik et al. 2009, Alshihri and Azmy 2009, Sarıdemir 2009, 
Bilgehan and Turgut 2010), shear capacity of reinforced concrete deep beams (Arafa et al. 2011), 
strength capacity of concrete column (Ö ztekin 2012), behavior of thick plate structures on elastic 
foundation (Ö ztekin and Ozgan 2012), geotechnical engineering (Jaksa and Maier 2008, Gunaydin 
et al. 2010, Yilmaz and Kaynar 2011), and so on. Basic building block of neural network is 

neuron. Generally, a neuron is information processing system unit consisting of connecting link, 
summation with or without bias and activation function. Each neuron, as shown in Fig. 1, receives 
inputs and weights from neurons in previous layer. The weighted sum of inputs is used as 
argument for an activation function to form an output.  

In mathematical terms, the output of a neuron is calculated by using Eqs. (1)-(2) 

  
1

m

j j

j

u w x b


                               (1) 

   y f u                                 (2) 

where,  1,2,...,jx j m is the input signal from previous layer;  1,2,...,jw j m is the weight 
associated with jx ; m is the number of inputs; b is the bias;  f  is the activation (or transfer) 
function, commonly used with the logsig and purelin forms (Shah et al. 2011) 
 

 

 
Fig. 1 Model of network block (Haykin 1999) 
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Fig. 2 Structure of single hidden layer network used in the study 

 

 
 

Fig. 3 Structure of single hidden layer network used in the study 

 

 

Log-sigmoid transfer function (logsig) 

   
1

1 e u
f u





                             (3) 

Linear transfer function (pureline)  

   f u u                                 (4) 

Usually, neurons in network are arranged in layer(s) as shown in Figs. 2-3. An ANN may be 

single or multi-layered. In a multi-layered network, layer(s) between input and output are called 

hidden layer(s). Existence of one or more hidden layers enables the network to extract a higher 
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complexity of approximate function (Haykin 1999). It is known that several types of neural  

networks have been developed to solve a specific problem. Multi-layered perceptron and Radial 

Basis function (RBF) neural networks were reported to be widely used for regression and 

classification (Yilmaz and Kaynar 2011, Wu and Wang 2012). 

 
3.1.1 Feed-forward neural network (FFNN) with back-propagation training 
In the case of multi-layered feed-forward neural network, outputs of each layer become inputs 

of next layer and there is no connection between neuron in the same layer. Back-propagation 

training is a process of calculation and adjustment the weights and biases so that the squared error 

between the output and target values of training set is minimized through number of iterations 

(epochs). The optimization technique is involved in using either the gradient or Jacobian of the 

network performance with respect to the weights (Sazli 2006, Beale et al. 2012). For the feed-

forward network with back-propagation training, a number of learning algorithms have been 

effectively developed (e.g., Gradient Descent, Conjugate Gradient, Resilent back-propagation, 

Levenberg-Marquardt (L-M), etc). The L-M algorithm, belonged to nonlinear least square fitting 

method, is generally known to converge fast and more efficient for small and average size of 

ANNs (Beale et al. 2012). 

 
3.1.2 Radial basis function neural network (RBNN) 
An alternative kind of multi-layered feed-forward neural network is the radial basis function 

neuron network. Broomhead and Lowe (1988) were the first to exploit the use of RBF in the 

design of neural networks (Haykin 1999). Typically, RBNN comprises three layers, which are 

input, output and single hidden layer. In comparison with FFNN, RBNN have some advantages 

such as high training speed and less susceptible to problems with non-stationary inputs due to the 

behavior of the radial basis hidden units (Wu and Wang 2012). The major distinction between 

FFNN and RBNN is located at hidden neurons. FFNN often uses S-shaped sigmoid as activation 

function whereas RBNN widely uses Gaussian (bell-shaped) or other kernels. RBF has two 

parameters called centre and width (or spread), given in Eq. (6). The main characteristic of RBF is 

having its positive peak when Euclidean distance (norm) between input vector and center is zero 

and descends gradually as that norm increases. Furthermore, there are only weights connecting 

vector w between output and hidden layer. The outputs are formed by linear activation function, 

whose argument is weighted sum of all outputs generated from hidden neurons, as seen in Fig. 4. 

For input vector  1 2, ,..., mx x xx , the k
th
 output,  ky x , (k = 1, 2,…, M) is given by Eqs. (5)-(6) 

       0

1

,
H

k kj j k

j

y w w


 x x c                         (5) 

 
2

2

1
-

2, e
j

j


 
 
 

x c

x c                            (6) 

where, kjw and
0kw are the connecting weight from the j

th
 hidden neuron and the bias to the k

th
 

output neuron, respectively;  1,2,...,j j Hc is the center of RBF at hidden neuron j
th
; H and M 

are the number of hidden and output neurons, respectively;2
 is the spread of the Gaussian basis 

function,  , j x c . 
The training process of RBNN involves evaluating the parameters such as weights, centers, and  
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Fig. 4 A typical graph of radial basis neuron network 

 

  
(a) Surplus soil (b) River sand 

Fig. 5 The soil and sand sample for experiment 

 

 

widths. The centers can be either selected randomly from training set or determined by clustering 

or via learning procedure. In this investigation, centers were chosen as the second way. After 

determining the centers, the weights are adjusted based on minimize the square error between the 

output and target values of training set (Yilmaz and Kaynar 2011, Wu and Wang 2012). 

 

3.2 Regression model 
 
From test data results, a single-variable nonlinear expression for prediction of strength (R) from 

velocity (V) were derived by using regression method with a popular form as shown in the Eq. (7) 

(Trtnik et al. 2006) 

eb VR a                                  (7) 

in which a and b are empirical parameters being widely known to vary for each proportion of 

constituents in mixtures; these coefficients will be evaluated from test results. However, due to 

complexities of materials, the ultrasonic waves propagate in structure are highly irregular. 

Therefore, in turn, accuracy of results is limited and using only pulse velocity for evaluating 
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strength may be inefficient (Kawalramani and Gupta 2006, Bilgehan and Turgut 2010). From this 

viewpoint, it is necessary to study the effect of material content in mixture on the relationship 

between pulse velocity and compressive strength. The proposed prediction models of the 

compressive strength will be discussed in the following sections. 

 

 

4. Experimental program 
 

4.1 Materials used and testing procedures 
 

RMSM mixtures in this study contain Portland cement, slag, fine aggregate (the particle sizes 

range from 4.45 mm to 0.075 mm) and mixing with tap water. The fine constituent, which is 

usually an essential component, up to 8085%, was created from three combinations of surplus 

soil and river sand with proportions of 6:4, 5:5, and 4:6. Primary soil was taken from construction 

site after basement excavation. It is a brown in color and clayey-sandy soil; the liquid limit (LL) 

and plastic index (PI) were found to be 22 and 2.3, respectively. In addition, this soil was classified 

as SPSM in according with the USCS system (Das 2007). Meanwhile, the sand was obtained 

from the Laonung River in Taiwan with the fineness modulus (FM) of 2.57. The two primary 

material samples are illustrated in Figs. 5(a)-(b); and the physical properties were given in Table 1. 

Fig. 6 shows the grading curves of the sand and soil and its combinations used in the experiment. 

It is obviously seen that, only the sand meets the ASTM C33 (ASTM C33 2003) requirements of 

fine aggregate for making concrete. Next, Type I Portland cement conformed to the ASTM C150 

(ASTM C150 2002) was employed; and slag, taken from China Steel Corporation, was partially 

replaced to cement as a cement substitution. A number of physical and chemical properties of the 

cement and slag for this work were shown in Table 2.  

On the other hand, three groups of RMSM mixtures called M64, M55, and M46 corresponding 

with three combined ratios of sand: soil of 6:4, 5:5, and 4:6 were produced, respectively. In each 

group mix, the binder content (cement and slag) was fixed at 95 kg/m
3
; the percentage of slag,. 

 

 

 

 
 

Fig. 6 The grading curve for sand, soil, and its combinations 
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(a) Flowability test (b) Ultrasonic pulse velocity test 

Fig. 7 The grading curve for sand, soil, and its combinations 

 

Table 1 Physical properties of river sand and surplus soil 

Fine aggregates Value 

River sand: 

- Gravity (g/cm
3
) 

- Water absorption (%) 

- Fineness modulus (FM) 

Surplus soil (from basement excavation): 

- Gravity (g/cm
3
) 

- Optimum Moisture content (%) 

- Liquid limit (LL) 

- Plastic limit (PL) 

- Plastic index (PI) 

- Fineness modulus (FM) 

 

2.66 

3.50 

2.57 

 

2.69 

12.0 

22.0 

19.7 

2.30 

1.24 

 

Table 2 Chemical and physical properties of cement and slag 

Properties 
Portland cement, Type I 

(Taiwan cement corp.) 

Slag 

(China steel corp.) 

Chemical analysis (%) 

Silicon dioxide, SiO2 

Aluminum oxide, Al2O3 

Ferric oxide, Fe2O3 

Calcium oxide, CaO 

Magnesium oxide, MgO 

Sulfur trioxide, SO3
 

Loss of ignition, LOI 

 

20.87 

4.56 

3.44 

63.14 

2.82 

2.06 

2.30 

 

33.82 

14.11 

0.34 

41.04 

6.96 

0.70 

0.35 

Physical properties 

Fineness, Blaine (cm
2
/g) 

Specific gravity 

 

3851 

3.15 

 

4390 

2.89 

 

 
which was in replacement of cement, varied from 0%, 10%, 20%, to 30%; water-to-binder ratio 

(w/b) and water-to-solid ratio (w/s) was selected at 3.4 and 0.2, respectively after few trials. Table 

3 presents the mix-proportions of RMSM using in the study. 
Flowability test for fresh RMSM mixtures was conducted according to ASTM D6103 (ASTM 

D6103 1997). The flow slump was measured with an opened-end cylinder of 75  150 mm, as 
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shown in Fig. 7(a). Design goal for spread tube slump ranges from 150 mm to 300 mm in 

accordance with many applications. As regards compression test, after casting cylinders of 150 

mm by 300 mm, the specimens were covered with plastic sheets for 48 hours prior demoulding. 

The cylinders were carefully stored in laboratory room for curing under environmental condition 

of 100 % relative humidity and 23°C. When reaching the curing ages of 1-, 7-, 28-, 56-, and 91 

days, the ultrasonic pulse velocity test was carried on the cylinders as per ASTM C597 (ASTM 

C597 2009), as seen in Fig. 7(b). Compressive strength test conformed to ASTM D4832 (ASTM 

D4832 2002) was done thereafter by applying an axial force on these cylindrical specimens to 

failure. 

 
4.2 Testing results 

 
The test data results for cylindrical tube flow of fresh RMSM were shown in Table 3. It is 

observed that all of samples were well achieved the flowability requirement of 150-300 mm. In 

addition, with the water-to-binder ratio being fixed, there is a tendency of improving the flow 

consistency as the percentage of slag replacement increases. 

Table 4 illustrates the results of unconfined compressive strength and associated pulse velocity 

at different curing ages. The 28-day strength was ranged from 0.41 to 0.84 MPa while the 91-day 

strength was slightly higher, varied from 0.45 to 0.90 MPa; and it completely meets the strength 

requirement of re-excavation because of being less than 1.4 MPa (Lachemi et al. 2010). 

Fig. 8(a) displays the strength development of RMSM with group samples of M64, M55, and 

M46. It is evident that strength ratio R(t)/R(28) (comparing to the 28-day strength) was improved 

for long-term period due to hydration of cement and slag. Also, the 91-day strength was observed 

to be approximately 10% higher than that of 28 days. This finding is quite consistent with the 

study published in literature (Chen and Chang 2006).    

In addition, Fig. 8(b) demonstrates the influence of slag replacement level to the compressive 

strength for group M64, M55, as well as M46. It indicates that when the Portland cement was 

replaced by slag, the compressive strength had a significant reduction compared to the control mix 

 

 

Table 3 Mix-proportions, density, and tube flow of RMSM 

Group No. 

 

Sand: soil 

ratio
b 

Cement 

(kg/m
3
) 

Slag 

(kg/m
3
) 

Sand 

(kg/m
3
) 

Density 

(kg/m
3
) 

Tube flow 

(mm) 

M64-0
a
 (control) 

6:4
 

95 0 1000 2093 156 

M64-10
a
 85.5 9.5 1000 2092 164 

M64-20
a 

76 19 1000 2091 205 

M64-30
a 

66.5 28.5 999 2091 223 

M55-0
a
 (control) 

5:5
 

95 0 834 2095 161 

M55-10
a 

85.5 9.5 833 2094 200 

M55-20
a 

76 19 833 2093 220 

M55-30
a 

66.5 28.5 833 2093 245 

M46-0
a
 (control) 

4:6
 

95 0 667 2097 187 

M46-10
a 

85.5 9.5 667 2096 221 

M46-20
a 

76 19 666 2095 257 

M46-30
a 

66.5 28.5 666 2095 270 
a
percentage of slag replacement to cement;

 b
 proportion of sand to soil in mixtures 

Binder, included cement and slag, was fixed at 95 kg/m
3
; water-to-binder ratio (w/b) = 3.4 
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Table 4 Ultrasonic pulse velocity V (m/s) and compressive strength R (MPa) at various ages 

Group 

No. 

Ages (days) 

01 07 28 56 91 

V R V R V R V R V R 

M64-0
 

590 0.226 917 0.579 1044 0.845
* 

1070 0.883 1090 0.903 

M64-10 550 0.187 830 0.493 967 0.768 982 0.806 1005 0.823 

M64-20
 

470 0.169
* 

800 0.447 940 0.659 950 0.687 960 0.716 

M64-30
 

540 0.151 860 0.393 986 0.590 995 0.610 1032 0.649
* 

M55-0
 

490 0.215
* 

790 0.494 930 0.732 947 0.772 957 0.801 

M55-10
 

430 0.177
* 

750 0.440
* 

877 0.671 899 0.718 905 0.754 

M55-20
 

520 0.159 796 0.413 917 0.640 943 0.667 963 0.678 

M55-30
 

440 0.147 753 0.366 897 0.585 917 0.616 927 0.627 

M46-0
 

400 0.188 720 0.458 845 0.611 870 0.621
* 

880 0.641
* 

M46-10
 

490 0.160 767 0.413 888 0.533 901 0.548 926 0.578 

M46-20
 

390 0.152 722 0.377 861 0.471 878 0.493
* 

890 0.524 

M46-30
 

327 0.140 692 0.337 818 0.413 842 0.423 855 0.446 

Note: The series of 9 data points in testing set is marked with asterisks (*); the series of 9 data points in 

alidation set is marked with bold numbers. 

 

  

(a) Strength development with time 

(comparing to the 28-day strength) 

(b) The 91-day relative compressive strength 

(comparing to the control) 

Fig. 8 Strength development and the effect of slag replacement ratio 

 

 

(without slag) due to slow pozzolanic reaction of slag. For instance, at slag substitution level of 

30%, the 91-day strength was found to achieve about 72%, 78%, and 70% of the control for group 

M64, M55, and M46, respectively. This behavior is expected and known in advance because slag 

has been reported to be low in the CaO/SiO2 ratio and not as good as Portland cement in 

contribution of strength development. Moreover, test data in Table 4 points out that rising up the 

soil constituent in mixture would contribute to a remarkable strength fall. For example, as the 

sandsoil proportion varies from 6:4 to 4:6, the strength had a dramatic drop of 31% comparing to 

the control on averages. 
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5. Data analyses 

 

5.1 Proposed neural networks 
 

In this paper, the FFNN with one and two hidden layers (namely ANN-I, ANN-II, respectively) 

and RBNN (ANN-III) were developed for predicting the strength, as shown in Figs. 2-3. Three of 

these ANN topologies have the same input and output layer; the difference is in the hidden layer. 

The input layer has six neurons, which denote the UPV, age and proportions in mix design (cement, 

slag, sand, and soil); the output layer has only one neuron representing predicted strength 

development at the ages from one to 91 days of curing. Mathematically, the inputoutput mapping 

can be generally expressed as Eq. (8) 

  R = F (age, UPV, cement, slag, sand, soil) (8) 

There were 60 experimental data points (inputoutput pairs) in total, as shown in Table 4. In 
the case of ANN implementation (FFNN and RBNN), the data set (Nall = 60) was first scaled in 
range of [-1; 1] for accelerating training speed. Next, it was randomly divided into three subsets 
such as training set (70% of total, corresponding to Ntrain = 42 data points), testing set (15% of total, 
corresponding to Ntest = 9 data points), and validation set (15% of total, Nval = 9 data points), as 
seen in Table 4. The errors derived from validation set were monitored during training process for 
preventing the over-training phenomenon.  

The sigmoid function (logsig) was used as activation in hidden layer(s), whereas linear function 
(pureline) was used for output layer when FFNN was implemented. In this work, neural network  
Toolbox in Matlab (2010) was employed for analysis. In configuration of ANNs, it is important to 
determine logically the number of hidden neurons and there is no general rule (Trtnik et al. 2006, 
Alshihri and Azmy 2009). This number must be low enough to ensure generalization. Too many 
hidden neurons would lead to over-fitting. Previous researchers have proposed some experiences 
to select the number of neurons in hidden layers (i.e., upper bound for required number of hidden 
neurons should be one greater than twice the number of input units; the ratio of 3:1 between 
number of neurons in first and second hidden layer (Alshihri and Azmy 2009)). However, these 
rules do not guarantee the optimal solution for all ANNs. Consequently, the number of neurons in 
hidden layer should be decided after few trials.  

To examine the performance of each model, which one is better closed to the experimental 
results, following three indices were employed to evaluate as Eqs. (9-11) (Samarasinghe 2007, 
Bilgehan 2010) 

Root mean square error (RMSE) 

 
2

1

1 N

i i

i

RMSE t z
N 

 
                            (9) 

Mean absolute percentage error (MAPE) 
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(%) 100

N
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Fig. 9 Performance of ANN-I with difference number of hidden neurons 

 

Table 5 The information of ANN parameters 

No. Network parameters 
FFNN RBNN 

ANN-I ANN-II ANN-III 

1.  Number of input neurons 6 6 6 

2.  Number of output neurons 1 1 1 

3.  Number of 1
st
 hidden neurons 5 3 27 

4.  Number of 2
nd

 hidden neurons - 2 - 

5.  

Activation function used: 

+ Hidden layer 

+ Output layer 

 

Sigmoid 

Pureline 

 

Sigmoid 

Pureline 

 

Gaussian 

Linear 

6.  Training algorithm 
L-M 

(trainlm) 

L-M 

(trainlm) 

Radial basis 

(newrb) 

7.  Mean square error (mse) 0.0013 0.0007 0.001 

8.  Epochs 7 13 22 

 

   

The coefficient of determination (R
2
) 

  
 
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


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                             (11) 

here ti and zi denote actual (or target) and predicting (or output) value, respectively; t is the average 

value of target; N is the number of data points.  

It is noticed that, the value of R
2
 is near 1.0, and the value of MAPE, RMSE are as small as zero, 

there will be a better prediction and vice versa. For ANN-I, as shown in Fig. 2, the number of 

hidden neurons were varied from low to high. With specific number of hidden neurons, the 

network was trained with several times and its performance was evaluated through averaging of 
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statistic parameters (RMSE and R
2
). Fig. 9 displays the variation of RMSE and R

2
 versus different 

hidden neuron numbers. It is indicated that single hidden layer with five neurons is the reasonable 

solution for ANN-I due to optimal value of RMSE (min) and R
2
 (max). With ANN-II, fixed with 

five hidden neurons, scheme being two hidden layers of three and two neurons was proposed to 

analyze, as illustrated in Fig. 3. For ANN-III, the number of hidden neurons was determined 

during training process. The procedure was repeatedly done by adding to network one hidden 

neuron at a time until the mean square error falls beneath an error goal or maximum number 

neuron has been achieved (Beale et al. 2012). The goal error for training ANN-III was set 

approximation to the mean square error value in the ANN-I and ANN-II. Summary of parameters 

of the trained-ANNs were tabulated in Table 5. 
 

5.2 Regression model (RM) 
 

For strength evaluation, the empirical R-V correlation had been built up by means of single 

regression analysis. Least square error for curve fitting was employed to generate the equation of 

correlation. The test results (51 data points), excluding testing set (9 data points), as shown in 

Table 4, were employed to generate the exponential formula as Eq. (12). And Fig. 10 shows the 

graph of interpolated curve and all data points from the experiment.  

  
0.00280.0477 e VR                               (12) 

From the expression and experimental data, we know it is a nonlinear relationship. 

 

 
Table 6 Statistic parameters for RM, ANN-I, ANN-II and ANN-III model 

Model 
Training data Testing data 

RMSE (MPa) MAPE (%) R
2
 RMSE (MPa) MAPE (%) R

2
 

RM 0.0466 7.0387 0.9526 0.0387 6.8262 0.9712 

ANN-I 0.0224 3.1612 0.9889 0.0404 6.4309 0.9687 

ANN-II 0.0265 4.2038 0.9844 0.0419 7.1190 0.9661 

ANN-III 0.0344 5.8523 0.9741 0.0460 7.9515 0.9593 

 

 
Fig. 10 The pulse velocity–strength relationship 
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(a) Mean square error 
(b) Cross-correlation of predicted and actual 

strength 

Fig. 11 The performance of ANN-I 

 

  

(a) Mean square error 
(b)  Cross-correlation of predicted and 

actual strength 

Fig. 12 The performance of ANN-II 

 

 
Fig. 13 Cross-correlation of predicted and actual strength for ANN-III 
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Fig. 14 The predicted strength error for different models 

 

 
6. Results and discussions 

 

The development of compressive strength, which was predicted by ANNs at the different ages, 

were shown in Figs. 11-13 in comparison with the measured strength. Fig. 11(a) and 12(a) display 

the performance (mean square error) of ANN-I and ANN-II, respectively. And, no overtraining 

was observed for both the models. Figs. 11(b), 12(b), and 13 graphically illustrate the cross-

correlation of the predicted and observed strength and all show good predicted results. This is 

evidenced by the fact that the points (their coordinates are measured and predicted strength) were 

located very close to the bisector passing through the origin (the solid line). The degree of 

correlation between predicted versus actual values was estimated by R
2
, RMSE, and MAPE; and 

these parameters were presented in Table 6.              

Accordingly, it is believed that all the schemes are well reasonable for strength prediction due 

to excellence in the error estimation parameters for both of training and testing set. Therefore, the 

proposed ANN models have a well-evaluated capacity. As seen in Table 6, for the ANN-I, the 

values of RMSE, MAPE were 0.0404 MPa, and 6.4309%, respectively, and these parameters were 

found to be slightly lower than those of ANN-II, ANN-III for testing data. In addition, the 

coefficient of determination (R
2
) was observed to be highest for RM (0.9712) and the followings 

were ANN-I (0.9687), ANN-II (0.9661), and ANN-III (0.9593). Meanwhile, as regards the R
2
, the 

aforementioned sequence was ANN-I, ANN-II, ANN-III, and RM for training data. Consequently, 

among the three ANN frameworks, the ANN-I would be the best model in predicting the 

compressive strength. Also, the outcome of ANN-I could be comparable with the RM when the 

testing data was examined, and it is significantly better in accuracy when the training data was 

investigated due to being higher in R
2
 (0.9889 compared to 0.9526). In summary, it implies that 

ANN-I model is greatly acceptable for determining the strength of RMSM specimens. 

Moreover, to evaluate the efficiency and precision of these prediction models, predicted 

strength errors defined as percentage error between the predicted and experimental strength of all 

models were plotted in Fig. 14. It can be seen that, almost the predicted strength interpolated from 

ANN approach is well approximate to the actual values for error estimation within ± 10 %, and 

there are few values fallen out of this range. In particular, the ANN-I has only two undesirable 

points, whereas model RM has 14/60 unexpected points because the performance of RM is not as 

good as of ANNs for training data. 
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7. Conclusions 
 

In order to evaluate the compressive strength development of RMSM at the different ages, e.g., 

1-, 7-, 28-, 56-, and 91 days, an experimental program was conducted for the study. The 

conventional method of UPV and compressive test on the same cylinders of 150 mm by 300 mm 

were employed for investigation. Then we considered two approaches for prediction of 

compressive strength from UPV and/or other parameters: RM and ANN. In RM, an empirical 

exponential UPV–compressive strength correlation for RMSM based on testing results was built-

up and represented. On the other hand, artificial neural networks with three schemes were 

successfully proposed for prediction, namely ANN-I, ANN-II and ANN-III. In the neural network 

models, the first two are FFNN and the last is RBNN. In ANN-I, single hidden layer with five 

neurons was chosen based on number of hidden neuron parametric study, whereas ANN-II with the 

same hidden neuron as ANN-I, but divided in to two hidden layers of three and two neurons for 

the first and second hidden layer, respectively. Radial basis neural network was applied to develop 

the ANN-III. Results generated from the three ANN topologies are proved to be highly accurate. 

The strength from RM and ANN prediction were made a comparison with each other by 

measuring the error estimation parameters such as RMSE, MAPE, and R
2
 as well. As a result, the 

compression strength predicted from the well-trained ANN models is closer to the actual than RM 

model interpolated from UPV only. In addition, results on this investigation show that among the 

three of ANN topologies, ANN-I give the best performance for interpolation because it has the 

lowest RMSE and MAPE and the highest R
2
 simultaneously. In fact, almost the strength provided 

from ANN-I have the errors, which do not exceed 10 % comparing to the actual values. 
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