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Abstract.  Numerous studies have been conducted to understand the shear behavior of reinforced concrete 
(RC) beams since it is a complex phenomenon. The diagonal cracking strength of a RC beam is critical since 
it is essential for determining the minimum amount of stirrups and the contribution of concrete to the shear 
strength of the beam. Most of the existing equations predicting the diagonal cracking strength of RC beams 
are based on experimental data. A powerful computational tool for analyzing experimental data is an 
artificial neural network (ANN). Its advantage over conventional methods for empirical modeling is that it 
does not require any functional form and it can be easily updated whenever additional data is available. An 
ANN model was developed for predicting the diagonal cracking strength of RC slender beams without 
stirrups. It is shown that the performance of the ANN model over the experimental data considered in this 
study is better than the performances of six design code equations and twelve equations proposed by various 
researchers. In addition, a parametric study was conducted to study the effects of various parameters on the 
diagonal cracking strength of RC slender beams without stirrups upon verifying the model. 
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1. Introduction 
 

Shear behavior of reinforced concrete (RC) beams has been studied extensively since the 

beginning of the last century. It has been a common practice to focus on RC beams without 

stirrups to acquire a better understanding of shear behavior of RC beams. A critical property of a 

RC beam is its diagonal cracking strength, which is essential for determining the contribution of 

concrete to the shear strength of the beam and the minimum amount of stirrups necessary for 

providing a shear strength exceeding diagonal cracking stress. The diagonal cracking strength of 

RC beams without stirrups is of interest to this research. The beams with the ratio of shear span (a) 

to effective depth (d) greater than 2.5, referred to as slender beams, are considered. 

A review of approaches and related theories for designing RC members against shear is given 

by Joint ACI-ASCE Committee 445 (1998). Various equations, most of which are based on 

experimental data, have been derived to predict the diagonal cracking strength of RC slender 

                                          

Corresponding author, Ph.D., E-mail: secerkeskin@gmail.com 
aAssistant Professor, E-mail: gurayarslan@gmail.com 



 

 

 

 

 

 

Riza S.O. Keskin and Guray Arslan 

beams without stirrups. A common approach used for empirical modeling is to conduct a 

regression analysis on experimental data. A regression analysis requires a functional form to be 

assumed a priori. The analysis delivers the unknown coefficients in the functional form. Therefore, 

the accuracy of the resulting equation depends strongly on the functional form. However, it is not 

easy to derive a functional form describing a complex phenomenon such as the shear behavior of 

RC beams. With increasing computational power, alternative methods have been developed for 

empirical modeling. A powerful computational tool is an artificial neural network (ANN), which is 

able to establish the relationships between the parameters involved without requiring any 

functional form. An ANN model is developed in two stages: training and testing. First, the network 

is trained through a learning algorithm, where the relationships between the parameters involved 

are determined using experimental data. Second, the model is tested with the data which is never 

presented to the network. Unlike conventional empirical models, an ANN model can be easily 

improved whenever additional experimental data is provided. The shortcoming of an ANN model 

is its inability to deliver an explicit expression of solution. 

A number of researchers have studied the shear behavior of RC slender beams without stirrups 

using ANNs. Oreta (2004) developed an ANN model to predict the ultimate shear strength of RC 

slender beams without stirrups, and studied the influence of various parameters on the shear 

strength. Cladera and Mari (2004a) and El-Chabib et al. (2005) developed ANN models for 

predicting the ultimate shear strength of normal and high-strength RC slender beams without 

stirrups, and conducted sensitivity analyses to study the effects of design parameters on the shear 

strength. Jung and Kim (2008) developed two ANN models for RC slender beams without stirrups: 

one of which estimates shear strength and the other one provides a conservative estimate for 

design purpose. The ANN models developed by Oreta (2004), Cladera and Mari (2004a), El-

Chabib et al. (2005) and Jung and Kim (2008) exhibit a better performance over the experimental 

data considered for developing the models than the equations of several design codes and 

researchers do. Also, several researches were conducted to develop ANN models focusing on RC 

beams with stirrups (Cladera and Mari 2004b, Mansour et al. 2004, El-Chabib et al. 2006, Abdalla 

et al. 2007), deep RC beams (Goh 1995, Sanad and Saka 2001) and RC beams strengthened with 

fiber reinforced polymers (Perera et al. 2010, Tanarslan et al. 2012). 

There are also other computational techniques used for developing prediction models. Cevik 

and Ozturk (2009) and Choi et al. (2009) developed models based on fuzzy set theory to predict 

the shear strength of RC beams without stirrups. Amani and Moeini (2012) compared an ANN 

model and a model based on fuzzy set theory, both of which were developed for predicting the 

shear strength of RC beams with stirrups. Ashour et al. (2003) developed an empirical model to 

predict the shear strength of RC deep beams by using genetic programming and studied the effects 

of various parameters on the shear strength of RC deep beams using this model. Perez et al. (2010, 

2012) developed a genetic programming algorithm for adjusting existing expressions and applied 

the algorithm to the shear design formulation for RC beams without stirrups given by Eurocode 2 

(2004). Gandomi et al. (2013) used a genetic programming technique to develop a model for 

predicting the shear strength of RC deep beams. 

In this study, an ANN model was developed for predicting the diagonal cracking strength of RC 

slender beams without stirrups. The model was compared with six design code equations and 

twelve equations proposed by various researchers. Once the model was verified, a parametric 

study was conducted to study the effects of various parameters on the diagonal cracking strength 

of RC slender beams without stirrups. 
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2. Diagonal cracking strength 
 

The shear behavior of RC beams without stirrups is generally studied by considering a simply 

supported RC beam with a rectangular cross-section having tensile reinforcement, loaded by either 

two symmetrically located concentrated loads or a concentrated load at its mid-span. The distance 

between the support and the load is referred to as shear span. Experimental results show that the 

failure mode of a RC beam without stirrups is determined by the ratio of its shear span to its 

effective depth (Kani 1964). 

RC slender beams (       ) without stirrups failing in shear undergo diagonal cracking 

prior to failure. A typical diagonal cracking formation in a simply supported RC slender beam with 

two symmetrically located concentrated loads is as follows. At early stages of loading, flexural 

cracks perpendicular to the beam axis occur. As the load is increased, flexural cracks within the 

shear span progress vertically towards the neutral axis, and then some of these cracks are inclined 

towards the load (perpendicular to the principal tensile stress axis) while progressing upwards. At 

a certain instant, one of these inclined cracks progresses suddenly downwards to the level of 

longitudinal reinforcement. The inclined crack extending from the level of longitudinal 

reinforcement to the compression zone is called diagonal crack. The formation of the diagonal 

crack leads to a stress redistribution, where the tensile stress in the longitudinal reinforcement 

increases significantly. With a further increase in the load, the beam fails suddenly with the 

diagonal crack extending into the compression zone. Experimental studies (Moody et al. 1954, 

Cossio and Siess 1960, Taylor 1960, Van den Berg 1962, Bresler and Scordelis 1963, Mathey and 

Watstein 1963, Taylor and Brewer 1963, Krefeld and Thurston 1966, Mattock 1969, Mphonde and 

Frantz 1984, Ahmad et al. 1986, Elzanaty et al. 1986, Xie et al. 1994, Kim et al. 1999, Shin et al. 

1999, Pendyala and Mendis 2000, Cladera and Mari 2005, Shah and Ahmad 2007, Hamrat et al. 

2010, Sneed and Ramirez 2010, Garip 2011, Slowik and Nowicki 2012, Slowik and Smarzewski 

2012) have identified concrete compressive strength (  ), longitudinal reinforcement ratio ( ), 

shear span-to-depth ratio and effective depth as the parameters affecting the diagonal cracking 

strength. 

The ratio of diagonal cracking strength to ultimate strength is variable, depending on beam size 

and other factors (Bazant and Kazemi 1991). The failure in a slender beam occurs immediately 

after diagonal cracking (Rebeiz 1999). It is to be noted that the observed values of diagonal 

cracking load are sensitive to the observers' judgment since it is not easy to define the diagonal 

cracking load due to the gradual development of inclined cracks (Bazant and Kim 1984, Elzanaty 

et al. 1986). Mphonde and Frantz (1984) defined the diagonal cracking strength as the load when 

the critical crack becomes inclined and crosses mid-depth of the beam. 

In general, the current design practice relies on diagonal cracking. A minimum amount of 

stirrups is required in order to ensure that the post-cracking shear strength is greater than the 

diagonal cracking stress. In addition, the contributions of concrete and stirrups to the shear 

strength are assumed to be independent, where the contribution of concrete is defined in terms of 

the diagonal cracking strength. Several design code equations predicting the shear strength of RC 

beams without stirrups are given below. ACI 318 (2011) provides two empirical equations -a 

detailed one and a simplified one- as 

                
   

  
                                (1) 
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                                                                                   (2) 

respectively, where    is the external factored shear load at the section considered,    is the 

corresponding bending moment and        shall not be greater than 1.0. CEB-FIP Model Code 

(2010) presents an equation for RC beams without stirrups having compressive concrete strength 

and yield strength of longitudinal reinforcement less than 64 MPa and 500 MPa, respectively, as 

             
 

 
                                                              (3) 

where                         and   is the internal moment arm which can be taken as 

    . The previous version, CEB-FIP Model Code (1993), defines the diagonal cracking strength 

as 

          
 

   
 
   

    
   

 
         

                                     (4) 

where   is in mm. The equation of Eurocode 2 (2004) is 

                    
                                                        (5) 

where                (  is in mm) and       . The equation of TS 500 (2000) is 

similar to the simplified equation of ACI 318 (2011), such that 

                                                                                  (6) 

A number of equations have been derived empirically and theoretically for predicting the shear 

strength of RC beams without stirrups by various researchers. The equations considered in this 

study are as follows. Zsutty (1971) derived an equation as 

           
 

 
 
   

for 
  

  
                                                              (7) 

 

by using a multiple regression analysis. The equation obtained empirically by Okamura and Higai 

(1980) is 

       
        

   

    
      

    

   
 , (  is in m).                    (8) 

Bazant and Sun (1987) proposed an equation based on non-linear fractures mechanics as 

          
          

 

      
  

          

           
 ,               (9) 

where    is the maximum aggregate size in mm. Kim and Park (1996) presented an equation 

based on basic shear transfer mechanisms, a modified version of Bazant's size effect law and 

experimental data as 
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                       (10) 

where              for            ,     for         and   is in mm. The 

equation of Collins and Kuchma (1999) resulting from an enhancement of the modified 

compression field theory is 

   
   

      
    
     

 
   ,        , (  and    are in mm).        (11) 

Rebeiz (1999) employed a multiple regression analysis to derive an equation as 

            
 

 
                                   (12) 

where        for         and        for        . Khuntia and Stojadinovic (2001) 

derived an equation based on basic principles of mechanics and experimental data as 

             
   

  
 
    

, 
  

   
 

 

 
                                             (13) 

Zararis and Papadakis (2001) presented an equation based on a theory assuming that diagonal 

tension failure results from a type of splitting of concrete occurring in a certain region of the shear 

span as 

            
 

 
  

 

 
                             (14) 

where   is the neutral axis depth,             
    is the splitting tensile strength of concrete, 

                                  and                      (  is in meters). 

Arslan (2012) proposed an equation based on the principal shear strength carried in the 

compression zone as 

         
    

 

 
           

     
 

   
 
    

 
   

 
 
    

                                       (15) 

where         and                                  . In Eqs. (1)-(15),    is in 

MPa, and    (or    ) and    are the diagonal cracking strength and the ultimate shear strength 

of RC beams without stirrups, respectively. 

Perez et al. (2012) applied a genetic programming algorithm to adjust the shear design 

formulation for RC beams without stirrups given by Eurocode 2 (2004). Three of the adjusted 

equations labeled as 7A1, 8H1 and 8I1 are considered in this study. These are given as 
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respectively. 

 
 
3. Artificial neural networks 
 

ANNs were inspired by the way in which a human brain organizes and operates its structural 

constituents, known as biological neurons (Haykin 1998). Accordingly, the fundamental 

processing unit of an ANN is referred to as neuron, which receives input from neighboring 

neuron(s), processes data and sends output to a neighboring neuron. A typical neuron receiving 

multiple input elements is shown in Fig. 1, where   is the number of input elements,   , 
       , is the  -th input element,   ,           , is the weight of  -th input element,   is 

the bias that can be viewed as a weight of a constant input of 1,   is the net input,      is the 

transfer function, which must be differentiable, and   is the output. The output of a typical 

neuron with the most common net input function that is the summation of weighted inputs with the 

bias is calculated as 

                 
 
                                                       (19) 

Neurons can be grouped into layers. The most common type of ANNs used in engineering 

applications is multi-layer feed forward network, which consists of an input layer, one or more 

hidden layers and an output layer. The input layer is responsible for receiving input elements from 

outside of the network and conveys this information to a hidden layer. The hidden layer processes 

the data received from the input layer, and passes the processed data to either another hidden layer 

or the output layer, which produces the final output. Multi-layer feedforward networks are 

adaptive data driven systems developed in two stages: training and testing. In the training stage, 

input data with known output is provided to the network. The main objective is to tune weights  

 

 

 
Fig. 1 Neuron with multiple input elements 

 f 

 

     

     

     

   

   

   

    

702



 

 

 

 

 

 

Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs 

and biases in such a way that the trained network is capable of producing reliable predictions over 

the data which is never presented to the network. The most common learning algorithm used for 

training ANNs is error back-propagation algorithm. Once the network is trained, its performance is 

evaluated in the testing stage. 

 
3.1 Experimental data 
 
The performance of an ANN depends strongly on the data provided to the network in the 

training stage. The database needs to be sufficiently large, accurate and evenly distributed so that 

the network can extract the hidden relationships between the parameters involved. A database of 

diagonal cracking strength was compiled by scanning experimental studies on RC slender beams 

without stirrups (Moody et al. 1954, Cossio and Siess 1960, Taylor 1960, Van den Berg 1962, 

Bresler and Scordelis 1963, Mathey and Watstein 1963, Taylor and Brewer 1963, Krefeld and 

Thurston 1966, Mattock 1969, Mphonde and Frantz 1984, Ahmad et al. 1986, Elzanaty et al. 1986, 

Xie et al. 1994, Kim et al. 1999, Shin et al. 1999, Pendyala and Mendis 2000, Cladera and Mari 

2005, Shah and Ahmad 2007, Hamrat et al. 2010, Sneed and Ramirez 2010, Garip 2011, Slowik 

and Nowicki 2012, Slowik and Smarzewski 2012). Thirteen beams were excluded from the 

database since they cause large gaps in the distributions of effective depth, concrete compressive 

strength and longitudinal reinforcement ratio. A total of 271 simply supported beams loaded by 

either two symmetrically located concentrated loads or a concentrated load at mid-span were 

included in the database. The ranges of parameters stored in the database are 12.2    87 (MPa), 

0.33%   5.03%, 2.50     8.52, 133   530 (mm) and 0.41     2.43 (MPa). 

 

3.2 ANN model 
 

A multi-layer feedforward network was developed using MATLAB Neural Network Toolbox. 

The network consists of an input layer of four neurons receiving concrete compressive strength, 

longitudinal reinforcement ratio, shear span-to-depth ratio and effective depth as input parameters, 

a hidden layer of five neurons and an output layer of a single neuron delivering an estimate of 

diagonal cracking strength. The network topology is shown in Fig. 2 schematically. 

All of the neurons in the network use the summation of weighted inputs with the bias as the net 

input function. The transfer functions of hidden and output layers are log-sigmoid and linear 

transfer functions, respectively (Fig. 3). The input parameters were normalized before they were 

presented to the network to prevent the log-sigmoid function from becoming saturated which 

slows down the network training. The diagonal cracking strength of each beam was also 

normalized so that the network output fell into the normalized range and then it was converted into 

the corresponding diagonal cracking strength. 

A common issue with training ANNs is overfitting, which results in a very small error on the 

training set but a large error on a set of new data. In other words, the network memorizes the 

training data but fails to generalize to new data. MATLAB Neural Network Toolbox offers two 

methods for improving generalization: Bayesian regularization and early stopping. The details of 

Bayesian regularization can be found elsewhere (Foresee and Hagan 1997). Early stopping 

technique was used for training the ANN model. It requires the experimental database to be 

divided into three subsets: training, validation and test sets. The training set is used to optimize the 

network performance by tuning the network weights and biases according to the Levenberg-

Marquardt back-propagation algorithm (Hagan et al. 1996). The performance function is the mean  
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Fig. 2 The architecture of the developed ANN model 

 

  
(a) Log-sigmoid transfer function (b) Linear transfer function 

Fig. 3Transfer functions 

 

 

squared error (MSE) between the network outputs    and the corresponding experimental values 

  , that is, 

   
 

 
        

  
                                                                     (20) 

where N is the number of beams in the set. The validation set is used to prevent the network from 

overfitting the data. The errors on the training and validation sets are monitored simultaneously 

and the training process is stopped when the validation set error starts to increase. The test set is 

not involved in the training process. It is used for comparing various ANN models. Accordingly, 

the database was divided into training, validation and test sets having 217, 27 and 27 beams, 

respectively, where the beams were distributed randomly. 
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4. Results and discussion 
 

The mean squared errors on the training, validation and test sets monitored during the training 

process are plotted in Fig. 4. The optimum solution was obtained at the sixty-first epoch after 

which the validation set error failed to decrease for five successive epochs. The mean squared 

errors on the training, validation and test sets are 0.023, 0.013 and 0.029, respectively, at the sixty-

first epoch. A possible sign of overfitting is a significant increase in the test error before the error 

on the validation set increases. No such behavior is observed in Fig. 4. ANN models resulting in 

much smaller errors were developed, however they were rejected due to overfitting issues. It is not 

always possible to capture overfitting from the performance curves, but it can be detected through 

a parametric study. A network which seems to be well trained at first may produce weird 

relationships, e.g. largely oscillating curves, in the parametric study. 

The ANN model outputs (       ) against the experimental results (       ) for the training, 

validation and test sets, and the whole database are plotted in Fig. 5. The correlation coefficients 

(R) are 0.907, 0.910, 0.898 and 0.906, respectively. The statistics of the ratio of the ANN model 

outputs to the experimental values,                 are given in Table 1. The mean, standard 

deviation (SD) and coefficient of variation (COV) of                 for the whole database are 

1.02, 0.14 and 0.14, respectively. A good agreement between the experimental data and the ANN 

model outputs is observed through Fig. 5 and Table 1. 

 

 
Table 1 Statistics of                 

Set Min. Max. Mean SD COV 

Training 0.74 1.85 1.02 0.15 0.14 

Validation 0.83 1.38 1.01 0.13 0.13 

Test 0.78 1.41 1.01 0.13 0.13 

All 0.74 1.85 1.02 0.14 0.14 

 

 
Fig. 4 Performance of the developed ANN model 
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(a) Training set (b) Validation set 

  
(c) Test set (d) Whole database 

Fig. 5         vs.         

 
 
4.1 Comparison with the existing equations 
 
Six design code equations (ACI 318 2011, CEB-FIP Model Code 2010, CEB-FIP Model Code 

1993, Eurocode 2 2004, TS 500 2000) and twelve equations proposed by various researchers 

(Zsutty 1971, Okamura and Higai 1980, Bazant and Sun 1987, Kim and Park 1996, Collins and 

Kuchma 1999, Rebeiz 1999, Khuntia and Stojadinovic 2001, Zararis and Papadakis 2001, Arslan 

2012, Perez et al. 2012) were applied to the database to compare the performance of the ANN 

model with the performances of those equations. The predicted values (   ) from Eqs. (1)-(15) and 

Eqs. (16)-(18) against the experimental results are plotted in Figs. 6 and 7, respectively. Table 2 

presents the statistics of the ratios of the predicted values from Eqs. (1)-(18) to the experimental 

values,            . 

The equations of ACI 318 (2011), CEB-FIP Model Code (2010) and CEB-FIP Model Code 

(1993) underestimate the diagonal cracking strength of most of the beams in the database. On the 

other hand, the equations of Eurocode 2 (2004) and TS 500 (2000) estimate the diagonal cracking 

strength greater than the experimental values for most of the considered beams. The correlation 

coefficients between the experimental values and the predictions by the detailed and simplified 

equations of ACI 318 (2011), and the equations of CEB-FIP Model Code (2010), CEB-FIP Model  
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(a) ACI 318 (2011) (Detailed eq.) (b) ACI 318 (2011) (Simplified eq.) (c) CEB-FIP Model Code (2010) 

   
(d) CEB-FIP Model Code (1993) (e) Eurocode 2 (2004) (f) TS 500 (2000) 

   
(g) Zsutty (1971) (h) Okamura and Higai (1980) (i) Bazant and Sun (1987) 

   
(j) Kim and Park (1996) (k) Collins and Kuchma (1999) (l) Rebeiz (1999) 

   
(m) Khuntia and Stojadinovic (2001) (n) Zararis and Papadakis (2001) (o) Arslan (2012) 

Fig. 6    from Eqs. (1)-(15) vs.         
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(a) Perez et al. (2012) (7A1) (b) Perez et al. (2012) (8H1) (c) Perez et al. (2012) (8I1) 

Fig. 7    from Eqs. (16)-(18) vs.         

 

Table 2 Statistics of             

Equation Min. Max. Mean SD COV 

Eq. (1) (ACI 318 2011) 0.56 2.96 0.91 0.29 0.32 

Eq. (2) (ACI 318 2011) 0.48 3.12 0.87 0.33 0.38 

Eq. (3) (CEB-FIP Model Code 2010) 0.38 2.48 0.68 0.25 0.37 

Eq. (4) (CEB-FIP Model Code 1993) 0.64 1.89 0.92 0.17 0.18 

Eq. (5) (Eurocode 2 2004) 0.81 2.20 1.21 0.21 0.17 

Eq. (6) (TS 500 2000) 0.65 4.17 1.17 0.44 0.38 

Eq. (7) (Zsutty 1971) 0.72 2.12 1.08 0.21 0.19 

Eq. (8) (Okamura and Higai 1980) 0.79 2.31 1.11 0.20 0.18 

Eq. (9) (Bazant and Sun 1987) 0.72 2.42 1.14 0.23 0.20 

Eq. (10) (Kim and Park 1996) 0.75 2.69 1.16 0.25 0.22 

Eq. (11) (Collins and Kuchma 1999) 0.48 3.12 0.87 0.32 0.37 

Eq. (12) (Rebeiz 1999) 0.67 1.91 0.99 0.19 0.19 

Eq. (13) (Khuntia and Stojadinovic 2001) 0.57 1.72 0.91 0.16 0.18 

Eq. (14) (Zararis and Papadakis 2001) 0.84 2.30 1.17 0.19 0.16 

Eq. (15) (Arslan 2012) 0.71 1.84 0.94 0.15 0.16 

Eq. (16) (Perez et al. 2012) 0.50 2.41 0.85 0.18 0.21 

Eq. (17) (Perez et al. 2012) 0.71 1.94 0.99 0.16 0.17 

Eq. (18) (Perez et al. 2012) 0.68 1.94 0.98 0.16 0.16 

 
Table 3 Correlation coefficients and errors for the ANN model and the considered equations 

Model/Equation R MSE NMSE MAPE 

The ANN model 0.906 0.022 0.179 0.096 

Eq. (1) (ACI 318 2011) 0.643 0.101 0.812 0.236 

Eq. (2) (ACI 318 2011) 0.502 0.145 1.168 0.277 

Eq. (3) (CEB-FIP Model Code 2010) 0.507 0.282 2.269 0.375 

Eq. (4) (CEB-FIP Model Code 1993) 0.873 0.044 0.357 0.150 

Eq. (5) (Eurocode 2 2004) 0.860 0.078 0.629 0.218 

Eq. (6) (TS 500 2000) 0.502 0.132 1.060 0.263 

Eq. (7) (Zsutty 1971) 0.849 0.041 0.331 0.148 

Eq. (8) (Okamura and Higai 1980) 0.875 0.044 0.357 0.151 
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Table 3 Continued 

Eq. (9) (Bazant and Sun 1987) 0.864 0.086 0.688 0.191 

Eq. (10) (Kim and Park 1996) 0.836 0.099 0.793 0.193 

Eq. (11) (Collins and Kuchma 1999) 0.504 0.147 1.182 0.276 

Eq. (12) (Rebeiz 1999) 0.852 0.036 0.291 0.137 

Eq. (13) (Khuntia and Stojadinovic 2001) 0.839 0.065 0.522 0.152 

Eq. (14) (Zararis and Papadakis 2001) 0.889 0.063 0.503 0.186 

Eq. (15) (Arslan 2012) 0.891 0.035 0.278 0.124 

Eq. (16) (Perez et al. 2012) 0.674 0.113 0.908 0.188 

Eq. (17) (Perez et al. 2012) 0.888 0.028 0.225 0.116 

Eq. (18) (Perez et al. 2012) 0.892 0.027 0.220 0.112 

 

 
Code (1993), Eurocode 2 (2004) and TS 500 (2000) are 0.643, 0.502, 0.507, 0.873, 0.860 and 
0.502, respectively. Although the predictions by the equations of ACI 318 (2011) and CEB-FIP 
Model Code (2010) are not well correlated with the experimental results, they are generally on the 
safe side. 

The predictions calculated from the equations proposed by Zsutty (1971), Bazant and Sun 
(1987), Kim and Park (1996) and Zararis and Papadakis (2001) for the beams in the database are 
mostly greater than the experimental values. This is expected since those equations were derived 
for predicting the ultimate shear strength of RC beams without stirrups. The correlation 
coefficients between the experimental results and the predictions by the equations of Zsutty 
(1971), Bazant and Sun (1987), Kim and Park (1996) and Zararis and Papadakis (2001) are 0.849, 
0.864, 0.836 and 0.889, respectively. The equations proposed by Okamura and Higai (1980), 
Collins and Kuchma (1999), Rebeiz (1999), Khuntia and Stojadinovic (2001) and Arslan (2012) 
predict the diagonal cracking strength of RC beams without stirrups. The equation of Okamura and 
Higai (1980) overestimates the diagonal cracking strength of most of the considered beams. The 
correlation coefficient between the experimental values and the predictions by the equation of 
Okamura and Higai (1980) is 0.875. The predictions calculated from the equation of Collins and 
Kuchma (1999) for the considered beams generally remain on the safe side, but the correlation 
between the predictions and the experimental values are not good, where the correlation 
coefficient is 0.504. The predictions obtained through the equations of Rebeiz (1999), Khuntia and 
Stojadinovic (2001) and Arslan (2012) are mostly less than the experimental values and have a 
satisfactory correlation with the experimental values, where the correlation coefficients are 0.852, 
0.839 and 0.891, respectively. 

The correlation coefficients between the experimental values and the predictions by the 
equations of Perez et al. (2012) given by Eqs. (16)-(18) are 0.674, 0.888 and 0.892, respectively. 
Although the predictions by Eq. (16) are poorly correlated with the experimental results, it 
generally delivers conservative estimates. The predictions by Eqs. (17)-(18) have a better 
correlation with the experimental values compared to those by Eq. (16) do. 

Among the considered equations, it is observed that Eq. (12) by Rebeiz (1999), Eq. (15) by 
Arslan (2012) and Eqs. (17)-(18) by Perez et al. (2012) are superior to the others in predicting the 
diagonal cracking strength of the beams in the database. In general, the ANN model generates 
outputs closer to the experimental values than Eqs. (1)-(18) do. Table 3 presents the correlation 
coefficients, the mean squared errors, the normalized mean squared errors (NMSE) and the mean 
absolute percentage errors (MAPE) for the ANN model and Eqs. (1)-(18). It can be observed 
through Table 3 that the ANN model has a better performance of predicting the diagonal cracking 
strength of the beams in the database than Eqs.(1)-(18) do. 
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4.2 Parametric study 
 

A parametric study was conducted to study the effects of various parameters on the diagonal 

cracking strength of RC beams without stirrups using the ANN model. The ranges of parameters 

stored in the database were considered in the parametric study. Fig. 8 shows the change in the 

diagonal cracking strength with respect to the effective depth for    of 30 MPa and 60 MPa,     

of 3 and 5, and   of 0.5%, 1.0% and 2.0%. Fig. 9 plots the change in the diagonal cracking 

strength against the concrete compressive strength for     of 3 and 5, and   of 0.5%, 1.0% and 

2.0%, where the effective depth is 300 mm. Fig. 10 depicts the relationship between the diagonal 

cracking strength and the concrete compressive strength for     of 3 and 5, and   of 200 mm, 

300 mm, 400 mm and 500 mm, where the longitudinal reinforcement ratio is 1.0%. 

A significant size effect on the diagonal cracking strength is observed in Fig. 8. The decrease in 

the diagonal cracking strength ranges from 24% to 72% with the increase in the effective depth 

from 133 mm to 530 mm, depending on the concrete compressive strength, the longitudinal 

reinforcement ratio and the shear span-to-depth ratio. The reduction in the diagonal cracking 

strength with respect to the effective depth increases as the longitudinal reinforcement ratio 

decreases. For instance, in the case that the concrete compressive strength is 60 MPa and the shear 

 

 

  
(a)        MPa and       (b)       MPa and       

  
(c)       MPa and       (d)       MPa and       

Fig. 8 Diagonal cracking strength vs. effective depth (  0.5%, 1.0% and 2.0%) 
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(a)      mm and       (b)       mm and       

Fig. 9 Diagonal cracking strength vs. concrete compressive strength (  0.5%, 1.0% and 2.0%) 

 

  
(a)       (b)       

Fig. 10 Diagonal cracking strength vs. concrete compressive strength (  1.0%) 
 

 

span-to-depth ratio is 3, the reduction in the diagonal cracking strength is 57%, 46% and 33% 

when the longitudinal reinforcement ratio is 0.5%, 1.0% and 2.0%, respectively. It should be noted 

that the shear design equations of ACI 318 (2011) (Eqs. 1 and 2) and TS 500 (2000) (Eq. 6) does 

not consider size effect on the diagonal cracking strength of RC beams. 

It is observed in Figs. 9 and 10 that the diagonal cracking strength increases significantly with 

the concrete compressive strength. Fig. 9 presents that the increase in the diagonal cracking 

strength of a RC beam with an effective depth of 300 mm ranges from 52% to 57% and 16% to 

33% when the shear span-to-depth ratio is 3 and 5, respectively, depending on the longitudinal 

reinforcement ratio, with the increase in the concrete compressive strength from 15 MPa to 87 

MPa. Fig. 10 shows that the increase in the diagonal cracking strength due to an increase in the 

concrete compressive strength gets more pronounced as the effective depth gets smaller when the 

shear span-to-depth ratio is 3. In the case that the shear span-to-depth ratio is 5, the influence of 
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the effective depth is less pronounced. For example, the increase in the diagonal cracking strength 

is 65% for an effective depth of 200 mm, while it is 27% for an effective depth of 500 mm when 

the shear span-to-depth ratio is 3. 

It can be inferred from Figs. 8 and 9 that the diagonal cracking strength increases significantly 

with the longitudinal reinforcement ratio. For a beam with an effective depth of 300 mm and a 

shear span-to-depth ratio of 3, the increase in the diagonal cracking strength ranges from 61% to 

66% depending on the concrete compressive strength. 

As previously stated, the most important issue with developing an ANN model is whether the 

network has memorized the training examples or has succeeded in generalizing to new data. Since 

both the performance curves plotted in Fig. 4 and the resulting trends in the parametric study do 

not exhibit any sign of overfitting, the developed ANN model can be considered to be able to 

predict the diagonal cracking strength of an RC beam without stirrups with a reasonable error, 

provided that the parameters of the beam are within the ranges considered in training the ANN 

model. 

 
 
5. Conclusions 
 

The diagonal cracking strength of a RC beam is a critical parameter in the current practice of 

shear design since it is essential for determining the minimum amount of stirrups and the 

contribution of concrete to shear strength. The diagonal cracking strength of RC slender beams 

without stirrups is of interest to this research. A database of 271 beams compiled from the 

experimental studies available in the literature was used to develop an ANN model for predicting 

the diagonal cracking strength of RC slender beams without stirrups. The model consists of an 

input layer of four neurons accepting concrete compressive strength, longitudinal reinforcement 

ratio, shear span-to-depth ratio and effective depth as input parameters, a hidden layer of five 

neurons and an output layer of a single neuron delivering an estimate of diagonal cracking 

strength. The mean, standard deviation and COV of the estimates of diagonal cracking strength are 

1.02, 0.14 and 0.14, respectively. The coefficient of correlation between the estimates and the 

experimental values are 0.906. ANN models generating outputs with much smaller errors were 

discarded due to overfitting issues, which can be detected through performance curves plotted in 

the training stage and/or incoherent trends arising in the parametric study. The developed ANN 

model outputs were compared with the predictions obtained through six shear design equations 

and twelve equations proposed by various researchers. The ANN model has a better performance 

over the compiled database than the considered equations do. 

The effects of effective depth, concrete compressive strength and longitudinal reinforcement 

ratio on the diagonal cracking strength of RC slender beams without stirrups were examined 

through a parametric study using the ANN model. A significant size effect is observed that the 

diagonal cracking strength decreases as the effective depth increases. The reduction in the diagonal 

cracking strength with respect to the effective depth increases as the longitudinal reinforcement 

ratio gets smaller. It is also observed that the diagonal cracking strength increases significantly 

with the concrete compressive strength and the longitudinal reinforcement ratio. The effect of 

concrete compressive strength on the diagonal cracking strength gets more pronounced as the 

effective depth gets smaller. The performance curves obtained in the training stage and the 

resulting trends in the parametric study show that the ANN model is able to generalize to new data. 

Based on the results of the parametric study, it is recommended that the design codes should 
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consider size effect in the shear design equations. 

Even though the ANN model generates satisfactory outputs, it needs to be improved since the 

data used for developing the model is limited. For example, 75% of the beams in the database have 

concrete compressive strength less than 50 MPa. The ANN model will be updated as new data 

becomes available. 
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