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Abstract.  The paper presents quasi-static numerical simulations of the behaviour of short reinforced 
concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four 
various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-
Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an 
anisotropic smeared crack and isotropic damage model were applied. Finally, an elasto-plastic-damage 
model was used. To ensure mesh-independent FE results, to describe strain localization in concrete and to 
capture a deterministic size effect, all models were enhanced in a softening regime by a characteristic length 
of micro-structure by means of a non-local theory. Bond-slip between concrete and reinforcement was 
considered. The numerical results were directly compared with the corresponding laboratory tests performed 
by Walraven and Lehwalter (1994). The advantages and disadvantages of enhanced models to model the 
reinforced concrete behaviour were outlined. 
 

Keywords: bond-slip; characteristic length; damage mechanics; elasto-plasticity; non-local theory; 
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1. Introduction 
 

Modelling of concrete structures has to include a fracture process, which is a fundamental 

phenomenon in all quasi-brittle materials (Bažant and Planas 1998). It is a major reason of their 

damage under mechanical loading contributing to a significant degradation of the material strength 

which may lead to a total loss of load-bearing capacity. During fracture first micro-cracks arise 

which change gradually into dominant macroscopic discrete cracks up to rupture. Thus, a fracture 

process may be subdivided in general into two main stages: a) appearance of narrow localized 

zones of intense deformation including micro-cracks and b) occurrence of discrete macro-cracks. 

Within continuum mechanics, strain localization should be numerically captured by a continuous 

approach and discrete macro-cracks by a discontinuous one, e.g. XFEM (Meschke and Dumstorff 

2007, Tejchman and Bobiński 2013). Usually, to describe the fracture behaviour of concrete, one 
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approach is used. However, in order to describe the entire fracture process, a continuous approach 

should be connected with a discontinuous one (Moonen et al. 2008, Bobiński and Tejchman 2013).  

In our paper, we deal solely with a continuous approach. Continuum models describing the 

mechanical behaviour of concrete were formulated within, among others, endochronic approach 

(Bažant and Bhat 1976), rate-independent plasticity (Pietruszczak et al. 1988, Menetrey and 

Willam 1995), damage theory (Dragon and Mróz 1979, Ragueneau et al. 2000), coupled damage 

and plasticity (de Borst et al. 1999, Ibrahimbegovic et al. 2003), micro-plane theory (Bažant and 

Ožbolt 1990, Jirásek 1999) and smeared crack approach (Jirásek and Zimmermann 1998, Souza 

2010). To properly model the thickness and spacing of localized zones, continuum models require 

an extension in the form of a characteristic length. Such an extension can be done with strain 

gradient (Pamin and de Borst 1999), viscous (Sluys and de Borst 1994) and non-local terms 

(Pijaudier-Cabot and Bažant 1987). To simulate reinforced concrete elements, Cervenka and 

Papanikolau (2008) proposed a continuum fracture-plastic approach. In turn, Oliver et al. (2008) 

used a Strong Discontinuity Approach (SDA) and Rabczuk et al. (2008) developed a cohesive 

particle method. 

The intention of our paper is to check the capability of different enhanced continuum 

constitutive models for concrete to describe strain localization and related deterministic size effect 

in concrete beams with longitudinal reinforcement and without stirrups subjected to mixed shear-

tension failure using the FEM. The models are relatively simple and can be implemented into 

commercial FE codes. First, an isotropic elasto-plastic model with a Drucker-Prager criterion 

defined in compression and with a Rankine criterion defined in tension was used (model „1‟). 

Next, an isotropic damage model (model „2‟) and an anisotropic smeared crack model (model „3‟) 

were applied. Finally, a coupled elasto-plastic-damage formulation based on the strain equivalence 

hypothesis was used (model „4‟). To ensure mesh-independent FE results, to describe strain 

localization in concrete and to capture a deterministic size effect, all models were enhanced in a 

softening regime by a characteristic length of micro-structure by means of a non-local theory 

(Pijauder-Cabot and Bažant 1987, Bažant and Jirásek 2002, Bobiński and Tejchman 2004). To 

simulate the behaviour of reinforcement, an associated elasto-perfectly plastic constitutive law was 

assumed. A bond-slip law between concrete and reinforcement was considered (Dörr 1980, den 

Uijl and Bigaj 1996). Numerical results were compared with corresponding laboratory tests by 

Walraven and Lehwalter (1994), i.e., with the results of the measured load bearing capacity of 

beams and observed patterns of cracks (the experimental force-displacement diagrams were not 

enclosed). Just recently these laboratory experiments were simulated by Ooi and Yang (2011) 

using a hybrid finite element-scaled boundary element method. 

The paper is a continuation of our earlier numerical studies on the behaviour of reinforced 

concrete corbels with 3 different continuum approaches (Syroka et al. 2011), where a mixed 

tensile-shear failure was also a dominating mechanism. An isotropic elasto-plastic, isotropic 

damage with 2 definitions of the equivalent strain measure and smeared crack constitutive model 

(with rotating and fixed cracks) with non-local softening were used. The best agreement with 

experimental load-displacement diagrams was obtained using the elasto-plastic and isotropic 

damage model with non-local softening. The ultimate forces calculated using the elasto-plastic and 

isotropic damage models were both 20% higher than the experimental values whereas the 

calculated ones using the anisotropic smeared crack model were higher by 45%. Concerning the 

simulated geometry of localized zones, the most satisfactory agreement was achieved again with 

the elasto-plastic model, next with the damage model and finally with the smeared fixed crack 

model.  
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Modelling reinforced concrete beams under mixed shear-tension failure  

The innovative points in this paper concern a comparative application of 4 different enhanced 

continuum approaches to describe a pattern of localized zones and a related deterministic size 

effect (isotropic elasto-plastic, isotropic damage with 3 definitions of the equivalent strain 

measure, combined elasto-plastic-damage model and smeared crack constitutive model with 

rotating and fixed cracks in reinforced concrete beams of a different size where a mixed shear-

tension type of failure occurred (note that most FE solutions for reinforced concrete beams 

concern a tension type of failure). 

 
 
2. Experiments on reinforced concrete beams 
 

Laboratory tests were carried out on five different short reinforced concrete beams without 

shear reinforcement (Walraven and Lehwalter 1994). The geometry of the beams is shown in            

Fig. 1 and Table 1. The beams were freely supported. The beam length L varied between 680 mm 

and 2250 mm and the height h was between 200 mm and 1000 mm (the beams‟ width b was 

always 250 mm). The ratio between the width of the loading plate k and the effective beam depth d 

was kept constant (k/d = 0.25). The maximum aggregate size in concrete was dmax = 16 mm. The 

concrete cover measured from the bar centre to the concrete surface was 40 mm for the smallest 

beam and 70 mm for the largest one. In the tests, the span-to-depth ratio was always Lt/d = 1. The 

cylinder compressive strength of concrete was about fc = 20 MPa. In turn, the cylinder splitting 

tensile strength of concrete was about ft = 2 MPa. The longitudinal reinforcement ratio of the 

specimens was 1.1% (yield strength was 420 MPa). To obtain a geometrically similar cross-

sectional area, various combinations of bar sizes were used (with the diameter of 16, 18 and 20 

mm). The beams were incrementally loaded by a vertical force applied at a mid-span of each 

beam. During loading, first, at about 40% of the failure load, bending cracks appeared. Afterwards, 

at about 45-50% of the failure load, the first inclined crack occurred. The beam failure took place 

in a gradual gentle way in shear compression by crushing concrete adjacent to the loading plate 

initiated by a formation of short parallel inclined cracks.  

A pronounced size effect was observed in tests exemplified by the reduction of the nominal 

normalized shear strength vu = Vu/(bdfc) with increasing effective cross sectional depth d in the 

range of beam heights h = 200-800 mm: vu = 0.23 (h = 200 mm), vu = 0.15 (h = 400 mm), vu = 

0.13 (h = 600 mm), vu = 0.10 (h = 800-1000 mm) (Vu - maximum shear force in Table 1). The 

cracks developed significantly faster in the larger beams. 
 

 

 
Fig. 1 Geometry of reinforced concrete beams used in laboratory tests by Walraven and Lehwalter (1994) 
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Table 1 Properties of reinforced concrete beams of Fig. 1 and experimental failure vertical force 

Beam 
h 

[mm] 

d 

[mm] 

Lt 

[mm] 

L 

[mm] 

Asl 

[mm
2
] 

bars 
fc 

[N/mm
2
] 

Vu 

[kN] 

V711 200 160 320 680 606 3ø16 18.1 165 

V022 400 360 720 1030 1020 4ø18 19.9 270 

V511 600 560 1120 1380 1570 5ø20 19.8 350 

V411 800 740 1480 1780 2040 2 (4ø18) 19.4 365 

V211 1000 930 1860 2250 2510 2 (4ø18) 20.0 505 

 
 
3. Constitutive models 
 

3.1 Isotropic elasto-plastic model for concrete 
 

In a compression regime, a shear yield surface based on the linear Drucker-Prager criterion 

with isotropic hardening and softening was used (Marzec et al. 2007, Majewski et al. 2008, 

Tejchman and Bobiński 2013) 

 11 tan
3

1
1tan  cpqf 








                      (1) 

where q is the Mises equivalent deviatoric stress, p denotes the mean stress and  is the  internal 

friction angle. The evolution of material hardening/softening was defined by the uniaxial 

compression yield stress c(1). The internal friction angle  was assumed as 

 





bc

bc

r

r

21

13
tan




                               (2) 

where rbc

 is the ratio between the biaxial compressive strength and uniaxial compressive strength 

(rbc 
 

= 1.2). The invariants q and p are 

jiijssq
2

3
  and kkp 

3

1
                           (3) 

where ij is the stress tensor and sij denotes the deviatoric stress tensor. The flow potential was 

defined as 

tan1 pqg                               (4) 

where  is the dilatancy angle (  ). For the sake of simplicity, the constant values of  and  

were assumed. 

In turn, in a tensile regime, a Rankine criterion was used with a yield function f2 with isotropic 

softening defined as (Marzec et al. 2007. Majewski et al. 2008, Tejchman and Bobiński 2013) 

   23212 ,,max  tf                          (5) 
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where i – the principal stress, t(2) – the tensile yield stress and 2 – the softening parameter 

equal to the maximum principal plastic strain 1
p
. The associated flow rule was assumed. The 

edges and vertex of the Rankine yield function were taken into account by the interpolation of 2-3 

plastic multipliers according to the Koiter‟s rule. The same procedure was adopted in the case of 

combined tension (Rankine criterion) and compression (Drucker-Prager criterion). 

This simple isotropic elasto-plastic model for concrete (Eqs. (1)-(5)) requires two elastic 

parameters: modulus of elasticity E and Poisson‟s ratio υ, one compression yield stress function ζc 

= f(κ1) (based on a uniaxial compression test), one tensile yield stress function ζt = f(κ2) (based on 

a uniaxial tension test), internal friction angle θ and dilatancy angle ψ (based on a triaxial 

compression test). The model has some disadvantages. The shape of the failure surface in a 

principal stress space is linear (not paraboloidal as in reality). In deviatoric planes, the shape is 

circular (during compression) and triangular (during tension); thus it does not gradually change 

from a curvilinear triangle with smoothly rounded corners to nearly circular with increasing 

pressure. The strength is similar for triaxial compression and extension, and the stiffness 

degradation due to strain localization and non-linear volume changes during loading are not taken 

into account. 

 
3.2 Isotropic damage model for concrete 
 
A simple isotropic damage continuum model was used (Marzec et al. 2007, Tejchman and 

Bobiński 2013) which describes the material degradation with the aid of only a single scalar 

damage parameter D growing monotonically from zero (undamaged material) to one (completely 

damaged material). The stress-strain function was represented by relationship (Simo and Ju 1987) 

  kl
e
ijklij CD   1                              (6) 

where:

 

e

ijklC  - the linear elastic material stiffness matrix (including modulus of elasticity E and 

Poisson‟s ratio υ) and εkl - the total strain tensor. The damage parameter D acts as a stiffness 

reduction factor (the Poisson ratio is not affected by damage). The growth of damage is controlled 

by a threshold parameter κ which is defined as a maximum of the equivalent strain measure   

reached during the load history up to time t. The loading function of damage was  

   0,max~,~  f                           (7) 

where 0  denotes the initial value of   when damage begins. If the loading function f is 

negative, damage does not develop. During monotonic loading, the parameter  grows (it 

coincides with ~ ) and during unloading and reloading it remains constant. The model cannot 

realistically describe irreversible deformations and volume changes (Simone and Sluys 2004). 

We investigated 3 different equivalent strain measures~ . First a Rankine failure type criterion 

by Jirásek and Marfia (2005) was assumed 

 eff
i

E
 max

1~                                (8) 

where eff

i  are the principal values of the effective stress tensor. Second, a modified von Mises 
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definition was adopted (de Vree et al. 1995, Peerlings et al. 1998) 




 22

2
12

2

1
)1(

12
)(

)21(

)1(

2

1

)21(2

1~ J
k

I
k

k
I

k

k












               (9) 

where 

1I  is the first invariant of the total strain tensor, 



2J  is the second invariant of the 

deviatoric strain tensor and k stands for the ratio between the compressive and tensile strength of 

the material. Third, a criterion following Häuler-Combe and Pröchtel (2005), based on the failure 

condition by Hsieh-Ting-Chen (Hsieh et al. 1982), was chosen 




















    21

2

141322141322 4
2

1~ JcIccJcIccJc         (10) 

with ε1 - the maximum principal total strain, c1, c2, c3 and c4 - the coefficients depending on α1=ft/fc 

(ratio between uniaxial tensile strength and uniaxial compressive strength), α2=fbc/fc (ratio between 

biaxial and uniaxial compressive strength), α3 and γ – multipliers of material strength in triaxial 

compression. 

To describe the evolution of the damage parameter D, an exponential softening law was chosen 

(Peerlings et al. 1998) 

  011
0




 
 eD                         (11) 

with α and β as the material constants.  

The damage evolution law determines the shape of the softening curve. The material softening 

starts when the equivalent strain measure reaches the initial threshold 0 (material hardening is 

neglected). With increasing parameter α (usually in the range of 0.7 up to 0.95), both the 

maximum and residual strength increase. The smaller the parameter , the higher is the strength 

and material ductility. For one-dimensional problems, at ε→∞ (uniaxial tension), the stress 

approaches the value of (1 - α)E0.  

The constitutive isotropic damage model for concrete requires 5 material parameters: E, υ, 0, α 

and β (Eq. (8)), 6 material parameters: E, υ, 0, α, β and k (Eq. (9)) or 9 material parameters E, υ, 

0, α, β, α1, α2, α3 and γ (Eq. (10)). The model is mainly suitable for tensile failure. However, it 

cannot realistically describe irreversible deformations, volume changes and shear failure. 

 

3.3 Anisotropic smeared crack model for concrete 
 
In a smeared crack approach, a discrete crack is represented by cracking strain distributed over 

a finite volume (de Borst and Nauta 1985, de Borst 1986, Rots and Blaauwendraad 1989). The 

model is capable of properly combining crack formation and a behaviour of concrete between 

cracks and of handling secondary cracking owing to rotation of the principal stress axes after 

primary crack formation. A secondary crack is allowed if the major principal stress exceeds tensile 

strength and if the angle between the primary crack and secondary crack exceeds a threshold 

angle. Since the model takes into account the crack orientation, it reflects the crack-induced 
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anisotropy. 

The total strains εij are decomposed into the elastic 
e

ij  and inelastic strains 
cr

ij  

cr
ij

e
ijij                                 (12) 

The stresses are related to the elastic strains by the following relationship 

e
kl

e
ijklij C                                  (13) 

Between the stresses and the crack strains, the following relationship is assumed (in a local 

coordinate system) 

cr
kl

cr
ijklij C                                 (14) 

with the secant diagonal stiffness matrix 
cr

ijklC  for the cracked concrete (defined only for open 

cracks). A crack is created when the maximum tensile stress exceeds the tensile strength ft. To 

define softening in the normal direction under tension, the relationship by Hordijk (1991) is 

adopted 

       32
3

1 exp)(1 AAAftt                    (15) 

with 

nu

b
A


1

1  , 
nu

b
A


2

2  ,     2
3
13 e x p1

1
bbA

nu




            (16) 

where εnu is the ultimate crack strain in tension and the material constants are b1=3.0 and b2=6.93. 

The shear modulus G is reduced by the shear retention factor  according to Rots and 

Blaauwendraad (1989) 

p

su

cr

i













 1                                (17) 

where εsu is the ultimate crack strain in shear and p is the material parameter. Combining                  

Eqs. (12)-(14), the following relationship between stresses and total strains (in a local coordinate 

system) is derived 

kl
s
ijklij C   ,                                (18) 

with the secant stiffness matrix 
s

ijklC  as 

  e
tukl

cr
rstu

e
rstu

e
ijrs

e
ijkl

s
ijkl CCCCCC

1
 .                     (19) 

After cracking, the isotropic elastic stiffness matrix is replaced by the orthotropic one. Two 
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different formulations were investigated: a rotating crack model and a fixed orthogonal crack 

model. In the first approach (rotating crack), only can crack is created (softening is defined in one 

direction only) which could rotate during deformation. To keep the principal axis of total strains 

and stresses aligned, the secant stiffness coefficient is calculated according to  

 jjii

jjiis
ijijC










2
                            (20) 

The second formulation (with a fixed crack) allows one for the formation of three mutually 

orthogonal cracks in 3D-problems (or 2 orthogonal cracks in 2D simulations). The orientation of 

the crack is described by its primary inclination at the onset (the crack cannot rotate during 

deformation). 

The constitutive smeared crack model for concrete requires the following 6-8 material 

constants: E, v, ft, p, b1, b2, εsu and εnu (fixed crack model) or E, v, ft, b1, b2, and εnu (rotating crack 

model). The parameters ft, b1, b2 and εnu determine the softening behaviour of concrete under 

uniaxial tension. The values of εsu and p affect the shear retention factor in a fixed crack model. 

The smaller εsu and larger p, the lower is the effective shear modulus. The model does not allow for 

permanent deformations, although plasticity may be coupled with it (de Borst 1986). 

 
3.4 Coupled elasto-plastic-damage model for concrete 
 

The model (Marzec and Tejchman 2012) combines elasto-plasticity with a scalar isotropic 

damage assuming a strain equivalence hypothesis according to Pamin and de Borst (1999). The 

elasto-plasticity was defined in terms of effective stresses according to  

kl
e
ijkl

eff
ij CC                                (21) 

In an elasto-plastic regime, a linear Drucker-Prager criterion with a non-associated flow rule in 

compression and a Rankine criterion with an associated flow rule in tension (Section 3.1) defined 

by effective stresses were used. Next, the material degradation was calculated within damage 

mechanics, independently in tension and compression using one equivalent strain measure   

proposed by Mazars (1986) (i - principal strains) 


i

i

2~                               (22) 

In tension the damage parameter Dt was defined with the same exponential damage evolution 

function by Peerlings et al. (1998) as in the isotropic damage model (Eq. (11)). In turn, in 

compression, the definition by Geers (1997) was adopted 

 0

21

000 01.011














 

























 eDc                  (23) 

where η1, η 2 and δ are the material constants. Eq. (22) allows for distinguishing different stiffness 

degradation under tension and compression. Damage under compression starts to develop later 

than under tension according to the experimental behaviour. The stress-strain relationship was 
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represented by following formula 

  eff
ijij D   1                             (24) 

where the term „1-D’ was defined as in Abaqus (2004) following Lee and Fenves (1998) 

    cttc DsDsD  111                         (25) 

with two splitting functions st and sc controlling the magnitude of damage  

 eff
ct was 1   and   eff

tc was  11               (26) 

where at and ac are the scale factors and  effw  denotes a stress weight function, which may be 

determined with the aid of principal effective stresses (Lee and Fenves 1998) 

 











 






otherwise      

0  if                   0

eff
i

eff
i

eff
ij

effw







 .                     (27) 

For relatively simple cyclic tests (e.g. uniaxial tension, bending), the scale factors at and ac can 

be at = 0 and ac = 1, respectively. Thus, the splitting functions are: st  = 1.0 and  eff

c ws  . For 

uniaxial loading cases, the stress weight function becomes 

 











0  if        0

0  if        1

eff

eff

effw



 .                          (28) 

Thus, under pure tension the stress weight function w=1.0 and under pure compression w=0. 

The constitutive model with a different stiffness in tension and compression and a positive-negative 

stress projection operator to simulate crack closing and crack re-opening is thermodynamically 

consistent. It shares the main properties of the model by Lee and Fenves (1998), which was proved 

to not violate thermodynamic principles (with plasticity defined in the effective stress space, 

isotropic damage and similar stress weight functions). Moreover Carol and Willam (1996) showed 

that for damage models with crack-closing-re-opening effects included, only isotropic 

formulations did not suffer from spurious energy dissipation under non-proportional loading (in 

contrast to anisotropic ones). 

The coupled elasto-plastic-damage model requires the following 12 material constants E, υ, κ0, 

α, β, 1, 2, , at, ac,  and  and 2 hardening yield stress functions (the function by Rankine in 

tension and the function by Drucker-Prager in compression) (Marzec and Tejchman 2012). In the 

case of linear hardening, 16 material constants are totally needed: E, υ, κ0, α, β, 1, 2, , at, ac, , 

, initial yield stresses yt
0
 and yc

0 
and hardening plastic moduli Hp (one in compression and one 

in tension). If the tensile failure prevails, the Rankine yield function (without activating the 

Drucker-Prager criterion) may be used only. 

The quantities y
0
 (initial yield stress during hardening) and κ0 are responsible for the peak 

location on the stress-strain curve and a simultaneous activation of a plastic and damage criterion 
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(usually the initial yield stress in the hardening function yt
0 
= 3.5 - 6.0 MPa and κ0 = (8 - 15)  10

-

5
 under tension). The shape of the stress-strain-curve in softening is influenced by the constant β in 

tension (usually β = 50-800), and by the constants  and 2 in compression (usually  = 50 - 800 

and 2 = 0.1-0.8). The parameter 2 influences also a hardening curve in compression. In turn, the 

stress-strain-curve at the residual state is affected by the constant  (usually  = 0.70 - 0.95) in 

tension and by 1 in compression (usually 1 = 1.0-1.2). Since the parameters  and 1 are solely 

influenced by high values of κ, they can arbitrarily be assumed for softening materials. Thus, the 

most crucial material constants are y
0
, κ0, β,  and 2. In turn, the scale factors at and ac influence 

the damage magnitude in tension and compression. In general, they vary between zero and one. 

There do not exist unfortunately the experimental data allowing for determining the magnitude of 

at and ac. Since, the compressive stiffness is recovered upon the crack closure as the load changes 

from tension to compression and the tensile stiffness is not recovered due to compressive micro-

cracks, the parameters ac and at can be taken for the sake of simplicity as ac = 1.0 and at = 0 for 

many different simple loading cases as e.g. uniaxial tension and bending. The equivalent strain 

measure   can be defined in terms of total strains or elastic strains. The drawback of our 

formulation  is the necessity to calibrate constants for activating an elasto-plastic criterion and a 

damage criterion at the same moment. As a consequence, the chosen initial yield stress y
0
 may be 

higher than this obtained directly in laboratory simple monotonic experiments. The effect of 

material constants on the cyclic concrete behaviour under compression and bending was shown by 

Marzec and Tejchman (2012). 

 

3.5 Reinforcement model 
 

To simulate the behaviour of longitudinal reinforcement bars (modelled as one-dimensional truss 

elements), an elasto-perfect plastic constitutive law was assumed with Es = 210 GPa (modulus of 

elasticity) and ζy
s 
= 420 MPa (ζy

s
 – yield steel stress). The horizontal steel bars were fixed at ends.  

Bond between concrete and reinforcement plays a crucial role in structural behaviour. It 

embraces three major mechanisms: adhesion and friction between concrete and steel surface, and 

the bearing of reinforcement ribs against concrete. Usually, two types of bond failures can occur, 

namely, a pull-out failure or splitting failure (den Ulij and Bigaj 1996). The calculations were 

carried out only with bond-slip using a relationship between the bond shear stress ηb and slip u 

 

 

 
Fig. 2 Bond-slip law between concrete and reinforcement by Dörr (1980) 
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according to Dörr (1980) due to the fact that bond traction values were far from the limiting value 

because the bars were fixed at ends. Thus, the shape of the bond law after the peak turned out to be 

unimportant. To consider bond-slip, an interface with a zero thickness was assumed along a 

contact, where a relationship between the shear traction and slip was introduced. The bond law by 

Dörr (1980) neglects softening and assumes a yield plateau (Fig. 2) 
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where in u0 is the displacement at which perfect slip occurs. To investigate the effect of the bond 

stiffness, several numerical tests were carried out with a different values of u0 changing from 0.06 

mm (Dörr 1980) up to 1.0 mm (Haskett et al. 2008). It has to be noted that a universal bond law 

does not exist since it depends on boundary conditions of the entire system (specimen size, 

concrete type, reinforcement diameter, reinforcement roughness, and confining pressure). 

 

3.6 Non-local approach 
 

To properly describe strain localization, to obtain mesh-independent results and to include a 

characteristic length of micro-structure for simulations of a deterministic size effect, a non-local 

theory was used as a regularization technique (Pijauder-Cabot and Bažant 1987, Bažant and 

Jirásek 2002, Tejchman and Bobiński 2013). In this approach, the principle of a local action does 

not take place any more. In the calculations within elasto-plasticity, the softening parameters i (i 

= 1, 2) were assumed to be non-local (independently for both yield surfaces fi) (Brinkgreve 1994, 

Bobiński and Tejchman 2004) 
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x
xx 1  for  i = 1, 2             (31) 

where  xi  are the non-local softening parameters, V denotes the body volume, x are the 

coordinates of the considered point,  are the coordinates of the surrounding points,  denotes the 

weighting function and m is the additional non-locality parameter controlling the size of the 

localized plastic zone. For m = 1, a classical non-local model is recovered (Pijaudier-Cabot and 

Bažant 1987). If the parameter m > 1, the influence of non-locality increases and a localized plastic 

region reaches a finite mesh-independent size (Brinkgreve 1994). In the range 0 < m < 1, mesh-

dependent FE results are obtained (Bobiński and Tejchman 2004). 

In the calculations within isotropic damage (Section 3.2) and coupled elasto-plastic-damage 

(Section 3.4), the equivalent strain measure ~  was replaced by its non-local definition                  

(Marzec et al. 2007, Marzec and Tejchman 2012) 
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In the smeared crack approach, the secant matrix 
s

ijklC  was calculated with the non-local strain 

tensor εkl (independently for all tensor components) according to Jirásek and Zimmermann (1998) 

 
   
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V

V
kl

kl
d

d
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

x

x
x .                       (33) 

Thus, the resulting stresses were calculated from the relationship 

  klkl
s
ijklij C   .                           (34) 

As a weighting function ω, the Gauss distribution function was always used (Bažant and 

Jirásek 2002) 
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where lc is the characteristic length of micro-structure and the parameter r is the distance between 

material points. The averaging in Eq. (35) is restricted to a small representative area around each 

material point (the influence of points at the distance of r = 3lc is only of 0.01%). A characteristic 

length is usually related to the micro-structure of the material (e.g. maximum aggregate size in 

concrete, grain size in granulates or crystal size in metals). It is determined with an inverse 

identification process of experimental data (Mahnken and Kuhl 1999, Skarżyński et al. 2011). 

Based on our simulations of concrete and reinforced concrete elements under bending at meso-

scale compared to experiments using a digital image correlation DIC technique (Skarżyński and 

Tejchman 2010, Skarżyński et al. 2011, Syroka-Korol 2012), a characteristic length lc of micro-

structure within isotropic elasto-plasticity and isotropic damage mechanics may be about 2 mm 

(fine-grained concrete) and 5 mm (usual concrete). The setting of a direct relationship between a 

characteristic length lc and concrete micro-structure (aggregate size) merits further investigations. 

In our FE calculations we assumed lc = 5-20 mm.  

The 2D and 3D non-local models were implemented in the commercial finite element code 

Abaqus (2004) with the aid of the subroutine UMAT (user constitutive law definition) and UEL 

(user element definition) for efficient computations (Bobiński and Tejchman 2004). For the 

solution of a non-linear equation of motion governing the response of a system of finite elements, 

the initial stiffness method was used with a symmetric elastic global stiffness matrix. The 

calculations were carried out using a large-displacement analysis available in the Abaqus finite 

element code (Abaqus 2004). According to this method, the current configuration of the body was 

taken into account. The Cauchy stress was taken as the stress measure. The conjugate strain rate 

was the rate of deformation. The rotations of the stress and strain tensor were calculated with the 

Hughes-Winget (1980) method. The non-local averaging was performed in the current 

configuration. This choice was governed by the fact that element areas in this configuration were 

automatically calculated by Abaqus (2004). 
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4. FE input data 
 

The two-dimensional FE calculations were performed with 4 reinforced concrete beams of 

Section 2 (h = 200 - 800 mm). The characteristic length was lc = 5 - 20 mm. The regular meshes 

with quadrilateral elements composed of four diagonally crossed 3-node triangles were used to 

avoid volumetric locking. The number of triangular elements changed from 2720 (h = 200 mm) up 

to 16560 (h = 800 mm) The maximum finite element height, 15 mm, and finite element width, 10 

mm, were not greater than 3 ×  lc to achieve mesh-objective results (Marzec et al. 2007). The 

comparative 3D calculations were performed for the smallest beam of h = 200 mm. The mesh with 

16320 eight-node solid elements was used. The maximum sizes of finite elements were again not 

greater than 3 ×  lc (lc = 10 - 20 mm). The following elastic material parameters were assumed for 

concrete: E = 28.9 GPa (modulus of elasticity) and υ = 0.20 (Poisson‟s ratio). The cylinder 

compressive strength was fc = 20 MPa and the tensile strength was ft = 2 MPa. The deformation 

was induced by prescribing a vertical displacement at the mid-point of the beam top. 

 
 
5. FE results 
 

5.1 Enhanced elasto-plastic model 
 

Our preliminary FE calculations have shown a certain effect of a characteristic length of micro-

structure, compressive fracture energy, tensile fracture energy, softening rate in tension and 

compression, softening type (linear and non-linear) and stiffness of bond-slip law on both the 

nominal beam strength, width and spacing of localized zones (Tables 2 and 3). The beam load 

bearing capacity increased with increasing characteristic length, tensile fracture energy and 

compressive fracture energy. In turn, the spacing of localized zones increased with increasing 

characteristic length and softening rate, and decreasing tensile fracture energy, compressive 

fracture energy and bond stiffness. The calculated width of localized tensile and compressive 

zones increased with increasing characteristic length lc and was equal approximately to (1.5 - 4)× lc 

with lc = 5 - 20 mm. The calculated ultimate vertical force V was smaller for the 3D model by 5% 

only. 

On the basis of our preliminary calculations, the further analyses were mainly performed with a 

2D model, using a characteristic length of lc = 5 mm, a non-locality parameter m = 2, and linear 

softening in compression and tension (Fig. 3). The tensile fracture energy was Gf  = 50 N/m and 

compressive fracture energy was Gc = 1500 N/m. The tensile fracture energy was calculated as Gf = gf 

×  wf; gf – area under the entire softening function (with wf4 ×  lc – width of tensile localized zones, lc 

= 5 mm). In turn, the compressive fracture energy was calculated as Gc = gc ×  wc (gc– area under the 

entire softening/hardening function up to κ1 =0.006, wc   4 × lc – width of compressive localized 

zones, lc = 5 mm). The internal friction angle was θ=14
°
 (Eq. (2)) and the dilatancy angle was chosen 

as ψ = 8
°
. The displacement uo at which perfect slip occurred was 0.24 mm (Eqs. (29) and (30)). The 

distribution of material parameters was uniform in all beams. 

Fig. 4 shows the calculated force-displacement curves (V – vertical force at the mid-point of the beam 

top, u – vertical displacement of this mid-point) for the beams of h = 200 - 800 mm. The distribution of 
the non-local tensile softening parameter 2  and non-local compressive softening parameter 1  is 
depicted in Figs. 5 and 6 at the beam failure. In addition, the distribution of 2  is shown at the 
normalized vertical force of V/(bdfc) = 0.10 as compared to the experimental crack pattern (Fig. 7). 
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Table 2 Summary of FE-input data 

FE-

simulat. 

No. 

Beam 

height 

h [mm] 

Width of 

tensile 

localized 

zones 

wf [mm] 

Tensile 

fracture 

energy 

Gf [N/m] 

Width of 

compressive 

localized 

zones 

wc [m] 

Compressive 

fracture 

energy Gc 

[N/m] 

Charact

. 

length 

lc [mm] 

Bond model 

1a 

200 

15 50 20 1500 5 

bs
* 

1b 15 50 20 1500 10 

1c 35 50 25 1750 20 

2a 

200 

15 100 20 1500 5 

bs
*
 2b 20 100 20 1500 10 

2c 40 100 25 1750 20 

3a 

200 

15 200 20 1500 5 

bs
*
 3b 35 200 25 1750 10 

3c 60 200 25 1750 20 

4a 
400 

15 50 15 1500 5 
bs

*
 

4b 35 50 25 1750 10 

5a 
400 

20 100 15 1500 5 
bs

*
 

5b 40 100 25 1750 10 

6a 
600 

15 50 15 1500 
5 bs

*
 

6b 15 100 25 1750 

7a 
800 

15 50 15 1500 
5 bs

*
 

7b 15 100 25 1750 

8a 

200 

15 50 20 1500 

5 

bs
*
 

8b 15 50 20 1500 
bs

*
  

(u0=0.12 mm) 

8c 15 50 20 1500 
bs

*
  

(u0=0.24 mm) 

8d 15 50 20 1500 bs
*
 (u0=1 mm) 

9a 

400 

40 100 25 1750 

10 

bs
*
 

9b 40 100 25 1750 
bs

* 

 (u0=0.12 mm) 

9c 40 100 25 1750 
bs

* 

 (u0=0.24 mm) 

9d 40 100 25 1750 bs
*
 (u0=1 mm) 

10a 
200 

15 50 20 1500 
10 

pb
*
 

10b 15 50 20 1500 bs
*
 

11a 
400 

40 100 25 1750 
10 

pb
*
 

11b 40 100 25 1750 bs
*
 

12a 

200 

15 50 15 900 

5 bs
*
 12b 15 50 20 1500 

12c 15 50 20 1800 

13a 

400 

15 50 20 900  

10 

 

bs
*
 13b 35 50 25 1750 

13c 35 50 25 2250 

14a 200 35 50 25 1750 20 3D, bs
*
 

14b 200 20 100 20 1400 10 3D, bs
*
 

15 200 35 50 25 1750 20 3D, bs
*
 

* 
bs – bond slip, pb – perfect bond 
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Table 3 Summary of experiments, FE results and analytical formulae (crack spacing) 

FE-

simulation 

No. 

(Table 1) 

Beam 

height h 

[mm] 

Failure vertical 

force 

(experiments) 

[kN] 

Failure 

vertical 

force 

(FEM) [kN] 

Spacing of 

localized 

tensile zones 

from FEM 

s [mm] 

Crack spacing 

by CEB-FIP 

model (1991) 

[mm] 

Crack 

spacing 

by 

Lorrain 

et al. 

(1998) 

[mm] 

1a 

200 165 

182 105 

270 193 1b 185 105 

1c 187 160 

2a 

200 165 

186 80 

270 193 2b 190 80 

2c 193 160 

3a 

200 165 

190 105 

270 193 3b 192 105 

3c 197 160 

4a 
400 270 

285 180 
303 210 

4b 287 145 

5a 
400 270 

291 60 
303 210 

5b 295 90 

6a 
600 350 

400 110 
337 227 

6b 405 170 

7a 
800 365 

425 85 
303 240 

7b 435 150 

8a 

200 165 

182 105 

270 193 
8b 178 105 

8c 187 105 

8d 175 105 

9a 

400 270 

295 145 

303 210 
9b 296 145 

9c 297 145 

9d 275 230 

10a 
200 165 

195 80 
270 193 

10b 190 80 

11a 
400 270 

305 145 
303 210 

11b 295 180 

12a 

200 165 

170 80 

270 193 12b 182 105 

12c 185 80 

13a 

400 270 

275 360 

303 210 13b 295 145 

13c 297 180 

14a 
200 165 

195 160 270 193 

14b 220 80 270 193 

15 200 165 175 160 270 193 
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       (a)  (b) 

Fig. 3 Assumed hardening/softening functions for elasto-plastic FE calculations: (a) ζc=f(
1 ) in 

compression, (b) ζt = f( 2 ) in tension (ζt – tensile stress, ζc – compressive stress, i – non-local 

softening parameter) 
 

  

   (a)      (b) 

  

             (c)                               (d) 

Fig. 4 Calculated force-displacement curves within enhanced elasto-plasticity as compared to the 

experimental ultimate vertical force for different reinforced concrete beams: (a) h = 200 mm, (b) h 

= 400 mm, (c) h = 600 mm, (d) h =  800 mm (V – resultant vertical force, u – vertical 

displacement) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Distribution of calculated non-local tensile softening parameter 2  within elasto-plasticity 

at failure for different beams: (a) h=200 mm, (b) h=400 mm, (c) h=600 mm, (d) h=800 mm                                                

(note that beams are not proportionally scaled) 

 

 
(a) 

 
(b) 

 
(C) 

Fig. 6 Distribution of calculated non-local compressive softening parameter 1  within enhanced 

elasto-plasticity for different reinforced concrete beams at vertical displacement of u = 10 mm: (a) h = 

200 mm, (b) h = 400 mm, (c) h = 600 mm, (d) h = 800 mm (note that beams are not appropriately 

scaled) 
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(d) 

Fig. 6 Continued 

 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 

Fig. 7 Distribution of calculated non-local compressive softening parameter 2  within enhanced elasto-

plasticity for different reinforced concrete beams at vertical displacement of u = 10 mm: (a)  h = 200 mm, 

(b) h = 400 mm, (c) h = 600 mm, (d) h = 800 mm (note that beams are not appropriately scaled) 

 

 

The calculated failure forces are in a satisfactory agreement with the experimental ones               

(Table 3), but are always larger by 10%–20% than the experimental ones (the difference is larger 

for larger beams). Since a change of material parameters such as lc, Gf, Gc and uo have not 

improved the results (Table 2), it is necessary to use a curved yield surface in compression or to 

decrease the tensile strength or internal friction angle. The geometry of localized zones matches 
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the experimental crack pattern (Fig. 7), although some differences exist, as e.g. the number of 

bending localized zones in experiments is smaller than in FE analyses with h = 600 and h = 800 

mm. This indicates that too large tensile fracture energy was assumed in calculations. The vertical 

and inclined long and short localized zones (location and inclination) were numerically well 

captured. The calculated crack pattern is obviously symmetric in contrast to the experimental one. 

The widths of calculated tensile and compressive localized zones were about wf = wc = 4  lc.                 

(Figs. 5 and 6). In turn, the calculated average spacing s of main localized tensile zones was: s = 

80 mm (h = 200 mm), s = 90 mm (h = 400 mm), s = 170 mm (h = 600 mm) and s = 150 mm (h = 

800 mm), respectively. 

The calculated spacing of localized zones s was also compared with the average crack spacing 

according to CEB-FIP (1990) and Lorrain et al. (1998) (see Table 3). The crack spacing by             

Lorrain et al. (1998) is equal to 

mm 193
011.0

16
1.0325.11.05.1 



scs  (h=200 mm)                (36) 

mm 210
011.0

18
1.0315.11.05.1 



scs  (h=400 mm)                (37) 

mm 227
011.0

20
1.0305.11.05.1 



scs  (h=600 mm)                (38) 

mm 240
011.0

18
1.0515.11.05.1 



scs  (h=800 mm)               (39) 

where in øs = 16 - 20 mm is the mean bar diameter, ρ = 1.1% denotes the reinforcement ratio and c 

= 30 - 51 mm denotes the concrete cover. The calculated (and experimental) spacing of localized 

zones, 80 - 170 mm, is significantly smaller than these obtained with the analytical formula by 

Eqs.3 - 39 (193 - 240 mm).  

 
5.2 Enhanced isotropic damage model 

 
The following parameters were assumed: E = 28.9 GPa, υ = 0.2, κ0 = 0.0001, α = 0.95 and β = 

500, k = 10, α1 = 0.1, α2 = 1.16, α3 = 2.0 and γ = 0.2 (damage approaches by Eqs. (8) - (10)). Figs. 8 

and 9 present the results within damage mechanics using the model by Eqs. (8) and (10) (the 

results using Eq. (9) were similar to those by Eq. (8)). 

The force-displacement curves are very similar to those obtained with an elasto-plastic model. 

The calculated forces at failure are always larger by 2% – 20% than the experimental ones (the 

difference is greater for a higher beam). To obtain a better accordance, the material constant κ0   

(which is the treshold parameter controling the damage growth) should be smaller. This would 

cause the damage to develop faster and to decrease the calculated ultimate force. The maximum 

force decreases also with decreasing material constants  and β (Section 3.2).  

Large discrepancies occur in the distribution of localized zones when using an isotropic damage 

model. A tensile type vertical localized zone at the bottom mid-point was obtained only. The 

inclined localized zones were not obtained in FE analyses. 
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    (A)    (B) 

Fig. 8 Calculated force-displacement curves within enhanced isotropic damage mechanics as compared 

to experimental maximum vertical force for two reinforced concrete beams: A) h = 400 mm, B) h = 600 

mm, (a) equivalent strain measure by Eq. (8), (b) equivalent strain measure by Eq. (10) (V – resultant 

vertical force, u – vertical displacement) 

 

(A) 

  
    (a) (b) 

(B) 

  
    (a) (b) 

Fig. 9 Distribution of calculated non-local equivalent strain measure within enhanced damage 

mechanics in two reinforced concrete beams at failure: (A) h = 400 mm, (B) h = 600 mm, a) equivalent 

strain measure by Eq. (8), b) equivalent strain measure by Eq. (10) 

 

  
   (a)    (b) 

Fig. 10 Calculated force-displacement curves with enhanced smeared crack approach (as compared to the 

experimental maximum vertical force) for different reinforced concrete beams: (a) h = 200 mm, (b) h = 400 

mm, (c) h = 600 mm, (d) h = 800 mm (V – resultant vertical force, u – vertical displacement) 
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   (c)    (d) 

Fig. 10 Continued 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11 Distribution of calculated maximum cracked strain in principal/local direction within enhanced 

smeared crack approach in different reinforced concrete beams at failure: (a) h = 200 mm, (b) h = 400 

mm, (c) h = 600 mm, (d) h = 800 mm (note that beams are not proportionally scaled) 

 
 

5.3 Enhanced smeared crack model 
 

The following parameters were assumed: E = 28.9 GPa, υ = 0.2, b1 = 3.0, b2 = 6.93, ft = 2.0 

MPa, εnu = 0.006. The results with a smeared rotating crack model are shown in Figs. 10 and 11. 

The force-displacement curves are very similar to those obtained with an elasto-plastic model. The 

calculated forces at failure are always larger by 5% - 20% than the experimental ones (the 

difference increases with increasing beam height). To obtain the lower failure force, plastic 

deformation should be taken into account (de Borst 1986). 
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The calculated geometry of localized zones within a smeared crack approach is similar to this 

within elasto plasticity except of beams with h > 400 mm where the localized zones are more 

diffuse and a high central bending crack forms. The effect of crack type assumed in the model 

(fixed or rotating crack model) was insignificant. 

 
5.4 Enhanced coupled elasto-plastic-damage model 

 

The following constants were assumed yt0 = 3.0 MPa (tension), yc
0 
= 30 MPa (compression), 

Hp=E/2 (in compression and tension), 0 = 1.1 × 10 - 4,  = 14º,  = 8º,  = 150,  = 0.90, η1 = 1.1,                       

η2 = 0.65, δ = 600, at = 0 and ac = 1 (damage was based on elastic strains, lc = 5 mm). The FE 

results are given in Figs. 12 and 13. A comparison of results with the coupled model and previous 

approaches is shown in Fig. 14. Note that the assumed initial tensile yield stresses yt
0 
= 3 MPa is 

different than the uniaxial tensile strength ft = 2 MPa in the elasto-plastic and smeared crack model 

due to the enforcement of the simultaneous activation of an elasto-plastic and a damage criterion to 

simulate both plastic deformation and stiffness degradation (Section 3.4). 

The force-displacement curves are quite similar to those obtained with the previous models. 

The calculated force at failure can be smaller by 3% (h = 200 mm) or higher by 2% (h = 400 mm), 

20% (h = 600 mm) and 23% (h = 800 mm) than the experimental one. The largest difference was 

again for the highest beam. To obtain a better match with respect to the vertical failure force, the 

material constants yc
0
 and κ0 should be smaller (Section 3.4). In addition, for the lower material 

 

 

  
   (a)     (b) 

  
    (c)     (d) 

Fig. 12 Calculated force-displacement curves with enhanced coupled elasto-plastic-damage model as 

compared to experimental maximum vertical force for four different reinforced concrete beams: (a) h = 

200 mm, (b) h = 400 mm, (c) h = 600 mm, (d) h = 800 mm (V – resultant vertical force, u – vertical 

displacement) 
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constants β, δ and η2, a more stiffer response of beams in a hardening regime occurred (the effect of η2 

was the most significant). In turn when these constants were higher, beams exhibited a less stiff 

esponse and a lower failure force. The effect of two other parameters α and η1 (describing the 

stress-strain curve at the residual state) on the failure force was negligible.  

At the beginning of a loading process, a straight localized zone first occurs in the mid-region, 

next curved zones are created and finally external the most inclined zones grow and lead to failure. 

In contrast to elasto-plastic solutions, a central high localized zone always occurs at h > 200 mm 

and a smaller number of localized zones occurs in the mid-region at h > 400 mm. The calculated 

patterns of localized zones within our coupled approach are close to the experimental ones. The 

inclination of major skew localized zones is similar. The secondary cracks in the central part of the 

beams are more diffused than in the experiments. The calculated very high localized zone at the 

beam mid-point was not observed in laboratory tests. The width of the calculated localized zones 

is roughly 3  lc. (Fig. 13). In turn, the calculated average spacing s of main localized zones is: s = 

80 mm (h = 200 mm), s = 120 mm (h = 400 mm), s = 190 mm (h = 600 mm) and s = 250 mm (h = 

800 mm), respectively.  

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13 Distribution of calculated non-local equivalent strain with enhanced coupled elasto-plastic-

damage model at failure for four different reinforced concrete beams: (a) h = 200 mm, (b) h = 400 mm, 

(c) h = 600 mm, (d) h = 800 mm (note that the beams are not proportionally scaled) 
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Fig. 14 Calculated force-displacement curves with different models as compared to the experimental 

ultimate vertical force (beam of h = 600 mm): a) elasto-plastic model b) smeared crack model,                    

d) damage mechanics model and e) coupled elasto-plastic-damage model 

 

 

 
 

Fig. 15 Calculated size effect in short reinforced concrete beams from FE analyses compared to 

experiments (Walraven and Lehwalter 1994) and to size effect law by Bažant (Bažant and Planas 

1998) (b – beam width, d – effective beam height, fc – compressive strength of concrete, Vu – 

ultimate vertical force): a) experiments, b) FE calculations (elasto-plasticity), c) FE calculations 

(smeared crack model), d) FE calculations (damage mechanics), e) FE calculations  (coupled elasto-

plastic-damage model), f) size effect law by Bažant 

 
 
5.4 Deterministic size effect 
 

Fig. 15 shows a comparison between the calculated and experimental size effect: the relative 

shear stress Vu/(bdfc) at failure as a function of the effective beam depth. In addition, the size effect 

law by Bažant (Bažant and Planas 1998) is enclosed. The experimental and theoretical results are 

close to the size effect law. The experimental and theoretical beam strength shows strong size 

dependence. 
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6. Conclusions 
 

The FE-simulations have shown that four different continuum models enhanced by non-local 

softening are able to realistically capture the behaviour of short reinforced concrete beams without 

shear reinforcement subjected to shear-tension failure. From the obtained results the following 

conclusions can be derived: 

• The calculated strength of reinforced concrete beams of a different size overestimated the 

experimental one. The difference increased with increasing beam size (about 20% for the largest 

beam). Thus, the constitutive models need a further improvement to obtain a better accuracy. 

• The geometry of localized zones was in a good agreement within elasto-plasticity and coupled 

elasto-plasticity and damage, in a medium agreement with a smeared crack approach and 

completely wrong with isotropic damage mechanics. 

• The calculated spacing of localized tensile zones increased with increasing characteristic 

length, softening rate and beam height and decreasing fracture energy and bond stiffness within 

elasto-plasticity. The tensile fracture energy was about Gf = 50 N/m and compressive fracture 

energy was Gc = 1500 N/m in elasto-plasticity. 

• The width of the calculated localized zones was about (3 - 4)  lc. 

• The calculated and experimental spacing of localized zones was significantly smaller than this 

from available analytical formulae. 

• A deterministic size effect was satisfactorily described. 

To obtain a better match of FE results with experiments, more refined continuum models could 

be used. A more advanced concrete model in compression can be implemented in elasto-plasticity 

(e.g. model proposed by Menetrey and Willam 1995). In addition, the evolution of internal friction 

and dilatancy against plastic deformation should be taken into account. Within a smeared crack 

approach, plasticity can be added (de Borst 1986). In the case of a coupled elasto-plastic-damage 

model, anisotropy may be considered. Other alternative to improve our FE results is to apply 

macro-continuum models to reinforced concrete elements considered at meso-scale (Gitman et al. 

2008, Skarżyński and Tejchman 2010). 
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