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Abstract.  The purpose of this study is to present different composed material models for reinforced 
concrete structures (RC). For this aim a nonlinear finite element analysis program is coded in MATLAB. 
This program contains several yield criteria and stress-strain relationships for compression and tension 
behavior of concrete. In this study, the well-known criteria, Drucker-Prager, von Mises, Mohr Coulomb, 
Tresca, and two new criteria, Hsieh-Ting-Chen and Bresler-Pister, are taken into account. It is concluded that 
the coded program, the new yield criteria, and the models considered can be effectively used in the nonlinear 
analysis of reinforced concrete beams. 
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1. Introduction 
 

It is generally not possible to obtain the non-linear response and the failure behavior of 
concrete by using conventional linear procedures since concrete material has a complex behavior 
under monotonic or cyclic loading. In order to predict the behavior of reinforced concrete 
structures more reliable, several studies have been made in the field of nonlinear analysis of RC 
structures. Köksal et al. (2009) made a practical approach for modeling FRP wrapped concrete 
columns by using Drucker-Prager criterion. Wang and Hsu (2001) applied the nonlinear finite 
element analysis to different types of RC structures using a new set of constitutive models. Bratina 
et al. (2004) presented a study on materially and geometrically nonlinear analysis of RC planar 
frames by dealing with the fiber-based constitutive equations of concrete and steel. Zhao et al. 
(2004) studied the load-deflection and failure characteristics of deep RC coupling beams. Pankaj 
and Lin (2005) used two similar continuum plasticity material models to examine the influence of 
the material modeling on the seismic response of RC frame structures. Belmouden and Lestuzzi 
(2007) investigated the post peak modeling and nonlinear performance of RC structural walls. 
Bischoff (2001), Bischoff (2003), Stramandinoli and Rovere (2008), and Dede and Ayvaz (2009) 
studied on RC structures by using tension stiffening effect. Barros and Martins (2012) presented a 
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study on nonlinear analysis of service stresses in Reinforced Concrete sections-closed form 
solutions. Mahini and Ronagh (2011) made a numerical model for monitoring the hysteretic 
behaviour of CFRP-retrofitted RC exterior beam-column joints. 

Constitutive models proposed for RC can be classified into orthotropic models, nonlinear 
elastic models, plasticity models, endochronic models, fracture mechanics models and 
micromodels (Ayoub and Flippou 1998). Among these models, plasticity models, which frequently 
used because of its simple and direct representation of multiaxial stress (Park and Kim 2005), need 
a yield function, a hardening rule, a flow rule and a stress-strain relationship to construct the 
plastic material matrix for the plastic behavior of concrete.  

A review of the literature indicates that there are not any studies based on the Bresler-Pister and 
Hsieh-Ting-Chen criteria for the plastic behavior of concrete. This yield function can be found in 
the books concerning with the plasticity theory, but its plasticity material matrix or any application 
of this function to the RC structures is not found.  

In this paper, derivation of plastic material matrix based on Bresler-Pister and Hsieh-Ting-Chen 
yield function and the applications of these functions to the RC beams are presented. For this aim, 
a nonlinear finite element analysis program is coded in MATLAB. This program contains several 
yield criteria and stress-strain relationships for the compression and tension behavior of concrete. 
In the nonlinear analysis, the well-known criteria, Drucker-prager, von Mises, Tresca and Mohr 
Coulomb and new criteria, Bresler-Pister and Hsieh-Ting-Chen are taken into account. The elastic-
perfectly plastic and Saenz stress-strain relationships in compression behavior of concrete and 
tension stiffening in tension behavior of concrete are used with four different yield criteria 
mentioned above.  
 
 
2. Composed material matrix for RC 
 

The material matrix of a reinforced concrete finite element is constructed to be the sum of the 
material matrices of the concrete and reinforcement. In this calculation, the reinforcement 
embedded in the concrete elements is represented by an equivalent element. The material matrices 
of reinforced concrete element are given, respectively, as 
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where Dc and Ds are the material matrices of concrete and equivalent reinforcement elements, 
respectively. Es is the modulus of elasticity of reinforcement, ρx and ρy are the reinforcement ratios 
in global directions of the x and y axes, respectively. 
 
 
3. Constitutive modeling of concrete 
 

In this section, the derivation of material stiffness matrix of reinforced concrete is presented for 
plane stress problem.  
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3.1 Yield criteria for concrete 
 
The concrete is assumed to be elastic until it reaches the yield limit. Beyond yielding, plastic 

deformations take place. So, plastic deformations remain after removing the loading. The well-
known criteria, Drucker-Prager, von Misses, Mohr coulomb and Tresca, and new criteria, Bresler-
Pister and Hsieh-Ting-Chen are used to construct the plastic material stiffness matrix for concrete 
material.  

The well-known yield functions for Drucker Prager, von Mises, Mohr Coulomb and Tresca are 
given by the following equations, respectively (Chen 1982). 

kJIf  21                             (2) 

kJf  2                                (3) 

   cos3cos)sin3(3sin)sin1(3
2

1
sin 21  JIf             (4) 

f= 4J2
3 – 27J3

2 – 36k2J2
2 + 96k4 J2 – 64k6                           (5) 

where  and k are the material parameters, c is cohesion,  is the internal friction angle, I1 is the 
first invariant of stress tensor, J2 is the second invariant of deviator stress tensor, J3 is the third 
invariant of deviator stress tensor, and  is the angle of similarity, and cos(3) is given by the 
following equation. 

2/3
2

3

2

33
)3cos(

J

J
                             (6)  

The Bresler-Pister criterion (Bresler and Pister 1958) is the extension of Drucker Prager 
criterion. This yield function in terms of octahedral stresses is given by Eq. (7). The failure 
envelope and -plane of Bresler-Pister criterion are given in Fig. 1. 
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where a, b, and c are the material parameters of this yield criterion, fʹc is the uniaxial compressive 
cylinder strength, σoct is the octahedral normal stress and τoct is the octahedral shear stress. The 
octahedral normal and shear stresses are given by the following equations, respectively. 
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Substituting Eq. (8) into Eq. (7) and rewriting Eq. (7), the Bresler-Pister yield criterion in terms 
of stress invariant can be obtained, and it is given as 
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Fig. 1 (a) Failure envelope and (b)  - Plane of bresler-pister criterion 

  

 
Fig. 2 (a) Failure envelope and (b)  - Plane of Hsieh-Ting-Chen criterion 
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The Hsieh-Ting-Chen criterion (Hsieh et al. 1979) is given by Eq. (10). Failure envelope and -
plane of Hsieh-Ting-Chen criterion are given in Fig. 2. 
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where a, b, c, and d are the material parameters of this yield criterion. 
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3.2 Elastic and plastic parts of material matrix for RC material 
 
In the plasticity theory, the total strain can be assumed to be the sum of the elastic strain and 

plastic strain as given by Eq. (11), and stress increment, dij, for strain increment, dij, is given by 
Eq. (12) (Chen 1984). 

 dεij = d εij
e+d εij

p                                           (11) 

 ijij dDd
ep

ijkl
                              (12) 

where ijklD is the elastic-plastic material matrix. In the case of associated flow rule the general form 

of this matrix is given as  

 p
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ijkl DDD                              (13) 

where ep
ijklD  is the elastic material matrix. The plastic material matrix is calculated as 
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where  is von Mises effective stress 23J and Hp is the slope of uniaxial stress-strain curve. 
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where 
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By taking the derivatives of Eq. (9) with respect to I1, J2 and J3, the following equations can be 
obtained for Bresler-Pister yield criterion. 
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Similar derivatives of Eq. (9) with respect to I1, J2 and J3 yield the following equations for 
Hsieh-Ting-Chen yield criterion. 
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The gradient
ij

I
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 1  and 
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J


 2 are called to be the kronecker delta and deviatoric stress tensor, 

respectively, and they are given in Eqs. (22) and (23), respectively. 
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By substituting Eq. (19), Eq. (22) and Eq. (23) into Eq. (17), the following equation can be 
obtained for Bresler-Pister criterion.  
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By substituting Eq. (18), Eq. (20), Eqs. (22) and (23) into Eq. (17), the following equation can 
be obtained for Hsieh-Ting-Chen criterion.  

ij

ij

ij
ij

t
Jh

cb

s
Jh

cb

a

b

d
h

f

32

222

2

cos
1

2a

bsin
         

cos
1

2

sin

2J

1
         

3

3











 






















 
























               (25) 

The gradient 

f

given in Eq. (14) can be obtained based on Bresler-Pister and Hsieh-Ting-

Chen criteria, and they are given in Eqs. (26) and Eq. (27), respectively. 
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4. Stress-strain curves for concrete 
 

In order to define stress-strain relationship for concrete, several stress-strain curves are 
proposed by researchers (Wang and Hsu 2001, Hognestad 1951, Popovics 1973, Collins and 
Porasz 1989, Saenz 1964, Hoshikuma et al. 1996, Park and Paulay 1975, Desayi and Krishnan 
1964, Bentz 1999, Izumo et al. 1992). The Saenz (1964) and elastic-perfectly plastic stress-strain 
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Fig. 3 Stress-strain curve of (a) Saenz and (b) elastic-perfectly plastic model for concrete under 
compression 

 

 
Fig. 4 Stress-strain curve of (a) Wang and Hsu (2001) and (b) Vecchio 1982 model for concrete 
under tension 

 
 

relationships used for the behavior of concrete in compression are given in Eq. (29) and in Eq. 
(30), respectively, and they are illustrated in Fig. 3. 
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where εf and σf are the control point coordinates on descending branch of stress-strain curve, c is 
the concrete compressive stress, c is the concrete compressive strain, p is the peak concrete 
compressive stress, p is the concrete compressive strain corresponding to p, and E is the modulus 
of elasticity of concrete. 

The stress-strain curve of concrete in tension proposed by Wang and Hsu (2001) is shown in 
Fig. 4(a). The ascending and descending branches of this curve are given by the following 
equation. 
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where t is the concrete tensile stress, t is the concrete tensile strain, cr is the concrete cracking 
stress, and cr is the concrete cracking strain. 

The other stress-strain curve of concrete in tension used in this paper is Vecchio 1982 curve. 
This curve is shown in Fig. 4(b) and its stress-strain relationship (Wong 1992) is given by the 
following equation. 
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5. Numerical examples 
 

The applicability and verification of the developed program are demonstrated by comparing the 
results obtained in this study with the experimental and analytical results of different RC beams: 
Bresler-Scordelis beam, J4 beam and Shear Panel Beam. 
 

5.1 Bresler-Scordelis beam 
 

The first RC member used to validate the program coded is Bresler-Scordelis beam. It is simply 
supported RC beam (Wang and Hsu 2001, Bresler and Scordelis 1964) and is shown in Fig. 5. The 
longitudinal reinforcement consists of 4 steel bars with the total area of 2580 mm2. The concrete 
has a compressive strength of 24.5 MPa and elastic modulus of 21300 MPa. The elastic modulus 
of reinforcement is 191400 MPa. 

In the finite element modeling, 4-noded rectangular plane-stress element is used. This element  
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Fig. 5 Geometry and cross-section of bresler-scordelis beam 

 

 
Fig. 6 Finite element modeling of bresler-scordelis beam 

 
 

has two displacement degrees of freedom at a point and 8 displacement degrees of freedom in an 
element. Perfect bond between concrete and reinforcement is assumed.  

Since the method used herein is a numerical method, the finite element method, there is always 
some error in the results, depending on the mesh size used to solve the problem. Therefore, for the 
sake of accuracy in the results, rather than starting with a finite element mesh size, the mesh size to 
produce the desired accuracy is determined. To find out the required mesh size, convergence of the 
maximum displacement is checked for different mesh sizes. In conclusion, the results have an 
acceptable error when using approximately 70 elements. Therefore, 70 elements which is also the 
number of the elements used in the literature are used in this study in order to compare the results 
obtained in this study with the experimental and theoretical results given in the literature. Finite 
element modeling of this beam is given in Fig. 6.  

The results of the nonlinear analysis of this beam by using different yield criteria with two 
different tension stress-strain curves (Wang and Hsu 2001, Vecchio 1982) for the tension behavior 
of concrete and with two different compression stress-strain curves (elastic-perfectly plastic and 
Saenz) for the compression behavior of concrete are given in Fig. 7. These results are compared 
with each other and with the experimental result taken from the literature (Wang and Hsu 2001). 
As seen from this figure, the load-displacement curves obtained in this study are in good 
agreement with the experimental result.  
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Fig. 7 Load-displacement curves of Bresler-Scordelis beam based on different yield criteria (a) 
for Wang and Hsu (2001) in tension and elastic-perfectly plastic in compression, (b) for Wang 
and Hsu (2001) in tension and Saenz in compression, (c) for Vecchio 1982 in tension and 
elastic-perfectly plastic in compression and (d) for Vecchio 1982 in tension and Saenz in 
compression behavior of concrete. 

 

 
Fig. 8 Geometry and cross-section of J4 beam 
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Fig. 9 Finite element modeling of J4 beam 

 

 
Fig. 10 Load-displacement curves of J4 beam based on different yield criteria (a) for Wang and 
Hsu (2001) in tension and elastic-perfectly plastic in compression, (b) for Vecchio 1982 in 
tension and Saenz in compression behavior of concrete. 

 
 
5.2 Simply supported J4 beam 
 
The second RC member used to validate the program coded is J4 beam. It is simply supported 

(Demir 1998, Burns and Siess 1962) and is shown in Fig. 8. The longitudinal reinforcement 
consists of 2 steel bars with total area of 1021 mm2. The concrete has a compressive strength of 33 
MPa and elastic modulus of 26200 MPa. The elastic modulus of reinforcement is 203000 MPa.  

The finite element mesh convergence of this beam is also studied. It is concluded that the 
results have an acceptable error when using approximately 45 elements. This element number is 
also the number of the elements used in the literature. Therefore, using this element number makes 
the comparison of the results obtained in this study with the experimental and theoretical results 
given in the literature possible. Finite element modeling of this beam is given in Fig. 9.  

The results of the nonlinear analysis of this beam by using different yield criteria with two 
different tension stress-strain curves (Wang and Hsu 2001, Vecchio 1982) for the tension behavior 
of concrete and with two different compression stress-strain curves (elastic-perfectly plastic and 
Saenz) for the compression behavior of concrete are given in Fig. 10. These results are compared 
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with each other and with the experimental (Burns and Siess 1962) and analytical results (Demir 
1998, Barzegar and Schnobrich 1962). As seen from this figure, the load-displacement curves 
obtained in this study are in good agreement with the experimental and analytical results. Also, the 
results of new criteria, Bresler-Pister and Hsieh-Ting-Chen, show good agreement with the results 
obtained by using the other criteria and with the experimental and analytical results.  

 
 

 
Fig. 11 Geometry and cross-section of shear panel beam 

 

 
Fig. 12 Finite element modeling of panel beam 
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Fig. 13 Load-displacement curves of shear panel beam based on different yield criteria for (a) 
Wang and Hsu (2001) in tension and elastic-perfectly plastic in compression, (b) Vecchio 1982 
in tension and Saenz in compression behavior of concrete. 

 
Table 1Reinforcement ratios 

Elements Reinforcement ratio 
 Direction Panel Ribs 

1-7 
x 0.0092 0.0023 
y 0.0092 0.0047 

8-35 
x 0.0183 0.0047 
y 0.0092 0.0047 

 
 
5.3 RC shear panel beam 
 
The third RC member used to validate the program coded is shear panel beam. It is used by 

many researchers and is shown in Fig. 11. The reinforcement ratios of this structure are given in 
Table 1. The concrete has a compressive strength of 26.8 MPa and elastic modulus of 20,000 MPa. 
The elastic modulus of reinforcement is 190,000 MPa.  

The finite element mesh convergence of this beam is also studied. It is concluded that the 
results have an acceptable error when using approximately 35 elements. This element number is 
also the number of the elements used in the literature. Therefore, using this element number makes 
the comparison of the results obtained in this study with the experimental and theoretical results 
given in the literature possible. Because of the symmetry in geometry and loading, half part of this 
beam is modeled and finite element modeling of half part of this beam is given in Fig. 12.  

The results of the nonlinear analysis of this beam by using different yield criteria with two 
different tension stress-strain curves (Wang and Hsu 2001, Vecchio 1982) for the tension behavior 
of concrete and with two different compression stress-strain curves (elastic-perfectly plastic and 
Saenz) for the compression behavior of concrete are given in Fig. 13. These results are compared 
with each other and with the experimental (Cervenka and Gerstle 1971) and analytical results 
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(Shayanfar et al. 1997, Darwin and Pecknold 1976, Kwak and Kim 2001).  
As seen from this figure, the load-displacement curves obtained in this study are in good 

agreement with the experimental and analytical results. Also, the results of new criteria, Bresler-
Pister and Hsieh-Ting-Chen, show excellent agreement with the results obtained by using the other 
criteria and with the experimental and analytical results. 
 
 
6. Conclusions 
 

Analytical models are presented for the nonlinear behavior of reinforced concrete structures. 
Based on the Bresler-Pister and Hsieh-Ting-Chen yield functions, plastic material matrices for 
concrete material are constructed. Also, different stress-strain curves of concrete for tension and 
compression behavior are taken into account and the well-known criteria, Drucker-Prager, von 
Mises, Tresca and Mohr coulomb are also used for the plastic behavior of concrete. 

The computer program coded in this study is useful for predicting the behavior of reinforced 
concrete structures. This program contains the well-known criteria (Drucker-prager, von Mises, 
Tresca and Mohr Coulomb), new criteria (Bresler-Pister and Hsieh-Ting-Chen), stress-strain 
curves for the compression behavior of concrete (elastic-perfectly plastic and Saenz model), and 
tension stiffening model (Wang and Hsu 2001, Vecchio 1982 model).  

The proposed models, Bresler-Pister and Hsieh-Ting-Chen criteria can be effectively used in 
the nonlinear analysis of reinforced concrete beams. 
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