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Abstract.  This paper presents a study on the prediction of transfer length of 13 mm seven-wire 
prestressing steel strand in pretensioned prestressed concrete members with rectangular cross-section 
including several material properties and design and manufacture parameters. To this end, a carefully 
selected database consisting of 207 different cases coming from 18 different sources spanning a variety of 
practical transfer length prediction situations was compiled. 16 single input features and 5 combined input 
features are analyzed. A widely used feedforward neural regression model was considered as a 
representative of several machine learning methods that have already been used in the engineering field. 
Classical multiple linear regression was also considered in order to comparatively assess performance and 
robustness in this context. The results show that the implemented model has good prediction and 
generalization capacity when it is used on large input data sets of practical interest from the engineering 
point of view. In particular, a neural model is proposed -using only 4 hidden units and 10 input variables- 
which significantly reduces in 30% and 60% the errors in transfer length prediction when using standard 
linear regression or fixed formulas, respectively. 
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1. Introduction 
 

According to the ACI Code 318-11 (2011), the transfer length (TL) is defined as the distance 

over which the strand should be bonded to the concrete to develop the effective prestress in the 

prestressing strand (see Fig. 1). The TL is an important parameter for pretensioned, prestressed 

concrete (PC) structural design (Russell and Burns 1996, Barnes et al. 2003). The accuracy of any 

attempt to predict the specific location of the critical sections for checking stresses in the end 

region of pretensioned, PC members depends upon the accuracy of the estimation of the TL 

(Barnes et al. 2003). There are many expressions from authors and Codes available in the 

literature, which can be used to predict TL in the design exercise (Martí-Vargas et al. 2012b). 
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Fig. 1 Strand stress variation along a pretensioned concrete member after release 

 

 

Several expressions are derived from theoretical studies based on the relationship between the 

strand end slip and the TL (Guyon 1953, Balázs 1993, Martí-Vargas et al. 2007b), and others are 

based on the equilibrium of the transfer bond force over the TL of prestressing strands and the 

developed force in the prestressing strand assuming the hypothesis of uniform bond stress (ACI 

2011, Martí-Vargas et al. 2007a). 

Bond strength as well as TL depend on the properties of both the prestressing strand and the 

concrete and also on several design and manufacture parameters (CEB 1987, FIB 2000). These 

properties and parameters include: concrete strength at the time of detensioning, level of prestress 

at detensioning, concrete cover, strand spacing, size of the cross-section, strand size and type, 

strand surface condition, detensioning method (sudden, gradual), etc. However, there is no 

consensus on the main parameters to be considered in the equations to predict the TL (Martí-

Vargas et al. 2012a). An example of such is the ACI Code (2011) provisions for TL that are not a 

function of concrete strength. On the other hand, the Eurocode 2 (CEN 2004) and the CEB-FIP 

Model Code (FIB 2010) provisions for TL consider the concrete properties. 

The TL may be determined experimentally (Martí-Vargas et al. 2006a, 2012c), and several 

experimental research works on bond of prestressing strands have been conducted over the years. 

Three experimental methods to determine TL are frequently used: the longitudinal concrete surface 

strain profile (Thorsen 1956), the prestressing strand end slip (Guyon 1953), and the prestressing 

strand force at several cross-sections (ECADA test method (Martí-Vargas et al. 2006a). There are 

several inherent difficulties to obtain reliable measures for TL: Slope-Intercept method 

(Deatherage et al. 1994) and the 95% Average Maximum Strain method (Russell and Burns 1996) 

are attempts for best-fit methods from concrete strain profiles; there is a larger scatter of 

experimental results from strand end slip (Martí-Vargas et al. 2007b), and excessive free end slip is 

registered in prestressed members with poor concrete consolidation around the strand, (Balogh 

1992) and the application of the ECADA test method requires an adequate simulation of the 

sectional rigidity of the specimens (Caro et al. 2013). 

The effect on TL of the aforementioned properties and parameters are usually described by 

using regression analysis and statistical models (Martí-Vargas et al. 2006b, Kose 2007, García-
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Taengua et al. 2011). Based on Martí-Vargas et al. (2007a) and Caro et al. (2012), Eq. (1) presents 

a parametric form for most of the proposed equations from authors and Codes in the literature 
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where 

Lt = transfer length 

fpx = stress in prestressing strand (possible values: initial effective stress fsi; long-term effective 

stress fse; stress in prestressing strand at the time of tensioning fpt; stress in prestressing strand just 

before detensioning fp0; ultimate tensile strength of prestressing strand fpu) 

n = exponent 

Ap = cross-sectional area of prestressing strand 

k1 = perimeter factor (k1=1 for circular cross-section; k1= 4/3 for seven-wire strand)  

db = nominal diameter of prestressing strand 

Ut = average bond stress along the transfer length 

k2 = adjustment constant 

β = factor account for release method 

 

As observed in Eq. (1), a few properties and parameters are included. Also, agreeing with Kose 

and Kayadelen (2010), generally these equations give accurate results only for the experimental 

data used in the corresponding development and cannot be generalized for results and data from 

other studies. The prediction of TL can also be tackled as a learning problem in the context of 

statistical machine learning and intelligent data mining (Bishop 1995). In this case, none or very 

little a priori knowledge about the physical problem being studied is explicitly considered and only 

particular cases or examples including all input and output measurements are used. 

Several data mining methods, including knowledge-based systems, heuristic algorithms, fuzzy 

logic and neural networks, are available to optimizing the prediction of a certain output parameter. 

Though many of these methods on concrete structures design and prediction have been developed 

in recent years (Yeh 2008, Parichatprecha and Nimityongskul 2009, Bilgehan and Turgut 2010, 

Huang et al. 2010, Martínez et al. 2010, Yepes et al. 2012), the earliest studies date back to the 

1990s: as an example, Adeli and Yeh (1989) present the first journal article on neural network 

application in structural engineering. A review of neural networks in civil engineering can be 

found in Adeli (2001), and a complete example of application of these methods on concrete 

properties is presented in Chou (2011). However, a few studies have proposed approaches for 

modelling the steel-concrete bond phenomenon: artificial neural networks (ANNs) (Sancak 2009, 

Dahou et al. 2009) and fuzzy logic (Tanyildizi 2009) are used in reinforced concrete, and only the 

works presented in Kose (2007) and Kose and Kayadelen (2010) investigate and demonstrate the 

usability and the efficiency of several techniques (artificial neural network, neuro-fuzzy inference 

system, and genetic expression programming) in PC. 

Therefore, as the application of data-mining methods is relatively scarce in PC, the main 

purpose of this work is to analyze the accuracy and robustness in ANN based prediction of TL of 

13 mm seven-wire prestressing steel strand in pretensioned, PC members with rectangular cross-

section including several material properties and design and manufacture parameters. To this end, 

a carefully selected database spanning a variety of practical TL prediction situations was compiled. 
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The widely used ANN model has been considered as a representative of Machine Learning 

methodologies along with several analytical models and the classical multiple linear regression in 

order to assess performance and robustness in this engineering context. 
 

 

2. Selection of data collection 
 

The experimental data set has been collected from an extensive literature review on 

experimental research works, which report measured values of TL. Several requirements were 

established on materials (concrete and prestressing strand), prestressed members features, and 

design and manufacture parameters. These requirements were focused on pretensioned, PC 

members with rectangular cross-section using 13 mm seven-wire prestressing steel strand. 

Data sets described in the literature are often incomplete and contain unexpected inaccuracies. 

Consequently, making use of all available information from data constitutes a challenging problem 

in itself. For example, usually the concrete compressive strength at prestress transfer is reported. 

However, parameters as the age of concrete at prestress transfer, or the conservation conditions, 

are seldom reported. The experimental database used in Kose (2007) to predict the TL of 

prestressing strands in PC beams with different shaped cross-sections using neural networks 

includes 84 cases from 9 different sources, and 7 input variables (strand diameter, geometric ratio, 

strand surface, % debonded, number of plateau in strain profile, effective prestress, concrete 

strength) are considered. In the present work, an important effort was made to have a 

homogeneous data collection with a significantly larger number of input variables (properties and 

parameters). A total of 16 single or primary input variables and 5 combined (including some 

relations between variables and a normalized variable to analyze their effects), higher order input 

variables were set up for the present study (Table 1). The explicit use of these combined input 

variables that are similar to the ones in the standard formulae is aimed at discovering similarities 

and differences between the way classical and adaptive regression models give importance to 

inputs (Section 5.3). 

Only sources reporting all the aforementioned input variables are used. Also, only data 

concerning the focused requirements within a source are included. As a result, a total of 18 

different sources spanning a variety of practical TL prediction situations were selected, and a final 

set of 207 samples of TL determination was evaluated. Table 2 summarizes this data collection. 

The top value in a box corresponds to the maximum reported value and the bottom value in a box 

corresponds to the minimum reported value. 
 
 
3. TL prediction methods 
 

3.1 Classical prediction methods 
 
Given a convenient set of input variables and/or parameters, one can obtain predictions of TL 

or any other output variable basically in two opposite and sometimes complementary ways: 

a) By exploiting prior knowledge about the problem. It is mainly used in the domain specific 

literature that led to many prediction formulas currently used as standards. A convenient account 

on these is given in Martí-Vargas et al. (2007a). 

b) By using a method to learn a model from training data consisting of both input and output  
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Table 1 Input features included in the experimental data collection 

Input nº Designation Description Remarks 

1 db 
nominal diameter of prestressing 

strand 

in mm; selected  db = 12.4 to 12.9 

mm 

2 fpu 
nominal tensile strength of 

prestressing strand 
in MPa; no limitation 

3 Ap 
cross-sectional area of prestressing 

strand 
in mm

2
; no limitation 

4 ss strand surface uncoated; classified in bright or rusty 

5 ns 
number of prestressing strands in the 

cross-section of the member 
no limitation 

6 b width cross-section of the member in mm; no limitation 

7 h depth cross-section of the member in mm; no limitation 

8 cv vertical concrete cover in mm; no limitation 

9 ch horizontal concrete cover in mm; no limitation 

10 sep strand spacing 
in mm; no limitation; only if ns >1; 

sep =0 if ns =1 

11 transv transverse reinforcement no limitation 

12 fci 
concrete compressive strength at 

prestress transfer 

in MPa; no limitation; always normal 

weight concrete 

13 dest release method 
classified in sudden (S) or gradual 

(G) 

14 extr type of member end region 
classified in active-live (A) or 

passive-dead (P) 

15 fp0 
stress in prestressing strand just 

before release 
in MPa; no limitation 

16 Ap / Ac 
geometric ratio (Ac = concrete cross 

section) 
combined input 

17 fsi 
initial effective stress of prestressing 

strand 
in MPa; reported value or 0.9fp0 

18 fsi·db 
numerator in ACI 318 expression for 

transfer length 
combined input 

19 sqrt(fci) 
square root of  fci (related with 

concrete modulus) 
combined input 

20 fsi/sqrt(fci) 
relation present in expressions from 

several authors 
combined input 

21 modsep normalized strand spacing 

combined input; modsep 

=2·max(sep)  if ns =1 otherwise  

modsep = sep 

 

 

3.2 Prediction using Artificial Neural Networks 
 
One of the most widely accepted artificial neuron model, whose origin can be traced back to 

MacCulloch and Pitts (1950), consists of a summation element followed by a nonlinear, sigmoid-

like activation function f, as shown in Fig. 2. Given an input vector x = (x1,…,xd) the neuron 

computes f (w·x + w0), where the weight vector w = (w1,…,wd) and bias w0 are the parameters of 

the neuron unit. 

191



  T
ab

le
 2

 E
x
p

er
im

e
n
ta

l 
d

at
a 

co
ll

ec
ti

o
n
 s

u
m

m
ar

y
 

A
u

th
o
rs

 

Kaar et al. 

(1963) 

Hanson 

(1969) 

Holmberg 

and 

Lindgren 

(1970) 

Dorsten et 

al. (1984) 

Cousins et 

al. (1990) 

Nanni et al. 

(1992) 

Lane (1992) 

Mitchell et 

al. (1993) 

Issa et al. 

(1993) 

Uijl (1995) 

Russell and 

Burns 

(1996) 

Logan 

(1997) 

Russell and 

Burns 

(1997) 

Rose and 

Russell 

(1997) 

Mahmoud 

et al. (1999) 

Oh and Kim 

(2000) 

Kovács and 

Balazs 

(2004) 

Martí-

Vargas et al. 

(2006b) 

S
o
u

rc
e 

#
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

1
1
 

1
2
 

1
3
 

1
4
 

1
5
 

1
6
 

1
7
 

1
8
 

S
iz

e 
(#

 o
f 

te
st

s)
 

1
0
 

2
 

4
 

8
 

2
0
 

5
 

2
 

1
4
 

2
 

2
 

2
6
 

1
2
 

1
2
 

3
0
 

8
 

3
6
 

2
 

1
2
 

d
b
 

1
2
.7

 
1

2
.7

 
1

2
.7

 
1

2
.7

 
1

2
.7

 
1

2
.4

 
1

2
.7

 
1

2
.7

 
1

2
.4

 
1

2
.5

 
1

2
.7

 
1

2
.7

 
1

2
.7

 
1

2
.7

 
1

2
.7

 
1

2
.7

 
1

2
.7

 
1

2
.9

 

f p
u
 

1
7
5
0
 

1
7
2
5
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
7
2
0
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
8
6
0
 

1
7
7
0
 

1
8
6
0
 

A
p
 

m
ax

 
9

2
.8

8
 

9
6
.6

8
 

9
1
.5

0
 

8
9
.5

0
 

9
8
.6

8
 

9
8
.6

8
 

9
3
.0

0
 

9
8
.6

8
 

9
8
.6

8
 

1
0
8

.0
0
 

9
1
.2

 
9

8
.6

8
 

9
8
.7

1
 

9
8
.6

8
 

9
8
.6

8
 

9
9
.0

0
 

9
8
.6

8
 

1
0
0
 

9
9
.6

9
 

m
in

 

ss
 

m
ax

 
b

ri
g
h
t 

b
ri

g
h
t 

b
ri

g
h
t 

ru
st

y
 

b
ri

g
h
t 

b
ri

g
h
t 

b
ri

g
h
t 

b
ri

g
h
t 

ru
st

y
 

b
ri

g
h
t 

b
ri

g
h
t 

b
ri

g
h
t 

b
ri

g
h
t 

ru
st

y
 

b
ri

g
h
t 

b
ri

g
h
t 

ru
st

y
 

b
ri

g
h
t 

b
ri

g
h
t 

b
ri

g
h
t 

b
ri

g
h
t 

 
m

in
 

n
s 

m
ax

 
6
 

2
 

4
 

2
 

1
 

1
 

1
 

4
 

1
 

1
 

1
 

1
 

5
 

1
 

1
 

1
 

2
 

1
 

2
 

1
 

1
 

1
 

 
m

in
 

b
 

m
ax

 
2

1
2

.7
 

3
0
4

.8
 

2
0
0

.0
 

8
8
.9

 
1

2
7

.0
 

1
0
1

.6
 

1
2
0

.0
 

2
2
9

.0
 

1
0
2

.0
 

1
5
0

.0
 

1
0
0

.0
 

1
0
2

.0
 

8
7
.5

 
1

2
7

.0
 

1
0
1

.6
 

1
6
5

.1
 

1
0
2

.0
 

1
5
2

.4
 

1
0
0

.0
 

9
5
.0

 

1
7
6

.2
 

1
1

2
.7

 
8

0
.0

 
1

0
0

.0
 

 
m

in
 

h
 

m
ax

 
1

5
2

.4
 

2
0
3

.2
 

4
0
0

.0
 

1
1

4
.3

 
2

0
3

.2
 

1
0
1

.6
 

2
1
0

.0
 

2
2
9

.0
 

1
0
2

.0
 

2
2
5

.0
 

1
7
5

.0
 

1
6
2

.0
 

1
0
0

.0
 

3
3
0

.2
 

1
2
7

.0
 

3
0
4

.8
 

1
2
7

.0
 

3
0
4

.8
 

2
5
0

.0
 

9
5
.0

 
2

0
0

.0
 

1
2
0

.0
 

1
0
0

.0
 

 
m

in
 

cv
 

m
ax

 
6

9
.9

 
6

7
.3

 
3

3
.7

 
5

0
.8

 
6

3
.5

 

4
4
.5

 
6

3
.8

 
4

4
.7

 
4

3
.7

 
6

9
.8

 
3

7
.5

 
5

7
.2

 
4

4
.5

 
5

7
.2

 
4

4
.5

 
5

0
.8

 

4
1
.2

 

5
0
.0

 

3
0
.0

 
3

3
.7

 
4

3
.6

 
 

m
in

 

ch
 

m
ax

 
3

8
.1

 
6

0
.0

 
4

3
.7

 
3

8
.1

 
5

7
.2

 

4
4
.5

 
5

3
.8

 
4

4
.7

 
6

8
.7

 

4
3
.7

 
4

4
.8

 
3

7
.5

 
5

7
.2

 

4
4
.5

 
7

6
.2

 
4

4
.7

 
4

0
.0

 
4

3
.7

 

4
1
.2

 
5

0
.0

 
3

3
.7

 
4

3
.6

 
 

m
in

 

se
p
 

m
ax

 
8

5
.7

 
3

6
.5

 
9

8
.0

 
8

7
.3

 
--

 
--

 
--

 
1
1

4
.3

 
--

 
--

 
--

 
3

8
.1

 
--

 
--

 
4

7
.0

 
--

 
5

0
.8

 
2

5
.4

 
--

 
--

 
 

m
in

 

tr
a
n

sv
 

n
o
 

n
o
 

y
es

 
n

o
 

n
o
 

n
o
 /

 

y
es

 
n

o
 

n
o
 

n
o
 

n
o
 

n
o
 /

 

y
es

 
n

o
 

n
o
 

y
es

 
n

o
 /

 

y
es

 
n

o
 

n
o
 

n
o
 

f c
i 

m
ax

 
3

4
.9

 

1
0
.7

 
3

4
.2

 
2

6
.8

 

2
4
.0

 
2

7
.6

 
4

6
.3

 

2
8
.0

 

3
4
.6

 

2
9
.1

 
2

9
.8

 
5

0
.0

 

2
1
.0

 
4

0
.0

 
5

5
.2

 
3

2
.0

 

2
6
.6

 
2

9
.3

 
2

8
.9

 

1
9
.2

 

3
2
.3

 

2
7
.5

 

4
6
.0

 

3
5
.0

 

4
6
.7

 

3
2
.5

 
3

7
.6

 
5

4
.8

 

2
4
.2

 
 

m
in

 

d
es

t 
S

 
S

 
S

 
S

 
S

 
G

 
S

 
G

 
S

 
G

 
S

 
S

 
S

 
S

 
G

 
S

 
G

 
G

 

ex
tr

 
A

-P
 

A
-P

 
A

-P
 

A
-P

 
A

-P
 

A
 

A
 

A
-P

 
A

-P
 

A
-P

 
A

-P
 

A
-P

 
A

-P
 

A
-P

 
A

 
A

-P
 

A
-P

 
A

 

f p
0
 

m
ax

 
1

2
5
6

.9
 

1
1

7
9

.7
 

1
0
9
0

.8
 

1
3
2
5

.2
 

1
2
3
3

.4
 

1
3
8
5

.0
 

1
4
6
9

.4
 

1
3
4
0

.8
 

6
7
0

.4
 

1
3
9
5

.0
 

1
4
4
2

.0
 

1
2
9
8

.0
 

7
5
4

.0
 

1
5
7
5

.0
 

1
3
6
5

.2
 

1
3
4
4

.5
 

1
3
0
2

.0
 

1
4
0
6

.0
 

1
2
9
9

.0
 

1
3
9
5

.0
 

1
3
0
2

.0
 

1
3
9
5

.0
 

1
3
6
0

.0
 

1
4
0
2

.0
 

1
3
5
7

.5
 

 
m

in
 

f s
i 

m
ax

 
1
1

8
6

.6
 

1
0
0
8

.1
 

9
8
1

.7
 

1
2
5
3

.8
 

1
1

6
2

.1
 

1
2
8
7

.0
 

1
3
8
3

.8
 

1
2
2
9

.4
 

1
2
0
6

.7
 

6
0
3

.4
 

1
2
5
5

.8
 

1
3
7
4

.0
 

1
2
1
7

.0
 

6
7
8

.6
 

1
4
7
2

.0
 

1
2
2
8

.7
 

1
2
1
0

.1
 

1
2
7
6

.0
 

1
2
6
5

.4
 

1
1

6
9

.1
 

1
2
5
5

.5
 

1
2
2
7

.6
 

1
1
1
6

.0
 

1
2
5
5

.5
 

1
1

7
7

.0
 

1
3
3
7

.0
 

1
2
9
0

.0
 

 
m

in
 

L
t 

m
ax

 
1
1

0
4

.9
 

8
1
2

.8
 

6
6
0

.4
 

5
5
8

.8
 

6
7
3

.1
 

3
1
7

.5
 

8
6
3

.6
 

5
3
3

.4
 

1
8
7
9

.6
 

8
1
2

.8
 

1
4
5
0

.0
 

5
5
0

.0
 

1
0
1
6

.0
 

8
3
8

.2
 

7
1
0

.0
 

3
3
0

.0
 

4
8
2

.6
 

4
4
4

.5
 

3
0
8

.0
 

2
9
7

.0
 

1
1
1
7

.6
 

4
0
6

.4
 

1
3
4
6

.2
 

3
5
5

.6
 

1
5
2
4

.0
 

5
8
4

.0
 

7
1
3

.7
 

2
1
3

.4
 

6
0
0

.0
 

3
5
0

.0
 

8
9
8

.0
 

4
3
4

.0
 

7
0
0

.0
 

5
5
0

.0
 

6
5
0

.0
 

4
0
0

.0
 

 



 

 

 

 

 

 

Prediction of the transfer length of prestressing strands with neural networks 

 

These simple elements can be organized into layers so that the neurons in one layer feed the 

neurons in the next layer in such a way that the information flows along this network of neurons in 

a feed-forward way from the inputs to the outputs. It is clear that at least one hidden layer 

(following the input and preceding the output layers) is needed in order to have an effective 

nonlinear model. This is basically the well-known and widely used Multi Layer Perceptron (MLP) 

model. Even with only one hidden layer and with a wide range of activation functions, the MLP is 

a universal approximator (Hornik et al. 1989). Also, there exists a basic back propagation (BP) 

learning algorithm (Rumelhart et al. 1986) with many variants and enhancements that allow an 

effective use of this ANN model for many practical classification and regression problems starting 

from some training data for which its desired or target value is known. 

The complexity of a given MLP depends on the number of neurons and their organization into 

different layers i.e., its architecture. Mathematically, the model can be described (for each neuron) 

as a linear combination of nonlinear functions from the previous layer. That is, if w
j 
= (w

j
1,…w

j
d) is 

the weight vector corresponding to the j
th
 neuron in the first hidden layer, w

j
0 is the corresponding 

bias and d is the number of inputs (neurons in the previous layer), then the output of the j
th
 neuron 

is given by Eq. (2) 

yj = f (w
j
·x + w

j
0)                                   (2) 

where x = (x1,…,xd) is the input vector. 

If there are k neurons in the first hidden layer, a neuron in the next layer has a weight vector 

w
o
= (w

o
1,…,w

o
k) and a bias w

o
0. The output corresponding to this neuron is given by Eq. (3) 

F (w
o
·y + w

o
0)                                     (3) 

where y = (y1,…,yk) are the outputs of all neurons in the previous layer. Successive layers can be 

added to the model in a similar way. These relations are schematized in Fig. 3. 

To compute its output, the network needs to compute first the outputs of each layer in turn from 

the previously computed outputs of the previous one. For a given network with a particular 

architecture, its behavior depends only of the weights and biases of all neurons. The learning 

 

      
Fig. 2 Artificial neuron model consisting of a summation element followed by an activation 

sigmoid-like function 
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Fig. 3 Description of a Multi-Layer Perceptron with one hidden layer with k units and their 

corresponding interconnection weights 

 
 
algorithm consists of a correction rule that can be applied recursively starting from the last 

(output) layer. The correction applied to each weight in the network depends on the output error 

(difference between target value and the current output) and modifies the weights of the network 

iteratively. The optimization criterion in ANN learning is an error measure usually concerning 

summation of (squared) errors over the whole training data. Available learning algorithms for the  

 
 
4. Assessing the prediction performance 
 

As in several preceding and related works using regression (Kose 2007, Bilgehan and Turgut 

2010b), two classic measures as the coefficient of determination, R
2
, and the Root MSE (RMSE) 

will be considered in the present work to account for the goodness of fit of the different predictors 

(Bishop 1995, Draper and Smith 1998). To evaluate model bias, the average ratio of predicted to 

experimental results (RPE) will be also considered in some experiments. If n is the number of 

available experimental (xi) and predicted (yi) values, then the corresponding definitions are 
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Fig. 4 (a) and (b) Predicted outputs and measured outputs (targets) of two different prediction models. 

(c) Plot showing correct prediction rate with regard to margin or maximum relative error permitted 
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                             (6) 

It is widely acknowledged that criteria based on squared residuals as RMSE and R
2
, can give 

rise to misleading results when the initial assumptions about normality or data being independent 

and identically distributed (i.i.d.) do not hold. In particular, they are very sensitive to outliers both 

in the explanatory and output variables. In order to circumvent these problems and inspired in the 

way engineering solutions are adopted; one can measure the goodness of a particular prediction as 

the proportion of predicted values that are at a certain distance from the corresponding target 

value. This can be seen as a maximum relative error on the measure being predicted and this value 

could be considered as a prespecified design parameter. For example, in Figs. 4a and 4b, the 

results of two different prediction models are displayed. The horizontal axis represents measured 

target (e.g., TL) and vertical axis corresponds to the values predicted by each model. The three 

discontinuous lines represent the perfect prediction (the y = x curve) and a 0.45 deviation (that is, y 

=  0.45x). The proportion of predictions within this 0.45 maximum relative error is 0.67 in the 

first model (Fig. 4a) and 0.86 in the second model (Fig. 4b), while the corresponding R
2
 values are 

0.33 for both models. This illustrates the fact that squared and averaged error measures do not 

account for qualitative differences among different regression models. 

More interestingly, it is possible to evaluate how good a model is by evaluating the proportion 
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Fig. 5 Averaged prediction results obtained using linear regression and MLP for values of k up to 

9. R
2
, RPE, RMSE, and AUC values are shown 

 

 

of correctly predicted cases as the maximum relative error increases within a prespecified range. 

This can be represented as a Relative Operating Characteristic (ROC) curve (Fawcett 2006, Paclík 

et al. 2010). Following the aforementioned example, in Fig. 4(c), the two curves corresponding to 

the prediction results by models in the previous Figs. 4(a) and 4(b) are shown. 

As observed in Fig. 4(c), these are monotonically non-decreasing curves going (potentially) from 0 

to 1 in both coordinates. The more the curve deviates from the y = x behavior, the better the 

prediction is, exactly as in ROC analysis (Fawcett 2006). Consequently, a convenient global 

measure of the goodness of prediction is the Area Under the Curve (AUC). This measure is 

commonly used in many different machine learning applications in which similar curves can be 

defined. In our particular case, as too large relative errors in the prediction do not make sense, the 

curve (and its AUC) can be conveniently restricted for a particular range. In the present work the 

range of relative errors was set at [0, 0.45]. The AUC measures of the two curves in the previous 

figure are 0.16 and 0.31 for the first model and the second model, respectively. Note that these 

AUC values are in the range [0, 0.45] and that a uniform random predictor (corresponding to the y 

= x curve, i.e., the worst predictor in practice) will give rise to an AUC value of (0.45)
2
/2 = 0.1013 

(Fawcett 2006). 

 

 

5. Experiments and results 
 

5.1 Experimental setup 
 

The only output variable considered in the present work is the TL. Empirical measures of this 

output variable together with corresponding values for the 16 basic input features and 5 combined 

ones constitute the database used. Consequently, regression is done in a 21-dimensional space with 

an important number of redundant variables. 

Even though experiments normalizing input and output data to zero mean and unit variance 

were carried out, all results in this paper involve unnormalized data in order to compare the 
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prediction results with the corresponding standards that use raw measures. The main difference is 

that adjusting the parameters is slightly harder but in all cases prediction results both with and 

without normalization gave statistically indistinguishable results. 

All computer code for regression, ANN simulation and data processing was written and run in 

the Matlab framework (Mathworks 2011). 

 
5.2 Generalization, complexity and model selection 

 

In a first set of experiments, several parameter settings of the ANN model were tried on random 

partitions of the available data in order to evaluate and select the appropriate complexity of the 

ANN model for the problem at hand. In these first experiments, stepwise multiple linear regression 

was also considered as a baseline. Using well separated and representative training and test data 

sets is very important to obtain reliable results and well founded conclusions about the 

generalization abilities of different approaches. 

Cross validation (CV) and m-fold CV in particular, is regarded as the best practical way of 

making use of available data while keeping bias and variance of the error estimates at moderate 

values. Low values of m are closer to optimality in the asymptotic case and lead to a behavior 

similar to using only one random bipartition (as in Kose 2007) while higher values lead to 

dependent and biased estimates but are well behaved in practice (Jain et al. 1987). Even though 

some authors recommend settings as m=10 when using standard databases of moderate to large 

sizes (Kohavi 1995), in our case and possibly due to the high variability in the available data, we 

observed slightly more stable results with lower values of m. In particular, 4-fold cross validation 

experiments taking 75% of the cases (arranged in three folds of 25% each) for train and the 

remaining 25% (the fourth fold) for test were considered. The whole procedure was rotated over 

the 4 folds and repeated 4 times (4 different random partitions) so that each single case was taken 

into account for testing exactly 4 times. Note that, in this whole experimentation, a total of 16 

prediction models were produced from the database. 

As data came from 18 different sources in a very unbalanced way, a special care was taken to 

ensure that these were equally spread over all folds. In particular, if folds of size αS are to be 

generated (where α = 0.25, S= s1+ ··· + s18 is the total size and si is the amount of data from source 

i), exactly [αsi] cases are put in each fold by performing random selection and replicating data if 

necessary. Final performance measures are the averages over all the results per fold along with 

their corresponding standard deviations. 

Stepwise multiple linear regression was used in a standard way by including variables whose 

associate p-values are at most 0.005. In particular, the method selected the ordered set of variables 

{8, 20, 11, 5} or {8, 15, 11, 12, 18, 5, 9, 3} (see input features of Table 1) depending on partitions 

and folds. 

With regard to experiments involving ANN models, an extensive experimentation using a wide 

range of learning algorithms and parameters was tried in our database. Nevertheless, the setting 

finally used for TL prediction using MLP was fixed following the one used in Kose (2007) because 

none of the other options was clearly superior in terms of generalization ability and also to 

facilitate comparison with previous works. 

As in our database, variability is high and more important than the expected intrinsic  

complexity of the problem, a relatively simple ANN model with a reduced range of parameters has 

been considered to carry out exhaustive experimentation. In particular, only one hidden layer was 

considered and the number of neurons, k, ranged from 2 to 9. Note that very similar settings are 
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used in other related works dealing with this and other engineering problems (Kose and Kayadelen 

2010, Bilgehan and Turgut 2010b). The activation function at each neuron is the hyperbolic 

tangent function. Weights were learnt using the Levenberg-Marquardt (LM) algorithm that 

constitutes a kind of tradeoff between gradient descent and second order (Gauss-Newton like) 

methods. Moreover, this learning algorithm showed faster convergence rates than other options 

while keeping the same performance figures (Hagan and Mehaj 1994). To control learning rate, the 

LM algorithm uses a dumping parameter (μ = 0.001) which can be increased or decreased 

(increasing and decreasing factors are 10 and 0.1) to a maximum value (10
10

). Each network 

architecture (i.e., number of neurons) was tried 5 times on the same data and run for a maximum of 

25 epochs to prevent overtraining. Performance goal and minimum gradient parameters have been 

set to 10
-6

 and 10
-10

, respectively. The best network on this data was kept to be used for predicting 

test data. This gave relatively good results with regard to preventing overfitting in our particular 

database. 

The averaged prediction results obtained both with multiple linear regression and ANN models 

are shown in the Fig. 5. In particular, R
2
, RPE, RMSE and AUC measures are shown both for 

training and test data. It is important to remark that these measures were averaged over a large 

effective number of models and data. In particular, 16 models trained with 75% of data and 4 times 

100% of test data (16 times 25% of available data). Note also that standard deviation of these 

averaged measures is relatively large in the corresponding figures. 

As expected, the prediction accuracy measured on the training data either by the R
2
 coefficient 

or the RMSE (Figs. 5(a) and 5(b)) improves clearly when the number of neurons is increased. With 

a small number of neurons (i.e., less than 4) the results are very similar to the ones obtained with 

multiple linear regression (especially with regard to RMSE values). On the other hand, the RPE 

measure remains approximately constant around its best value but its variability increases with the 

number of neurons. 

On the other hand, when predicting outputs corresponding to test data (that was not taken into 

account to construct the prediction models); the performance gets worse as the number of neurons 

increases (and in particular for 5 neurons and more). This puts forward the strong tradeoff between 

complexity and generalization ability. Even though the variability is high, it can be observed a 

significant difference (in R
2
) between the pure linear predictor and the MLP model, specifically 

when using 4 neurons. The same best result is observed in the RMSE results. 

Finally, when considering the proportion of correctly predicted values within a margin (Fig. 

5(c)), several important differences between prediction models can be observed. First, the 

difference between ANN and linear models for most values of k was increased and the behavior of 

the model with regard to this parameter is more stable. It can be said that the curves in Fig. 5(c) are 

more representative of the expected behavior of the model with real (noisy) data. From this result 

it can be seen that even with 5 neurons it is possible to obtain a good model with regard to 

generalization ability. Nevertheless, for subsequent experiments using a unique MPL predictor, the 

value of k = 4 was adopted as a convenient and conservative tradeoff. 
 

5.3 Sensibility analysis and selection of variables 
 

From the point of view of the engineering problem, it is interesting to know the relative 

importance of the input variables with regard to the goodness of the prediction model. In its full 

generality, this is a very hard problem due to complex dependence relations among variables 

(Somol and Pudil 2002) but we are only interested in obtaining an approximate ranking together 
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with a measure of importance associated to each variable. To this end, an empirical study was 

carried out using all available data and two prediction models: the linear one and the MLP model 

with 4 units in the hidden layer. 

The ranking of variables for the linear model was directly obtained from the stepwise 

regression method, which was forced to use all input variables. The corresponding measure in this 

case is the RMSE associated to the corresponding predictions using each variable (accumulated to 

the previously selected ones). The results obtained are shown in Fig. 6(a) where features are shown 

in decreasing order of importance. The last (best) value of RMSE corresponds to the whole set of 

variables. Note that performance gets very close to the best with roughly half the available set of 

variables. It is important to note that the ranking of variables obtained when using the whole 

database is very similar to the sets of variables selected in the experiments with random partitions 

in the previous section for linear models. In particular, variables 8-cv, 15-fp0, and 11-transv are 

present in all sets. The fourth variable in the ranking is 12-fci. The remaining variables to complete 

the 10 best input variables are: 1 - db, 7 - h, 9 - ch, 17 - fsi, 14-extr, and 3 - Ap. Worth remarking is 

also the fact that all combined input variables (16 and 18 to 21) significantly decreased its 

importance in this experiment with regard to the one in Section 5.2 possibly due to the inherent 

variability in the data and its impact depending on training sizes. 

As it can be observed, the variables 15 - fp0, 12 - fci, 1 - db, 17 - fsi, 14 - extr (related to the 

release method) and 3 - Ap are included in Eq. (1). The concrete compressive strength at prestress 

transfer, 12 - fci, appears with an important significance in Fig. 6a, and several authors (Cousins et 

 

 

 
Fig. 6 (a) Ranking of variables for the linear prediction model along with the RMSE value associated to 

the accumulated subsets of variables. (b), (c) and (d) Importance values associated for each input 

variable from the sensitivity analysis for the ANN model using the three considered criteria 
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Fig. 7 Prediction results when increasing number of variables (ordered by importance) are considered 

 

 

 

al. 1990, Mitchell et al. 1993, Mahmoud et al. 1999, Martí-Vargas et al. 2012a) proposed Ut values 

in Eq. (1) as a function of fci in contrast to the constant value Ut = 2.76 MPa used by ACI Code 318 

provisions (ACI 2011). 

It is also important to note that the variables 8-cv and 9-ch, related to the concrete cover, and 

the variables 11-transv and 7-h representatives of the confinement are not included in Eq. (1). 

According to FIB (2000), a minimum concrete cover is required to prevent bond splitting, and a 

reduction of the TL can be expected when the concrete cover increases. On the other hand, 

confining effects benefit the bond performance (CEB 1987), and therefore the placement of 

transverse reinforcement was recommended (Russell and Burns 1997, Mahmoud et al. 1999) even 

though its influence was not quantified. 
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With the ANN model, an analysis of sensitivity was carried out using the sensitivity based input 

pruning method (Moody and Utans 1992, Diaz-Villanueva et al. 2010). Each input variable in turn 

was substituted in all input data by its corresponding average value. The (negative) impact on the 

predictions was measured (using R
2
, RMSE and AUC). The more impact on the prediction, the 

more important the feature is. Relative differences on the three criteria are used to assign 

importance values to each of the input variables. The results obtained for the whole set of variables 

are shown in Figs. 6(b), 6(c) and 6(d). 

The three criteria used for the ANN model lead to very similar rankings. In particular, the 8 best 

input variables are the same according to all criteria and there is only one and two disagreements 

in the first 9 and 10 respectively (involving variables 2 - fpu, 11 - transv and 13 - dest). 

In order to evaluate the real impact of the subsets of variables used in the ANN model, an 

increasing number of input variables according to the importance ranking was considered in the 

training and testing of the model in a new experiment. The best settings including number of units 

and learning parameters were taken from the previous experimentation about model selection. The 

particular ranking used in this experiment was fixed to the one obtained using the AUC criterion 

(Fig. 6(b)). 

After retraining the neural model with all available data with an increasing number of input 

variables ordered according to the previous fixed ranking, the prediction results (R
2
, RMSE and 

AUC) followed a slight increasing (decreasing in the RMSE case) behavior as shown in Fig. 7. 

The RPE values shown in Fig. 7(b) are very close to the optimal value regardless of the number of 

features kept. 

Fig. 7 also shows the prediction results obtained through multiple linear regression and 

standard formulae as a reference. It can be seen that none of the performance measures gets 

significantly worse (with regard to the model with all input variables and within a moderate 

variability) when at least 10 variables are used. Consequently, the ANN model with (the best) 10 

input variables (d = 10) can be considered as a good and convenient tradeoff (the stepwise linear 

regression method selects 8 input variables with p = 0.005 when all database is considered). The 

particular ANN model with 10 input variables (d = 10) and 4 hidden units (k = 4) with all its 

weights and biases is shown in Table 3. 

As it can be observed, the ANN model with 10 input variables (Table 3 and Fig. 6(b)) includes 

5 of the 10 most important variables identified by the linear regression model (Fig. 6(a)): 8 - cv, 15 

- fp0, 11 - transv, 7 - h, and 9 - ch. The most worth remarking differences between variables 

identified as important by ANN comprise variables 5 - ns, 21 - modsep, 6 - b, 16 - Ap/Ac, and 13-

dest, instead of variables 12 - fci, 1 - db, 17 - fsi, 14 - extr, and 3-Ap identified by linear regression 

(Fig. 6(a)). In the case of the ANN model, only variables15 - fp0 and 13-dest are included in Eq. 

(1). Important variables according to ANN model not included in Eq. (1) are geometric parameters 

such as 8-cv, 7 - h, 9-ch, 5 - ns, 21 - modsep, 6-b, and 16 - Ap/Ac influencing concrete cover and 

strand spacing (Cousins et al. 1994, Deatherage et al. 1994, FIB 2000), and also influencing 

confinement joint the variable 11-transv as it was aforementioned. 

In conclusion, the linear regression model has identified more variables included in Eq. (1) than 

the ANN model. However, the ANN model shows a better prediction of TL than the linear 

regression model (Fig. 7). Note that the effect on TL of the properties and parameters are usually 

described by using regression analysis and statistical models as it was explained above. Therefore, 

future works with other techniques and data may help to obtain new expressions that include the 

most representative variables of the bond phenomenon to get a best prediction of TL. 
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Table 3 Parameters of the finally proposed ANN model with d = 10 and k = 4 

First hidden layer 

Inputs 
(features) 

5 7 21 9 8 6 16 15 13 11 bias 

Unit 1 0.4022 0.9850 -0.8248 0.8881 1.5718 2.1317 -0.4759 4.6902 -0.3137 -0.0154 -3.5620 

Unit 2 -1.0781 -0.8634 1.3991 -0.9036 -0.7540 -0.1825 1.2243 -0.9332 -0.8194 0.0282 0.7969 

Unit 3 -1.1415 1.4824 -0.4791 -0.5206 0.1641 -1.4070 1.1626 -2.8920 1.7839 -0.1336 3.2641 

Unit 4 0.3641 1.2234 -0.2753 1.2037 -1.7048 0.6937 -0.0418 1.3243 -1.3003 0.4930 1.2475 

Second output layer 

Inputs Unit 1 Unit 2 Unit 3 Unit 4 bias 

Output unit -4.8821 -3.4598 -2.6726 -0.9191 -0.303 

 

 

5.4 Sensibility analysis and selection of variables 
 

Final experiments using both full (d = 21) and reduced (d = 10) ANN models using the settings 

arrived at in the previous section have been also performed. Comparative experimentation was 

carried out with these neural models along with the linear model and their results were compared 

to the prediction given by two of the parametric formulae available in the specific literature. In 

particular, the one in the standard ACI 318 (2008) and the one proposed in Martí-Vargas et al. 

(2007a). 

The ACI 318 equation for TL is 

21

bse
t

df
L                                    (7) 

which can be obtained from Eq. (1) considering fpx = fse, Ap = 0.725πdb
2
/4, k1 = 4/3, Ut = 2.76 MPa, 

and k2 = 0. 

The equation proposed by Martí-Vargas et al. (2007a) is 

67.0
4.0)3/4( cib

psi

t

fd

Af
L


                            (8) 

which can be obtained from Eq. (1) considering fpx = fsi, k1 = 4/3, Ut = 0.4fci, and k2 = 0. 

The scatter plots corresponding to the four prediction models are shown in Fig. 8 (the plot for 

the reduced ANN model is not shown as it is visually very similar to the one with the full model). 

From these scatter plots, it can be seen that linear models produce results with an equally spread 

prediction error in the output range. On the other hand, neural models (with few neurons) tend to 

produce results visually more accurate than the linear ones but with few outliers that have a high 

impact in the R
2
 and RMSE measures. This behavior was observed also in almost all partitions and 

folds in the experiments in Section 5.2. The superiority of both adaptive prediction models (both 

linear and neural) with regard to the use of fixed formulas is clear from these plots. 

The curves showing the prediction rate with regard to the maximum relative error permitted 

(margin) are plotted in Fig. 9. And finally, the corresponding AUC values for each curve along 
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with the R
2
, RPE and RMSE values for all models are shown in Table 4. From the results obtained 

one can conclude that methods that adapt to training data using several input variables are clearly 

superior to any of the proposed formulae. This is not in contradiction with the fact that the 

formulae use the correct prior assumption about the underlying phenomenon leading to TL. This 

only implies that variabilities, noise and errors in the procedures lead to a too complex prediction 

problem that cannot be modeled in practice with such a (simple) formula. The best results of all 

criteria correspond to ANN. These models lead to expected errors (as measured by RMSE) in the 

range 105-130 mm which is roughly 30% and 60% smaller than the results obtained using linear 

regression and fixed formulae, respectively. Similar differences are observed in the other criteria. 

The other key fact is that prediction curves and AUC measures account in a more robust way for 

the goodness of the prediction and nicely correlate with the visual and practical results obtained 

with each model. 

 

 

 
Fig. 8 Scatter plots showing predicted TL in terms of the measured value for ACI (2011), Martí-

Vargas et al. (2007a), linear and ANN 

 

 

Fig. 9 Prediction rate with regard to maximum relative error for all considered prediction models 

Table 4 Prediction accuracy measures for all models on the whole database 
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 ACI (2011) Martí-Vargas et al. (2007a) Linear ANN (d=21) ANN (d=10) 

R
2
 0.003 0.113 0.684 0.889 0.831 

RPE 0.931 1.235 1.022 0.999 1.000 

RMSE 325 324 178 105 130 

AUC 0.139 0.190 0.245 0.320 0.336 

 

 
Fig. 10 Prediction curves and performance measures for data coming from each of the 18 different 

sources along with global measures. The RMSE is shown in meters (m) and the relative size of 

each source is shown as a continuous line 

 

 

6. Comparing different sources of data 
 

As a final experiment to illustrate how differently the data from different sources behave, the 

same performance measures taken in the previous section were computed separately for data 

coming from each one of the 18 different sources considered in this work (see Table 2). For this 

experiment, the proposed ANN model with k = 4 and 10 input variables has been used to predict 

TL. 

Figs. 10(a) and 10(b) illustrate the corresponding prediction curves and prediction performance 

measures, respectively (R
2
 measures are not shown in the figure as they are highly correlated with 

RMSE). Fig. 10(b) also shows the relative size of each data source with regard to the total number 

of cases in the whole database. What can be immediately seen is that the variability among 

different sources is very high regardless of the prediction measure considered. For example, the 

RMSE ranges from 25 to 265 mm (sources 17 and 12, respectively). It is worth remarking that in 

most cases, good AUC values imply also good RMSE values. But the global behavior is slightly 

different. It is also noticeable that sources 12 and 14 give extremely low values of AUC (which is 

also apparent in Fig. 10a) that are about 25% and 50% the average AUC value, respectively. These 

two sources along with source 5 lead also to the worst RMSE results. The best behaved source for 

both measures is 17 and other sources with good values of AUC and RMSE are 6,7,9,10,13,15 and 

18. Note that the most populated sources are not necessarily among the best behaved ones. 

In our opinion, the worse results on TL obtained by sources 5, 12 and 14 may be caused by 

additional unreported factors related to the strand surface condition as residues from production 

process or lab-stored incidents. On the other hand, almost half of the sources show good values for 
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the analyzed parameters. Moreover, the TL results from source 18 -obtained by means the recent 

methodology ECADA based on measuring the effective prestressing force (Martí-Vargas et al. 

2006a) - showed good values in the prediction curves. 

 

 

7. Conclusions 
 

The bond performance of prestressed reinforcement is a complex phenomenon, and the TL 

prediction is a difficult task to achieve giving rise to the fact that several parameters influencing 

TL do not appear in the proposed equations from authors and Codes in the literature. 

TL value of prestressing strand is an important design parameter for pretensioned prestressed 

and therefore it is reasonable the application of data-mining methods as they are currently being 

introduced in this field. More than using a specific method, an appropriate assessment protocol and 

methodology is needed in order to be able to draw useful and practical outcomes from the different 

prediction processes. This work constitutes a first attempt in this direction using a widely used 

neural based predictor. The use of ROC-like measures to assess prediction performance gives rise 

to an innovative analysis for TL prediction in which other classical measures as R
2
 and RMSE 

were considered. Prediction curves and AUC measures account in a more robust way for the 

goodness of the prediction and nicely correlate with the visual and practical results obtained with 

different models. 

A carefully selected database spanning a variety of practical TL of prestressing strands from 

real prediction situations coming from different sources was compiled. The amount of information 

and the specific trade off between homogeneity (in the range of parameters), specificity (in 

problem definition) and variability (coming from the different experimental methods) makes this 

database and its study one of the strong points of the present work. 

The straightforward sensitivity analysis carried out has lead to an approximate ranking of 

variables according to several importance measures related to TL prediction. Important variables 

as 8, 15, 11, 7, and 9 were identified by all considered methods and criteria. The linear regression 

model has identified more variables included in the proposed equations from authors and Codes in 

the literature. However, several important variables related to geometric parameters influencing 

concrete cover, strand spacing and confinement do not appear in these equations and their 

influence on TL was detected by means ANN. Moreover, the ANN model shows a better 

prediction of TL than the linear regression model. 

Methods that adapt to training data using several input variables are clearly superior to any of 

the proposed formulae for TL in the literature. This is not in contradiction with the fact that the 

formulae use the correct prior assumption about the underlying phenomenon leading to transfer 

length. This only implies that variabilities, noise and errors in the procedures lead to a too complex 

prediction problem that cannot be modeled in practice with such a simple formula. 

Powerful prediction models as ANN need to conservatively control the amount of nonlinearity 

(or degrees of freedom) in order to arrive at convenient predictions given the huge amount of noise 

and variability which is present in the data when it comes from different sources. 

A final ANN model trained with all available data is proposed using only 4 hidden units and 10 

selected variables. Expected errors in TL are about 30% and 60% smaller than the ones 

corresponding to using linear regression and fixed formulas, respectively. 

The quality of the data coming from different sources was also studied with regard to its 

behavior when input to the learned ANN models. As a result of this study, it can be said that almost 
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half of the sources showed a good predicting behavior. When worse results on TL are obtained 

systematically for a given source, they may be caused by additional unreported factors related to 

the strand surface condition as residues from production process or lab-stored incidents among 

others. 
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