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Abstract.    There is a wide variety of existing Genetic Algorithms (GA) operators and parameters in the 
literature. However, there is no unique technique that shows the best performance for different classes of 
optimization problems. Hence, the evaluation of these operators and parameters, which influence the 
effectiveness of the search process, must be carried out on a problem basis. This paper presents a comparison 
for the influence of GA operators and parameters on the performance of the damage identification problem 
using the finite element model updating method (FEMU). The damage is defined as reduction in bending 
rigidity of the finite elements of a reinforced concrete beam. A certain damage scenario is adopted and 
identified using different GA operators by minimizing the differences between experimental and analytical 
modal parameters. In this study, different selection, crossover and mutation operators are compared with 
each other based on the reliability, accuracy and efficiency criteria. The exploration and exploitation 
capabilities of different operators are evaluated. Also a comparison is carried out for the parallel and 
sequential GAs with different population sizes and the effect of the multiple use of some crossover operators 
is investigated. The results show that the roulettewheel selection technique together with real valued 
encoding gives the best results. It is also apparent that the Non-uniform Mutation as well as Parent Centric 
Normal Crossover can be confidently used in the damage identification problem. Nevertheless the parallel 
GAs increases both computation speed and the efficiency of the method. 
 

Keywords:    reinforced concrete; finite element model updating; damage detection; genetic algorithms; 
statistical comparison 
 
 
1. Introduction 
 

There is a rising interest on vibration based structural damage identification methods within 
research circles over the last 20 years. These methods use only modal parameters such as natural 
frequencies, damping ratios and mode shapes which are sensitive to the damage in structural 
members. Vibration based methods allow the identification of both the severity, location and the 
extent of the damage. These methods can be classified as model based and non-model based. 
Non-model based methods that detect changes in the flexibility, damage index methods and 
continuous wavelet transform, do not require a numerical model. A comparative study on these 
methods was made by Humar et al. (2006). Cruz and Salgado (2009) use non-model based 
methods to detect damage in composite bridges under different crack depths and to identify the 
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extent of the damage under different noise levels. Model based methods use a numerical model 
such as the finite element (FE) model of the structure. The main goal of those methods is to 
identify the structural changes (damage, deterioration) by comparing the numerical and 
experimental data such as modal parameters obtained from Structural Health Monitoring (SHM) 
applications and extracted from the measured time histories by means of system identification 
techniques (Bakir 2011, 2012, Bakir et al. 2011). 

Finite Element Model Updating (FEMU) Technique is a model based method and has a wide 
range of applications especially in damage identification. Damage in structural components results 
with a reduction in stiffness. In FEMU applications, an objective function is established that 
includes the differences between the experimental and the numerical vibration data such as the 
frequencies and mode shapes. Usually this objective function is formulated as a nonlinear least 
square problem (Friswell and Mottershead 1995). Teughels et al. (2002), use a model based 
method to identify the stiffness reduction factors of a beam by minimizing the differences between 
the measured modal parameters and the corresponding analytical predictions. Bakir et al. (2007) 
has used the Trust Region Newton Technique to identify, locate and quantify damage in a portal 
frame. The results have shown that the technique acts like a regularization technique in frame type 
structures and the damage is successfully identified. An improved version of FEMU which is 
capable of incorporating the uncertainties arising from the modeling simplifications and the 
measurement errors are also proposed by Erdogan and Bakir (2013). 

Much effort has been spent to minimize this objective function and obtain the stiffness 
reduction factors defined as reductions in the stiffness of the different finite elements. In most 
cases an ill-conditioned problem occurs when using gradient-based optimization techniques. Some 
investigations have been conducted to deal with the ill-conditioned problems in model updating 
(Li and Law 2010). However, these types of optimization methods do not guarantee to find the 
global optimum. Thus, further investigations are needed to establish a robust optimization routine 
in order to deal with problems that local optimization techniques cannot overcome. For this 
purpose, global optimization methods such as Genetic Algorithms (GAs), Simulating Annealing 
(SA) and Coupled Local Minimizers (CLM) have been used in the damage identification 
problems. 

Levin and Lieven (1998) have conducted an experimental study and implemented the SA and 
GA methods to detect the damage at a plate wing structure. Bakir et al. (2008) have applied the 
CLM method to obtain the appropriate values of 24 stiffness reduction factors of a portal concrete 
frame and compared the method with some local techniques. Perera and Torres (2006) have used 
GAs to detect the simulated damage of a simply supported beam and verified the results using 
experimental data. They have used binary coded GAs (BCGA) and single point crossover which is 
the basic crossover operator of GAs. Roulettewheel selection has been chosen as the selection 
method. Hao and Xia (2002) have used a laboratory tested cantilever beam and a frame to assess 
the performance of a real-coded GA (RCGA). They have adopted the rouletwheel selection and 
uniform crossover as GA operators. Rao et al. (2004) have proposed a GA methodology to 
quantify the damage in structural members using the concept of residual forces. Two-point 
crossover and BCGA with tournament selection is adopted in minimizing the objective function. 
Chou and Ghaboussi (2001) have implemented GAs with different string representations called the 
implicit redundant representation to identify the reduction of the Young modulus and the 
cross-section areas of a plane truss structure. 

In this study, various aspects of GAs have been investigated for the damage detection problem. 
There are various operators and parameters which affect the GA performance during the 
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optimization process. Most of the applications of GAs in the damage detection problem have not 
considered the effects of the GA operators and parameters on the results of FEMU. In these 
applications, the basic operators such as one point crossover and uniform mutation for RCGA are 
utilized and parameters are selected intuitively. Hence, a comparative study is necessary to assess 
the performance of the wide variety of GA parameters and operators. In this study, the 
performance of the essential GA operators and parameters is investigated and compared for certain 
criteria. 

GAs are robust, accurate and effective search methods. Unfortunately, the convergence speed is 
too slow especially in the later generations. Thus, there is a need for the parallel implementation of 
the GA. Some different approaches have been proposed within this context (Goldberg 1989). The 
so-called multi-population parallel GAs (PGAs) is widely used in the GA literature (Meruane and 
Heylen 2010). In this present study, a comparison is also made between GAs and PGAs for various 
population sizes. 
 
 
2. GA method 
 

GAs was first proposed by Holland (1975) and is based on the theory of the survival of the 
fittest. It is a global optimization method that is very capable of finding the global optimum of 
various types of functions which are linear, nonlinear, continuous, discontinuous, convex, 
non-convex, unimodal and multimodal. Detailed information can be found in Boyer et al. (2008). 
GAs are first initiated with a population that contains a set of potential solutions. Then, GA 
operators evolve this population until an optimal or near optimal solution is obtained. There are 
various advantages of GAs in comparison with the gradient-based optimization techniques. GAs 
use a population and search for optimal solutions at different points in the search space. GAs do 
not need derivatives of the objective function and can find the global solutions with high 
probability. GAs can be simply coded and implemented for a variety of optimization problems. 

Basic steps of GAs are encoding, selection, crossover and mutation. Design variables are coded 
as bit-strings by the use of an encoding schema. This type of GAs is referred to as BCGA. Other 
encoding implementations have also been used, including real-valued encodings (RCGA). After 
the initial population is randomly or heuristically generated, selection, crossover and mutation 
operators evolve the population through iterative applications. The selection method is 
implemented for the reproduction of the population. It chooses the relatively fit individuals 
according to their fitness values. Crossover can be deemed as a mixing operator. It combines the 
genes of parent chromosomes mated in the selection processes. In BCGA, this operator does not 
add new genes into the population; only juxtapose chromosome portions of the parents to create 
new individuals. The mutation operator is implemented with some small probabilities. In binary 
encoding, it is carried out by flipping bits at random between 0 and 1. The main purpose of this 
operator is to generate random diversity in the population by adding new genes. 

A frequent problem associated with the GAs is the premature convergence in which highly fit 
individuals may rapidly dominate the population and cause a rapid convergence to the local 
optimum. To overcome this difficulty, the operators and the parameters of the GAs should be 
selected appropriately considering the population diversity-selection pressure balance. Hence each 
operator should be included in the GAs processes according to their exploration and exploitation 
capabilities. Another problem is the slow convergence of the GAs especially at further generations. 
To solve this problem a PGA can be used. 
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To apply a GA to a given problem, a decision must be taken on the way the parameters of the 
problem will be mapped into a finite string of symbols. The binary alphabet is often used for the 
coding purposes. The standard binary and the Gray Coding are the two popular instances. 
However, these coding methods have some disadvantages. The BCGA needs extra computation 
time because the variables have to be encoded and decoded. Furthermore, the BCGA has its 
precision limited by the binary representation of variables. In addition the binary coding schemas 
bring additional nonlinearities into the objective function. With respect to the BCGA, RCGA has 
become more popular since RCGA provides some advantages which makes it convenient for 
various types of optimization problems. Most physical problems have continuous variables in the 
search domain; hence it is feasible to use continuous real-valued variables. In addition, several GA 
operators can be constructed using the RCGA. 

One of the major processes in GA is the selection. The selection pressure is a degree to which 
the best individuals are favored. High selection pressure enhances the selection probability of the 
fittest individuals. The convergence rate of the GAs is substantially determined by the selection 
pressure. Higher selection pressures imply higher convergence rates and vice versa. If the 
convergence rate is too high, the probability of converging to a local optimum is also too high. 
Considering this contradiction, appropriate selection operators must be used. In this study, two 
widely used selection operators are considered: namely, tournament and roulettewheel selections. 
Detailed information can be found in relevant books (Haupt and Haupt 2004). 

The crossover operator, which mixes the genes of chromosomes and generates new individuals, 
has always been regarded as the main search operator. It takes place with a probability of ௖ܲ that 
is a value between 0.5-1. In BCGA, new variables cannot be generated by applying crossover 
operators. This is due to fact that the crossover operators only mix the existing genes and do not 
create new individuals. New genes can only be created by the mutation operator. But this is not 
valid for RCGA. Applying various crossover operators, it is possible to create variables in the 
vicinity of their parents. While limited number of operators is proposed for BCGA, several 
different operators were suggested for RCGA. 

The main advantage of RCGA is that the real-valued genes allow the application of a wide 
variety of crossover operators. Herera et al. (2003) have classified some of these RCGA operators 
which have different levels of exploration and exploitation capabilities. The definition interval of 
variables may be divided into subintervals and classified as exploration and exploitation zones 
(Herrera et al. 2003). Using their capabilities, these operators generate some diversity in the 
population or use this diversity to create better individuals. 
 

2.1 Crossover operators 
 
Some basic expressions for the crossover operators will be given in the following paragraph in 

order to emphasize working principles of these operators. The basic operators of BCGA are the 
single point (SPOX), the two point (TPX) and the uniform crossovers (UX). These operators can 
also be used in RCGA. It is enough to replace the bit strings by real-valued genes in this case (Lee 
and El-Sharkawi 2008). In addition, the widely used crossover operators; Arithmetical Crossover 
(AX), BLX-ߙ  Crossover, Heuristic Crossover (HX), Simulated Binary Crossover (SBX), 
Unimodal Normally Distributed Crossover (UNDX), Linear Crossover (LX), Simplex Crossover 
(SPX), Parent Centric Normal Crossover (PNX), Fuzzy Recombination Crossover (FRX) are 
explained below. In RCGA, the parent and the offspring chromosomes are defined as ࢑࢞ ൌ
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ሼݔଵ
௞, ଶݔ

௞, … ௜ݔ
௞, ௜ାଵݔ

௞ , ௜ାଶݔ
௞ , … ࢑ഥ࢞ ௡௞ሽ andݔ ൌ ሼ̅ݔଵ

௞, ଶݔ̅
௞, … ௜ݔ̅

௞, ௜ାଵݔ̅
௞ , ௜ାଶݔ̅

௞ , …  ௡௞ሽ, where k and n are theݔ̅
number of parents and the design variables, respectively. 

The arithmetic crossover is proposed by Michalewics (1996). In this technique, two new 
individuals are obtained according to Eqs. (1) and (2) 

22
1

1 )1( ii xxx                                  (1) 

12
1

2 )1( ii xxx                                  (2) 

Where  is a uniform random number in the interval [0, 1]. As presented in Herera et al. (2003), 

the AX produces new genes ix in the exploitation interval of parent genes 1
ix  and 2

ix . 
Consequently, AX has no exploration capability. 

The BLX-ߙ is suggested by Eshelman and Schaffer (1993). Two offsprings are obtained in the 
interval ].,.[ maxmin  IxIx   where ࢔࢏࢓࢞ ൌ min	ൣݔ௜

ଵ, ௜ݔ
ଶ൧ ࢞ࢇ࢓࢞ , ൌ max	ൣݔ௜

ଵ, ௜ݔ
ଶ൧ and ࡵ ൌ

࢞ࢇ࢓࢞ െ  defines the interval that the new offsprings are generated. This ߙ The parameter .࢔࢏࢓࢞
parameter determines the exploration degree of the operator. For ߙ ൌ 0.5, the probability of being 
inner and outer of exploitation interval is equal for the individuals. In this study, BLX-ߙ operator 
is included in the comparison for the values of 0.1, 0.3 0.5, 0.7, 1 and 1.4 for the ߙ parameter. 
The action interval of BLX-ߙ is given in Herera et al. (2003). 

The heuristic crossover proposed by Wright (1991), returns a child that lies on the line 
containing the two parents, a small distance away from the parent with the better fitness value in 
the direction away from the parent with the worse fitness value. The fitness values of the parents 
are used to determine the direction of the search. Using Eq. (3), new individuals are guaranteed to 
be in the exploration interval as shown in Fig. 1. 

ഥ࢞ ൌ ૛࢞	 ൅ ૚࢞ሺݎ െ  ૛ሻ                             (3)࢞

where the parameter r is the distance measured from the best individuals and takes values greater 
than 1. This parameter is selected as 1.2, 1.6 and 2 in this study. 

The simulated binary crossover introduced in Dep and Agraval (1995) creates two new 
offsprings using Eqs. (4) and (5). 

௜ݔ̅
ଵ ൌ

ଵ

ଶ
ൣሺ1 െ ௜ݔ௞ሻߚ

ଵ ൅ ሺ1 ൅ ௜ݔ௞ሻߚ
ଶ൧                         (4) 

௜ݔ̅
ଶ ൌ

ଵ

ଶ
ሾሺ1 ൅ ௜ݔ௞ሻߚ

ଵ ൅ ሺ1 െ ௜ݔ௞ሻߚ
ଶሿ                        (5) 
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ݑ	݂݅																		ଵ/ሺఎାଵሻݑ2 ൑

ଵ

ଶ

ሾ2ሺ1 െ ݑ	݂݅			ሻሿଵ/ሺଵାఎሻݑ ൐
ଵ

ଶ

                          (6) 

 

 

Fig. 1 Action interval of HX operator 
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(a) (b) 

Fig. 2 The probability density functions for The SBX operator: (a) Parents are 0.3 and 0.7 and (b) Parents 
are 0.3 and 0.4 

 
 
where u is a random number that lies in the interval [0, 1]. In Eq. (6), ߟ is the distribution index 
that determines the distribution of the new individuals. For bigger values of ߟ, new offsprings are 
created near parents and a small value of ߟ allows distant solutions to be selected as children 
solutions. In this study, the values of 0.04, 0.1, 0.7, 1 and 2 are selected for ߟ. If the difference 
between the parent genes is small, the probability of creating children near parents is high and vice 
versa. In Fig. 2, the probability distribution of the offsprings is given. The offsprings are widely 
distributed when parents are relatively distant as shown in Fig. 2(a). The opposite stuation can be 
observed in Fig. 2(b). This property is an important property of SBX to exhibit self-adaptation. In 
the initial population, if the parents are far from each other, it is expected that the children 
solutions will be distant and in later generations the parents will be closer and the children solution 
will be closer too. This is a dynamic property of SBX operator. 

The unimodal normal distributed crossover was suggested by Ono et al. (1997). The UNDX 
uses three parents in order to create two offsprings. Children solutions are created by an ellipsoidal 
probability distribution. This probability distribution has one axis which is formed along the line 
joining two of the three parent solutions and another axis, for which the distance in the orthogonal 
direction is determined by the perpendicular distance of the third parent from the axis. The UNDX 
preserves the population statistics such as the covariance and the mean vector if certain parameters 
are chosen appropriately. Unlike the BLX-ߙ operator, this operator assigns more probability for 
creating solutions in the exploitation interval. The method is outlined below: 
(1) The parents x1, x2, x3 are selected randomly. 

(2) The mean of x1 and x2 is calculated, .
2

21 xx
x p


  

(3) The difference vector d of parent vectors x1 and x2 is computed as d=x1-x2. 
(4) The line connecting the x1 and x2 is called the primary search line, the distance from the third 
parent x3 to the primary search line is the distance D. 
(5) A new individual is created using Eq. (7). 
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 




1

1

n

i iip eDdxx                               (7) 

 
where ߦ~ܰሺ0, కߪ

ଶ) and  ߟ~ܰሺ0, ,ఎଶሻ. ܰሺ0ߪ ଶߪ ଶሻ is the normal distribution with varianceߪ . 

Variance of the distribution, ߪక
ଶ and ߪఎଶ are 1/4 and 0.352/n, respectively, where n is the number 

of design variables. Vectors ࢏ࢋ are the orthonormal bases that span the subspace perpendicular to 
d. 

The simplex crossover was introduced by Tsutsiu et al. (1999). More than two, say m, 
individuals can be used to create m offsprings. Certain number of chromosomes constitutes a 
simplex in the solution space. The simplex given in Tsutsiu et al. (1999) is generated by using 
three chromosomes. This simplex is expanded with a parameter	ߝ and the new individuals are 
randomly chosen from this expanded simplex. The procedure is described as follows: 
(1) If the population size is N, m+1 parent vectors ݔ଴, ଵݔ … .  ௠ are chosen randomly within thisݔ

population and the mean ܱ ൌ
ଵ

௠ାଵ
∑ ௞௠ݔ
௞ୀ଴  is calculated. 

(2) A random number using Eq. (8) is generated where u is a random number in the interval [0,1] 
 

mkur k
k ,...2,1,0 ,)1/(1                                 (8) 

 
(3)	 ௜ܻ and ܥ௜ are obtained from Eqs. (9) and (10), respectively. 
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 (4) The new individual is obtained as mm CYx   

If the parameter ߝ is taken √݉ ൅ 2, and if m is chosen as m=n, where n is number of design 
variables, population statistics such as the mean vector (mean of the parents) and the covariance 
matrix are preserved (Higuchi et al.). If the parameter ߝ	is chosen as twice of the parameter of 
BLX-ߙ and the parent number m is taken as 2, SPX corresponds to BLX-ߙ operator. 

The linear crossover which is proposed by Wright (1991) can produce three new individuals 
using two parents according to the Eqs. (11)-(13). Two fittest individuals are included in the next 
population. Each individual lies in the different portions of the search space for both exploration 
and exploitation (Herera et al. 2003). 
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The parent centric normal crossover proposed by Ballester and Carter (2004) generates new 
individuals which are assumed to be distributed according to the Gaussian probability density 
function. More than two offsprings can be created by PNX. The distribution function provides new 
individuals to be distributed in a wide portion of the search space. The probability density function 
of the offsprings is given in Fig. 3. Eq. (14) is used to create new offsprings. 

 

௜ݔ̅ ൌ ቊ
ܰሺݔ௜

ଵ, หݔ௜
ଵ െ ௜ݔ

ଶห/ߟሻ

ܰሺݔ௜
ଶ, หݔ௜

ଵ െ ௜ݔ
ଶห/ߟሻ

                            (14) 

 
 

 
(a) (b) 

Fig. 3 The probability density functions for The PNX operator: (a) Parents are 0.3 and 0.7 and (b) Parents 
are 0.3 and 0.4 

 
 
ܰሺߤ,  In .ߪ and a standard deviation of ߤ ሻ, corresponds to the normal distribution with meanߪ

Eq. (14), ߟ is a control parameter. For the large values of ߟ, the offsprings are created closer to 
the parents. The values of 1, 2 and 5 are selected for this parameter. 

The fuzzy recombination crossover is suggested by Voight et al. (1995). New individuals are 
created using a probability density function that resembles the membership functions of the fuzzy 
logic theory. New individuals are selected from the interval given by Eqs. (15) and (16). Parameter 
d determines the distribution of the offsprings. For small values, new individuals are created near 
parents and vice versa. The values of 0.3, 0.5 and 0.9 are used for the parameter d. The distribution 
of offsprings is given in Fig. 4. 
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In order to increase the performance of GAs using these operators, exploitation and exploration 
intervals of those crossover operators should be well understood. For the further generations, 
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exploitation interval becomes narrow. Hence, new individuals resemble their parents more. In 
these stages, most of the crossover operators search the solution locally. If the solution in these 
stages is closer to the optimum solution, this local search increases the efficiency of the method. 
Otherwise some other operators are needed that have high exploration capabilities. In Figs. 2-4, 
the distribution of the offsprings obtained from SBX, PNX and FRX is given for various 
distribution indexes. When the parents are distant, the probability of generating offsprings far from 
parents is high and vice versa. To achieve diversity in the population and find the global solution 
efficiently, distribution indexes should be appropriately determined. 
 
 

  
(a) (b) 

Fig. 4 Normalized probability density functions for The FRX operator: (a) Parents are 0.3 and 0.7 and (b) 
Parents are 0.3 and 0.4 

 
 

2.2 Mutation operators 
 

Mutation takes place with small probabilities Pm=0.01-0.10. It produces random diversity in the 
population. The main purpose of this operator is to prevent the search process to get stuck at local 
minima. For large probabilities of mutation, randomness increases and the convergence rate 
decreases. In this study, different mutation operators are investigated for the damage identification 
problem. In BCGA, the mutation simply changes the bits from 0 to 1 or from 1 to 0 with certain 
probabilities. Nevertheless, several mutation operators are suggested for RCGA. Some of them are 
outlined below. For basic equations for these mutation operators corresponding references can be 
appealed. 

In uniform Mutation (UM), gene values change to any values that lie between the lower and 
upper limits of the gene (design variable). The change is purely random in RCGA. The 
Non-uniform mutation (NUM) operator was proposed and developed by Michalewics (1996) to 
reduce the effects of randomness of the uniform mutation. When the generation increases, the 
change in the variables becomes smaller. In this operator, a control parameter is used to determine 
the degree of the dependence on the generation number. This technique can be viewed as a 
dynamic mutation technique as the changes in the parameters depend on the generation number. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

children solution

p
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n
 p

er
 c

hi
ld

 

 

d=0.5
d=0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

children solution

p
ro

b
a

b
ili

ty
 d

e
n

si
ty

 fu
n

ct
io

n
 p

e
r 

ch
ild

 

 

d=0.5
d=0.3

549



 
 
 
 
 
 

Yildirim Serhat Erdogan and Pelin Gundes Bakir 

Makinen, Periaux and Toivanen Mutation (MPTM) was proposed by Makinen et al. (1999) and 
implemented on the shape optimization problems in electromagnetics. In this method, a 
distribution parameter is proposed which controls the amount of change in the mutated gene. The 
Power Mutation (PM) proposed by Deep and Thakur (2007) is based on power distribution. The 
distribution index which is similar to one used in MPTM determines the performance of the PM. 
For small values of this parameter, the amount of change in the genes become small and for the 
large values of this parameter, the amount of change in the genes becomes higher. For this 
distribution index, the values of 0.1, 0.5 and 0.9 are used in this study as proposed by the authors.                
 

2.3 Parallel Genetic Algorithms (PGAs) 
 

The application of GAs into the complicated physical problems requires high computational 
resources. Time consuming objective functions are needed for the formulation of these problems. 
Nevertheless, the GAs do not have effective local search capabilities. Hence, the convergence 
speed decreases especially in the later generations. The PGAs solve these problems and increase 
the numerical performance. Lim et al. (2007) gives a brief review on different types of PGAs. In 
this study, multi-population PGAs is used. 

Multi-Population PGAs: The multi population PGAs increases the solution quality as well as 
the computation speed. In this technique, PGAs consist of several subpopulations and GA 
operators are implemented on each subpopulation separately. Exchange of the individuals between 
subpopulations called migration, occurs occasionally. There are some parameters that affect the 
performance of PGAs. These are the migration rate, the migration interval and the migration 
direction. The migration rate defines the number of individuals that are exchanged. The migration 
interval is the number of generations required to exchange the chromosomes and the migration 
direction is the migration topology for transferring the individuals. Meruane and Heylen (2010) 
give the appropriate values of these parameters for the damage detection problem with FEMU. The 
population model of the multi-population PGAs can be found in Lim et al. (2007). 

In this paper, the multi-population PGAs are performed on a parallel cluster with distributed 
memory architecture and Intel Xeon 2.33 GHz processors. This system is founded in the National 
Center for High Performance Computing at ITU together with some other computing server 
systems. The system has 192 computing nodes and 1004 computing cores. The PGA which is 
programmed in Matlab Computing Language version R2009b and MATLAB Distributed 
Computing Server toolbox is used to execute the independent GA operations on the cluster. 
 
 
3. Model definition and comparison set up 
 

There are several numerical studies that compare the GA operators’ performance for a test bed 
which includes functions such as Sphere, Schwefel, RosenBrock, Rastrigin and Ackley (Boyer and 
Martinez 2008). These functions are difficult to optimize as some of them are nonlinear, 
multimodal, discontinuous or have high epistasis. In this study, the performance of the several GA 
operators and parameters is evaluated for the damage identification problem with FEMU. The 
problem is formulated as a nonlinear least square problem which is given in Eq. (23(a)). 
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Fig. 5 Finite element model of the beam and the damage distribution 
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In Eq. (17(a)), ݂ሺࢇሻ is a nonlinear function of the damage parameters which are the reduction 
of the bending stiffness EI of the beam given in Fig. 5. This function includes the differences 
between the experimental and the numerical eigenfrequencies as well as the mode shapes. The 
ఫ෩ߣ	and	ሻࢇ௝ሺߣ	  are the updated and experimental eigenvalues, respectively. The ߶௝

௟ሺࢇሻ and ߶෨௝
௟ 

are the updated and experimental mode shapes. The first ten frequencies and eight mode shapes 
are included in the objective function. The damage scenario is given in Fig. 5 as percentage 
reduction of the bending stiffness of the beam. The elastic modulus is chosen as 30000 MPa. 

Many comparisons are presented including encoding, selection, crossover and mutation 
operators in the next section. A comparison between PGA and GA is also given.  Comparisons 
were made based on some defined criteria in the GA literature. These criteria are the reliability, 
accuracy and efficiency (Deep and Thakur 2007). Reliability can be defined as the number of 
independent successful runs that satisfy certain criteria. Accuracy is the measure of exactness in 
finding the global optimum and the efficiency is the measure of the convergence rate. GAs are 
repeated 20 times for each operator and parameter. The mean of the best fitnesses, standard 
deviations and the number of function evaluations is recorded considering these criteria. 

The results are also compared using some statistical tests in order to check whether there are 
significant differences between classifiers or not. The Friedman test with corresponding post hoc 
tests is carried out in order to statistically validate the results. A comprehensive pairwise 
comparison is presented by using Holm’s procedure. The detailed information about relevant 
statistical procedures can be found in Demsar, 2006, Garcia and Herrera, 2008. 
 
 
4. Numerical comparisons 
 

In this section, all numerical comparisons are presented for all basic GA operators. The 
performance of multiple crossovers is also evaluated at the end of this section. In first step, BCGA 
and RCGA are compared with each other. BCGA is divided into two parts, the first one is the 
standard bit binary GA (SBBGA) and the second is Gray coding binary GA (GCBGA). For a fair 
comparison, the basic GA operators: namely, single-point crossover and uniform mutation with the 
roulettewheel selection method is selected as GA operators. Maximum generation number is taken  
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Table 1 Comparisons of encoding methods with variable mutation rates 

Classifier no 1 2 3 4 5 6 7 8 9 10 

Coding/mut.rate 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

SBBGA 
 
 
GCBGA 
 
 
RCGA 

0.4175
0.1670

%5 
0.0070
0.0064

- 
1.0499
1.1872

- 

0.4006 
0.2765 

%5 
0.0043 
0.0050 
%20 

0.6939 
1.5923 

- 

0.2813
0.1826

- 
0.0038
0.0035
%35 

0.0868
0.1588

- 

0.2914
0.1888

- 
0.0044
0.0043
%45 

0.0290
0.0274

- 

0.2337
0.2368
%10 

0.0058
0.0050

- 
0.0355
0.0344

- 

0.2823
0.2257

- 
0.0099
0.0087

- 
0.0169
0.0153
%70 

0.1698
0.1869
%50 

0.0097
0.0085

- 
0.0275
0.0342

- 

0.2174 
0.2468 

- 
0.0087 
0.0077 

- 
0.0232 
0.0213 
%15 

0.1575 
0.1371 
%30 

0.0101 
0.0046 

- 
0.0559 
0.1315 

- 

0.2512
0.2394

- 
0.0160
0.0129

- 
0.0174
0.0099
%15 

 
 
as 500. For the purpose of determining an optimum mutation rate, the methods were tested for 
each mutation rate in the interval 0.01-0.10 with an increment of 0.01. The population number is 
selected as N=100 and ௖ܲ is chosen as 0.80. Results are given in Table 1. The first and the second 
rows are the mean values and the standard deviations of the objective functions for 20 runs, 
respectively. The third row is the ratio of the best objective function values obtained among 
different ௠ܲ values for 20 runs. 

The results obtained for SBBGA is not efficient. The best mean fitness value is obtained for 
௠ܲ ൌ 0.09 and 50% of the total best fitnesses is obtained for ௠ܲ ൌ 0.07. Actually, these mutation 

rates are relatively high values for BCGA. When the standard deviations for low values of the 
probability of mutation are relatively small, the mean of the best fitness values is higher for 
SBBGA. The results obtained by the GCBGA are significantly different from the other two 
methods since Gray coding is successful to overcome the Hamming distance problem. The results 
are also more stable. Best results are found for the mutation rates of 0.02-0.04 which are the 
expected values for BCGA. The results of RCGA are better than SBBGA but worse than the 
GCBGA. The reason is that the mutation operator causes more random changes in the genes of 
RCGA than in BCGA. When we apply the operators explained in Section 2, the performance of 
RCGA will increase and be superior to BCGA. 

The Friedman test with Holm’s procedure for pairwise comparisons is applied to mutation 
probabilities for RCGA. In order to make the pairwise comparison more apparent, two different 
types of figure are given for all comparisons. In the first type, the p-values and the corresponding 
confidence levels (ߙ values) are plotted. The logarithmic scale is used in order to make the 
differences between p-values and ߙ more obvious. In the second type, adjusted p-values (APVs) 
are plotted. APVs take into account that multiple tests are conducted. An APV can be compared 
directly with any chosen significance level  ߙ (Garcia and Herrera 2008). The tables are also 
given for corresponding statistical comparisons in Appendix A. 

For the mutation probabilities, Iman-Davenport’s statistic is calculated as 108 which is quite 
higher than critical value 1.88 at a=0.05. Due to the fact that the critical value is lower than the 
calculated statistic, Holm’s procedure can be carried out for pairwise comparisons. 
Aforementioned graphics are given in Fig. 6. In Figs. 6(a) and 6(b), x axis shows compared pairs. 
Each mutation probability is numbered as classifiers in Table 1. As seen in Fig. 6, there are 
significant differences for the half of the classifiers. Particularly, performance for mutation  
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(a) p-values versus ߙ 

 
(b) Adjusted p-values 

Fig. 6 Statistical pairwise comparison of mutation probabilities of RCGA 
 
 
probability 0.06 (classifier 6) has significantly better than the other mutation probabilities. As 
apparent in Fig. 6(b), null hypothesis can be rejected for all pairs that include classifier 6 at a 
certain level of significance except pair 6-10. 

In the second step, the roulettewheel (RW) and the tournament (TR) selection together with 
different tournament size are compared. For the roulettewheel selection method, linear scaling is 
used to prevent the domination of the fittest individuals. Tournament size is selected as 2, 4 and 8 
for the tournament selection method to investigate the effects of the selection pressure. The other 
operators and parameters are as follows: N=100, Pc=0.80, Pm=0.06, crossover is heuristic 
crossover with r=1.6 and mutation is the non-uniform mutation. Maximum generation number is 
taken as 1000 and 510 optff is determined as the stopping criteria where fopt=0. Success rate is 

defined as follows: if any run satisfies the inequality before the maximum generation number is 
reached, then it is considered as a successful run. 

As shown in Table 2, results obtained using roulettewheel are more accurate and reliable. 
Increasing the tournament size effects the results unfavorably. As the tournament size is enlarged, 
the selection pressure increases which results in a decrease in the population diversity. This 
undesirable phenomenon can be prevented by the roulettewheel selection operator together with a 
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Table 2 Comparison of the selection methods 

Classifier 
No 

Selection method 
Mean of the 

best objective 
function values

Standard 
deviation 

Success 
rate (%) 

Average number 
of function 

evaluations of 
successful runs 

1 
2 
3 
4 

RW 
TR2 
TR4 
TR8 

7.56E-06 
1.36E-05 
9.10E-05 
1.50E-04 

1.06E-05 
1.33E-05 
9.74E-05 
1.18E-04 

70 
50 
0 
0 

66300 
69700 

- 
- 

 
 

 
(a) p-values versus ߙ 

 
(b) Adjusted p-values

Fig. 7 Statistical pairwise comparison of selection methods 
 
scaling technique called linear scaling. 

The statistical tests carried out for the selection methods also support the results presented in 
Table. 2. For this case, the Iman-Davenport’s statistic is 44.97 and the critical value is 2.76. Hence, 
subsequent post hoc test can be applied for pairwise comparison. The results for the statistical tests 
are presented in Fig. 7. As apparent in Fig. 7(a), the null hypothesis for the pairs RW-TR4 (1-3), 
RW-TR8 (1-4), TR2-TR4(2-3) and TR2-TR8 (2-4) can be rejected at a=0.05. . However, the null 
hypothesis for the pairs RW-TR2 (1-2) which give the best results can be rejected at a=0.80 (see 
Fig. 7(b)). 
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Table 3 Results obtained from mutation operators 

Classifier 
No 

Mutation 
operator 

Mean of the best 
objective function 

values 

Standard 
deviation 

Success 
rate (%) 

Average number 
of function 

evaluations of 
successful runs 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

UM 
PM-0.1 
PM-0.5 
PM-0.9 
NUM-3 
NUM-5 
NUM-8 
MPTM-4 
MPTM-10 
MPTM-16 

1.535E-05 
7.06E-05 
7.99E-05 
1.87E-05 
8.42E-06 
7.56E-06 
1.01E-05 
9.28E-06 
6.43E-06 
5.53E-06 

1.751E-05 
0.000162 
0.000253 
1.543E-05 
6.474E-06 
1.07E-05 

1.208E-05 
7.567E-06 
6.35E-06 
5.86E-06 

45 
55 
45 
35 
65 
75 
60 
55 
75 
80 

73600 
74900 
75500 
72600 
69200 
66300 
56100 
69300 
71200 
70500 

 
 

 
(a) p-values versus ߙ 

 
(b) Adjusted p-values 

Fig. 8 Statistical pairwise comparison of mutation operators for RCGA 
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Table 4 Results from comparison of crossover operators 

Classifier 
No 

Crossover 
Operators 

Mean of the best 
objective 

function values 

Standard 
deviation 

Success 
Rate (%) 

Average 
number of 
function 

evaluations of 
successful runs

- 
- 
- 
- 
1 
2 
- 
- 
- 
3 
- 
4 
- 
5 
- 
- 
- 
- 
6 
- 
- 
- 
7 
- 
- 
- 
- 
8 

SPOX 
TPX 
AX 
UX 
UNDX 
SPX 
SBX-0.04 
SBX-0.1 
SBX-0.7 
SBX-1 
SBX-2 
LX 
HX-1.2 
HX-1.6 
HX-2 
BLX-0.1 
BLX-0.3 
BLX-0.5 
BLX-0.7 
BLX-1 
BLX-1.4 
PNX-0.5 
PNX-1 
PNX-2 
PNX-5 
FRX-0.3 
FRX-0.5 
FRX-0.9 

0.000223 
0.000287 
0.000461 
0.001053 
8.28E-05 
3.22E-05 
1.12E-05 
4.30E-06 
6.04E-06 
4.22E-06 
8.58E-06 
5.46E-06 
3.53E-05 
6.29E-06 
9.26E-06 
0.000145 
5.30E-05 
9.53E-06 
3.73E-06 
4.01E-06 
5.38E-06 
1.63E-05 
3.06E-06 
4.11E-06 
3.85E-05 
4.39E-05 
2.78E-05 
8.19E-06 

0.000151 
0.000279 
0.000222 
0.002048 
3.21E-05 
2.28E-05 
7.64E-06 
4.75E-06 
5.38E-06 
4.85E-06 
6.95E-06 
5.64E-06 
2.89E-05 
5.33E-06 
7.51E-06 
0.000109 
9.91E-05 
6.23E-06 
5.70E-06 
3.73E-06 
3.67E-06 
1.04E-05 
5.28E-06 
4.68E-06 
3.23E-05 
3.14E-05 
2.24E-05 
8.19E-06 

- 
- 
- 
- 
- 
5 

45 
85 
75 
85 
60 
80 
25 
90 
60 
- 

20 
50 
80 
95 
90 
25 
90 
85 
15 
15 
25 
70 

- 
- 
- 
- 
- 

54300 
78967 
78805 
67266 
66482 
70666 
85119 
74520 
72894 
75008 

- 
66125 
69310 
52731 
68415 
76628 
89050 
69188 
58070 
74866 
74867 
71980 
70685 

 
 
However, the null hypothesis for the pairs RW-TR2 (1-2) which give the best results can be 
rejected at (see Fig. 7(b)).  

In Table 3, the comparison results are given for mutation operators. The GA parameters and 
operators are N=100, Pm and Pc  and  are 0.06 and 0.80, respectively. The crossover operator is 
the heuristic crossover with r=1.6. The stopping criteria are the same as given in the previous 
section. 

The NUM operator which is a dynamic mutation operator and the MPTM gives the best results. 
The amount of mutation can be adjusted by the selection of the appropriate parameter values for 
the NUM, MPTM and PM. However, only the NUM operator enables tuning of the mutation 
amount dynamically for successive generations. There are no significant differences in the mean of 
the best objective function values for different mutation operators. But PM and UM results are less 
reliable than the other two methods. This fact is due to more random changes in the genes caused 
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by PM and UM. It is clear that the use of NUM and MPTM as the primary mutation operator is 
feasible. 

The Iman-Davenport’s statistic and critical value are 2.5664 and 1.88, respectively. In this case, 
the calculated statistic value is just above the critical value. The results of the Holm procedure are 
given in Fig. 8. However, the Holm procedure cannot detect a significant difference between the 
performances of the mutation operators. In this situation, some more complicated statistical tests 
such as Hochberg and Hommel procedures can be applied.  Since the mutation operator is the 
secondary operator in GA, additional statistical test will not be carried out to see if there is a 
significant difference between mutation operators. 

In the next paragraphs, the performance of the crossover operators is compared and the results 
are presented. The GA operators and parameters used in this comparison are, N=100, Pc and Pm are 
0.80 and 0.08, respectively. The stopping criteria are the same as explained in the first comparison. 
The results are given in Table 4 and Fig. 9. 

As shown in Table 4, the PNX operator with the distribution parameters 1 and 2 and BLX-ߙ, 
with the distribution parameters 0.7, 1 and 1.4, outperform all methods in terms of all comparison 
criteria. For small values of the distribution parameter ߟ, PNX performs better. For large values of 
 the results worsen. If the results obtained by PNX, are investigated, it can be observed that the ,ߟ
number of the mean function evaluations of successful runs for PNX-2 is smaller than that 
obtained for the PNX-1. However, the mean values and the standard deviations are better for 
PNX-1. Hence, it can be deduced that there is a trade-off between the reliability and the efficiency. 
When the probability of creating near parent solutions is high, the efficiency of the operator 
increases, the reliability decreases. The same is true for the SBX-0.7 - SBX-0.1 and the BLX-0.7 – 
BLX-1. The results obtained for the BLX-ߙ operator is quite good. For the increasing values of 
the parameter ߙ which determines the width of the search space, solutions are getting better. 
However, for the values of ߙ greater than 1, the results slightly worsen because of the fact that 
the new individuals are generated far away from their parents which increases the randomness. 
This is also valid for the HX, SBX, PNX operators. If the results in Table 4 are investigated for 
these operators, it is observed that increasing or decreasing values for these parameters after a 
certain parameter value causes the solutions to worsen. Hence, determining the optimal parameter 
values for these operators is crucial in order to obtain a suitable distribution for the offsprings. A 
suitable distribution of the new individuals is the necessary condition to find the optimal solution. 
The LX operator which creates new individuals in the vicinity of both the exploration and the 
exploitation intervals gives excellent results. However, the required number of function 
evaluations to reach the optimum is higher than the other methods. The results obtained by HX are 
quite good. This method with the appropriate parameter (e.g. 1.6), is as reliable as SBX and LX 
and the mean of the best fitness values and the standard deviations obtained from HX are slightly 
less than SBX, PNX, BLX-ߙ and LX. The operators SPX and UNDX have difficulties exploring 
the search space. The mean fitness values for these operators are not too bad, but the success rates 
are almost zero. These operators with the proposed parameter values are inadequate. It is apparent 
that the population statistics such as the mean vector and the covariance matrix are not preserved 
in the FEMU problem. 

Although there are no significant differences between UNDX, SPX, SBX, HX, BLX-ߙ, PNX 
and FRX in terms of the mean fitness values, the difference is significant for SPOX, TPX, AX and 
UX. The AX operator which creates new offsprings in the exploitation interval is incapable to find 
good solutions in terms of all the comparison criteria. The SPOX, TPOX and UX do not create 
new genes via crossover. They only use the parent genes and mix them to create new individuals. 
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Hence, they cannot consider the exploration-exploitation degree. As shown in Table 4, the results 
are insufficient for these operators. As a result, the PNX-1, PNX-2, the BLX-1, BLX-0.7, the 
SBX-0.1, SBX-0.7, SBX-1, the HX-1.6 perform better than the other operators.  

The conclusion drawn from Table 4 is also supported by the statistical analysis results. The 
statistical analysis is carried out in two stages. In the first stage, same crossover operators with 
different parameter values are compared. In second stage, the crossover operators with the best 
parameter values which is determined in the first stage are compared with each other. These 
operators are numbered in Table 4 as classifiers of the second stage. The tables of the results 
belong to first stage is given in Appendix A and the results of the second stage is given in Fig. 9. 
The Iman-Davenport’s statistic and critical value are 18.92 and 2.01, respectively. As apparent, in 
Fig. 9a, the p-values of the half of the pairs are below the significance level of ߙ ൌ 0.05. 
Especially the pairs including the UNDX and SPX operators are below that level. It is due to fact 
that the performances of these operators are obviously worse than the other operators. 
Nevertheless, the performances of the operators HX-1.6, LX, SBX-1, BLX-0.7 and the PNX-1 
cannot be separated at a certain significance level as seen in Fig. 9b. Hence, it can be said that 
these operators performs better than other operators at the specified significance level. However, 
an obvious performance difference between these operators is not apparent from statistical stand 
point. 

In Table 5, the multi-population PGAs mentioned in Sec. 2.3 is compared with the sequential 
GAs and the results are presented for four differet population size. The subpopulation number is 
selected as 10 for PGAs.. The migration interval and the migration rates are taken as 100 and 0.30, 

 

 
(a) p-values versus ߙ 

 
(b) Adjusted p-values 

Fig. 9 Statistical pairwise comparison of crossover operators 
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respectively. The roulettewheel selection, the NUM mutation operator and the operator PNX are 
adopted for the selection, mutation and the crossover, respectively. The mutation rate Pm=0.06  
and a crossover rate Pc=0.80  are selected. 

As shown in Table 5, although the success rates remain unchanged, the convergence speeds 
increase 3 to 5 times. If the mean generation numbers are compared for PGAs and GAs, the 
convergence is higher for the PGAs except for the population size of 150. This means that the 
PGAs become more effective through the increasing size of the subpopulation. For the population 
sizes of 200 and 300, the mean generation number for PGAs is less than the GAs. This is due to 
fact that PGAs provide more diversity to the population. In Fig. 10, the variation of the best and 
the mean values of the objective function of the population versus the generation number is given 
for the best of the 20 independent runs. The population size and the maximum generation number 
are selected as 200 and 1000, respectively. 

As apparent in Fig. 10, the best and mean fitness values coincide in 850.th and 950.th 
generation numbers for GAs and PGAs, respectively. This means that PGAs increases diversity 
 
 
Table 5 Comparison for GAs and PGAs 

Method Populationsize Meangeneration Successrate (%) Mean executiontime (sn) 

PGA 
 
 
 
GA 
 

100 
150 
200 
300 
100 
150 
200 
300 

610 
589 
325 
340 
634 
435 
403 
388 

85 
100 
100 
100 
85 
100 
100 
100 

77 
97 
65 
90 

316 
355 
385 
549 

 

 

Fig. 10 Variation of the best and the mean objective function values with generation number 
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Table 6 Comparison of multiple crossover operators 

Classifier 
No 

Crossovermethods Successrate (%) 
Mean of the 
best fitness 

values 

Average number of 
function 

evaluations of 
successful runs 

1 
2 
3 
4 
5 
6 
7 
8 

PNX1 
PNX2 
PNX2-BLX0.3-SBX0.04 
PNX2-SX1.6-1.2-SBX0.04 
FRX0.5-SX1.6-1.2-UNDX 
BLX0.7-SX1.6-1.2- PNX1 
PNX1- PNX2- PNX4 
BLX0.2-BLX0.5-BLX0.8 

30 
60 
65 
55 
55 
90 

100 
30 

4.993E-07 
1.831E-07 
1.055E-07 
9.933E-08 
2.924E-06 
2.782E-08 
1.833E-08 
1.504E-06 

306520 
253400 
264464 
256980 
314380 
269300 
300140 
196510 

 
 

 
(a) p-values versus ߙ 

 
(b) Adjusted p-values

Fig. 11 Statistical pairwise comparison of multiple crossover operators 
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and prevent the premature convergence more effectively than the GAs. It should also be stated that 
objective function values of both PGA and GA are expected to stabilize at the further generations 
due to loss of population diversity. 

In addition to the above comparisons, the results from the multiple use of crossover operators 
are presented. Some forms of crossover operators might be more suitable than others at the 
different stages of the genetic process. Multiple use of different crossover operators provides an 
effective search of the solution space. Nevertheless exploration-exploitation degree can be 
balanced by the use of crossover operators together. 

In Table 6, results obtained by different combinations of crossover operators and parameters 
are presented. In each generation, six offsprings were created by the multiple implementations of 
three crossover operators. The two most promising offsprings substitute their parents in the next 
generation. The combinations are compared with the PNX operator which gives the best results in 
previous comparisons. For a fair comparison, the maximum generation number is determined as 
2000 and 5000 for multiple and single crossover. Stopping criteria is taken .10 7 optff  

As can be observed, there are significant differences between some of the multiple and single 
crossover operators. The combination at the last row of Table 6 shows a poor performance. But if 
we look into the last column of Table 6, for this operator, the mean number of function evaluation 
of successful runs is less than the others. This means that the method is effective but not reliable. 
In other words, the method finds the optimum point relatively fast, however it can also 
convergence to non-optimum points for different runs. The reason could be the premature 
convergence of the algorithm. The GA generally convergences to a non-optimum point if the 
diversity of the population lost due to fact that one of the fittest individual dominate the population 
in early iterations. In order to avoid this phenomenon, selection pressure could be reduced by 
adjusting some parameters belong to GA operators or appropriate combinations of the operators 
are sought as done in this study. Examples of these combinations can be increased by considering 
different parameters and operators as well. The statistical analysis results are well compatible with 
the above results. The Iman-Davenport’s statistic and critical value are 6.20 and 2.01, respectively. 
The pairwise comparisons which are given in Fig. 11 show that there are no significant differences 
between the performances of best classifiers 2, 3, 6 and 7. However, the success rate of the 
classifier 7 is better than the others. 
 
 
5. Conclusions 
 

In this paper, the performance of the several GA operators and the performance of the 
parameters were compared for the damage identification problem with finite element model 
updating (FEMU). The genetic algorithms (GAs) is affected by the application of different 
operators and parameters. It should not be expected that the performance of these operators and 
parameters is the same for all class of problems. Hence, choosing the appropriate ones considering 
the problem at hand is crucial. Thus, the results obtained in this study will be valid for the damage 
detection problem. 

For the mutation operator, whose primary goal is to provide random diversity in the population, 
the dynamic mutation operator, non-uniform mutation (NUM) is found to be the best mutation 
operator. This is due to the fact that the NUM operator tends to search the space uniformly in 
initial generations and more locally in the later. Among the GA crossover operators, the parent 
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centric normal crossover (PNX) achieves the best overall performance. The simulated binary 
crossover (SBX) which uses a different probability distribution to create offsprings, the heuristic 
crossover (HX) and the BLX-α also give close results to those obtained from the PNX operator. 
The selection of the appropriate corresponding values of the parameters is vitally important. These 
parameters should be determined considering the exploration-exploitation capabilities of these 
operators. Unfortunately, giving an explicit formula is not possible. Thus, it is necessary to make a 
parametric study for each problem separately. 

A trade-off between the reliability and the efficiency comes up with the use of the crossover 
operators which create offsprings via some distribution functions. This trade-off should be 
considered in the selection of the feasible parameter values. The use of the mutation operators that 
have local search capabilities is adequate. However, the crossover operators which create 
offsprings too close to their parents don’t give sufficient results. For the selection operator, the 
roulettewheel selection with linear scaling outperforms the tournament selection with different 
tournament sizes. The parallel genetic algorithms (PGAs) enhance the performance of GAs in 
terms of the convergence speed and the efficiency. It should also be stated that the real coded 
genetic algorithms (RCGA) with special operators outperforms binary coded genetic algorithms 
(BCGA). 
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Appendix A 
 
Table A1 Pairwise comparisons of the mutation probabilities 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
0.01-0.06 
0.02-0.06 
0.01-0.10 
0.01-0.08 
0.02-0.10 
0.03-0.06 
0.01-0.07 
0.02-0.08 
0.05-0.06 
0.02-0.07 
0.01-0.04 
0.03-0.10 
0.02-0.04 
0.06-0.09 
0.01-0.09 
0.03-0.08 
0.05-0.10 
0.03-0.07 
0.02-0.09 
0.05-0.08 
0.04-0.06 
0.01-0.05 
0.09-0.10 
0.03-0.04 
0.05-0.07 
0.06-0.07 
0.02-0.05 
0.01-0.03 
0.08-0.09 
0.04-0.10 
0.04-0.05 
0.06-0.08 
0.03-0.09 
0.07-0.09 
0.02-0.03 
0.04-0.08 
0.07-0.10 
0.06-0.10 
0.04-0.09 
0.05-0.09 
0.03-0.05 
0.04-0.07 
0.01-0.02 
0.08-0.10 
0.07-0.08 

8.8257 
7.9902 
7.5724 
6.8413 
6.7368 
6.3712 
6.2668 
6.0057 
5.4312 
5.4312 
5.3790 
5.1179 
4.5434 
4.4390 
4.3868 
4.3868 
4.1779 
3.8123 
3.5512 
3.4467 
3.4467 
3.3945 
3.1856 
2.9245 
2.8723 
2.5589 
2.5589 
2.4545 
2.4545 
2.1934 
1.9845 
1.9845 
1.9323 
1.8800 
1.6189 
1.4623 
1.3056 
1.2534 
0.9922 
0.9922 
0.9400 
0.8878 
0.8356 
0.7311 
0.5745 

0.0000e+000 
1.3323e-015 
3.6637e-014 
7.8504e-012 
1.6191e-011 
1.8750e-010 
3.6855e-010 
1.9053e-009 
5.5969e-008 
5.5969e-008 
7.4901e-008 
3.0898e-007 
5.5347e-006 
9.0386e-006 
1.1505e-005 
1.1505e-005 
2.9426e-005 
1.3768e-004 
3.8350e-004 
5.6740e-004 
5.6740e-004 
6.8750e-004 
1.4444e-003 
3.4500e-003 
4.0752e-003 
1.0499e-002 
1.0499e-002 
1.4108e-002 
1.4108e-002 
2.8280e-002 
4.7202e-002 
4.7202e-002 
5.3327e-002 
6.0103e-002 
1.0546e-001 
1.4367e-001 
1.9169e-001 
2.1008e-001 
3.2108e-001 
3.2108e-001 
3.4721e-001 
3.7465e-001 
4.0340e-001 
4.6470e-001 
5.6566e-001 

0.0011 
0.0011 
0.0012 
0.0012 
0.0012 
0.0013 
0.0013 
0.0013 
0.0014 
0.0014 
0.0014 
0.0015 
0.0015 
0.0016 
0.0016 
0.0017 
0.0017 
0.0018 
0.0019 
0.0019 
0.0020 
0.0021 
0.0022 
0.0023 
0.0024 
0.0025 
0.0026 
0.0028 
0.0029 
0.0031 
0.0033 
0.0036 
0.0038 
0.0042 
0.0045 
0.0050 
0.0056 
0.0063 
0.0071 
0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.0500 

0.0000e+000 
5.8620e-014 
1.5754e-012 
3.2972e-010 
6.6381e-010 
7.5001e-009 
1.4374e-008 
7.2402e-008 
2.0709e-006 
2.0709e-006 
2.6215e-006 
1.0505e-005 
1.8265e-004 
2.8924e-004 
3.5667e-004 
3.5667e-004 
8.5335e-004 
3.8550e-003 
1.0355e-002 
1.4752e-002 
1.4752e-002 
1.6500e-002 
3.3222e-002 
7.5901e-002 
8.5579e-002 
2.0998e-001 
2.0998e-001 
2.5395e-001 
2.5395e-001 
4.5248e-001 
7.0803e-001 
7.0803e-001 
7.0803e-001 
7.2123e-001 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
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Table A2 Pairwise comparisons of selection operators 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
RW-TR8 
RW-TR4 
RW-TR4 
TR2-TR4 
TR4-TR8 
RW-TR2 

5.2664 
4.6540 
4.4091 
3.7967 
0.8573 
0.6124 

1.3912e-007 
3.2551e-006 
1.0381e-005 
1.4663e-004 
3.9127e-001 
5.4029e-001 

0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.0500 

8.3474e-007 
1.6275e-005 
4.1524e-005 
4.3989e-004 
7.8253e-001 
7.8253e-001 

 
Table A3 Pairwise comparison of mutation operators 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
PM-0.9-NUM-5 
PM-0.9-MPTM-16 
PM-0.9-MPTM-10 
PM-0.5-NUM-5 
PM-0.5-MPTM-16 
PM-0.5-MPTM-10 
PM-0.9-NUM-8 
PM-0.9-NUM-3 
PM-0.9-MPTM-4 
UM-NUM-5 
UM-MPTM-16 
PM-0.5-NUM-8 
UM-MPTM-10 
PM-0.1-PM-0.9 
PM-0.5-NUM-3 
PM-0.5-MPTM-4 
PM-0.1-NUM-5 
PM-0.1-PM-0.5 
PM-0.1-MPTM-16 
PM-0.1-MPTM-10 
UM-NUM-8 
UM-PM-0.9 
NUM-3-NUM-5 
NUM-5-MPTM-4 
UM-NUM-3 
UM-MPTM-4 
NUM-3-MPTM-16 
MPTM-1-MPTM-10 
NUM-5-NUM-8 
NUM-8-MPTM-16 
NUM-3-MPTM-10 
MPTM-1-MPTM-4 
UM-PM-0.5 
NUM-8-MPTM-10 
UM-PM-0.1 
PM-0.1-NUM-8 
PM-0.5-PM-0.9 
PM-0.1-NUM-3 

3.1334 
3.0812 
2.9245 
2.7417 
2.6895 
2.5328 
2.2456 
2.0889 
2.0889 
2.0367 
1.9845 
1.8539 
1.8278 
1.7495 
1.6973 
1.6973 
1.3839 
1.3578 
1.3317 
1.1750 
1.1489 
1.0967 
1.0445 
1.0445 
0.9922 
0.9922 
0.9922 
0.9922 
0.8878 
0.8356 
0.8356 
0.8356 
0.7050 
0.6789 
0.6528 
0.4961 
0.3917 
0.3395 

1.7280e-003 
2.0619e-003 
3.4500e-003 
6.1118e-003 
7.1559e-003 
1.1315e-002 
2.4730e-002 
3.6714e-002 
3.6714e-002 
4.1679e-002 
4.7202e-002 
6.3750e-002 
6.7577e-002 
8.0208e-002 
8.9648e-002 
8.9648e-002 
1.6638e-001 
1.7453e-001 
1.8296e-001 
2.3999e-001 
2.5059e-001 
2.7278e-001 
2.9627e-001 
2.9627e-001 
3.2108e-001 
3.2108e-001 
3.2108e-001 
3.2108e-001 
3.7465e-001 
4.0340e-001 
4.0340e-001 
4.0340e-001 
4.8080e-001 
4.9720e-001 
5.1389e-001 
6.1981e-001 
6.9530e-001 
7.3427e-001 

0.0011 
0.0011 
0.0012 
0.0012 
0.0012 
0.0013 
0.0013 
0.0013 
0.0014 
0.0014 
0.0014 
0.0015 
0.0015 
0.0016 
0.0016 
0.0017 
0.0017 
0.0018 
0.0019 
0.0019 
0.0020 
0.0021 
0.0022 
0.0023 
0.0024 
0.0025 
0.0026 
0.0028 
0.0029 
0.0031 
0.0033 
0.0036 
0.0038 
0.0042 
0.0045 
0.0050 
0.0056 
0.0063 

7.7758e-002 
9.0722e-002 
1.4835e-001 
2.5669e-001 
2.9339e-001 
4.5258e-001 
9.6445e-001 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
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PM-0.1-MPTM-4 
NUM-5-MPTM-10 
MPTM-4-MPTM-10 
NUM-3-NUM-8 
NUM-8-MPTM-4 
NUM-5-MPTM-16 
NUM-3-MPTM-4 

0.3395 
0.2089 
0.1567 
0.1567 
0.1567 
0.0522 

0 

7.3427e-001 
8.3453e-001 
8.7551e-001 
8.7551e-001 
8.7551e-001 
9.5835e-001 
1.0000e+000 

0.0071 
0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.0500 

1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 

 
Table A4 Pairwise comparison of BLX-a operator 

hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
BLX-0.1- BLX-0.7 
BLX-0.1- BLX-1 
BLX-0.1- BLX-1.4 
BLX-0.3- BLX-0.7 
BLX-0.3- BLX-1 
BLX-0.1- BLX-0.5 
BLX-0.3- BLX-1.4 
BLX-0.5- BLX-0.7 
BLX-0.5- BLX-1 
BLX-0.1- BLX-0.3 
BLX-0.3- BLX-0.5 
BLX-0.7- BLX-1.4 
BLX-0.5- BLX-1.4 
BLX-1- BLX-1.4 
BLX-0.7- BLX-1 

6,8458 
6,0851 
4,9864 
4,8173 
4,0567 
3,8877 
2,9580 
2,9580 
2,1974 
2,0283 
1,8593 
1,8593 
1,0987 
1,0987 
0,7606 

7.6077e-012 
1.1641e-009 
6.1512e-007 
1.4546e-006 
4.9762e-005 
1.0119e-004 
3.0960e-003 
3.0960e-003 
2.7992e-002 
4.2522e-002 
6.2979e-002 
6.2979e-002 
2.7190e-001 
2.7190e-001 
4.4687e-001 

0.0033 
0.0036 
0.0038 
0.0042 
0.0045 
0.0050 
0.0056 
0.0063 
0.0071 
0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.0500 

1.1412e-010 
1.6298e-008 
7.9965e-006 
1.7455e-005 
5.4739e-004 
1.0119e-003 
2.7864e-002 
2.7864e-002 
1.9594e-001 
2.5513e-001 
3.1490e-001 
3.1490e-001 
8.1570e-001 
8.1570e-001 
8.1570e-001 

 
Tablo A5 Pairwise comparison of PNX operator 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
PNX-1-PNX-5 
PNX-2-PNX-5 
PNX-1-PNX-0.5 
PNX-2-PNX-0.5 
PNX-5-PNX-0.5 
PNX-1-PNX-2 

4.6540 
3.9192 
3.9192 
3.1843 
0.7348 
0.7348 

3.2551e-006 
8.8849e-005 
8.8849e-005 
1.4509e-003 
4.6243e-001 
4.6243e-001 

0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.0500 

1.9531e-005 
4.4425e-004 
4.4425e-004 
4.3526e-003 
9.2487e-001 
9.2487e-001 

 
 

Table A6 Pairwise comparison of SBX operator 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
SBX-0.04-SBX-1 
SBX-0.04-SBX-0.1 
SBX-1-SBX-2 
SBX-0.1-SBX-2 
SBX-0.04-SBX-0.7 
SBX-0.7-SBX-2 
SBX-0.7-SBX-1 
SBX-0.1-SBX-0.7 
SBX-0.04-SBX-2 
SBX-0.1-SBX-1 

3.2000 
2.7000 
2.5500 
2.0500 
1.9500 
1.3000 
1.2500 
0.7500 
0.6500 
0.5000 

1.3743e-003 
6.9339e-003 
1.0772e-002 
4.0364e-002 
5.1176e-002 
1.9360e-001 
2.1130e-001 
4.5325e-001 
5.1569e-001 
6.1708e-001 

0.0050 
0.0056 
0.0063 
0.0071 
0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.0500 

1.3743e-002 
6.2406e-002 
8.6178e-002 
2.8255e-001 
3.0706e-001 
9.6800e-001 
9.6800e-001 
1.0000e+000 
1.0000e+000 
1.0000e+000 
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Tablo A6 Pairwise comparison of FRX operator 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
FRX-0.3-FRX-0.9 
FRX-0.5-FRX-0.9 
FRX-0.3-FRX-0.5 

3.0042 
2.6879 
0.3162 

2.6631e-003 
7.1895e-003 
7.5183e-001 

0.0167 
0.0250 
0.0500 

7.9894e-003 
1.4379e-002 
7.5183e-001 

 
 

Tablo A7 Pairwise comparison of HX operator 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
HX-1.2-HX-1.6 
HX-1.2-HX-2 
HX-2-HX-1.6 

2.5298 
2.2136 
0.3162 

1.1412e-002 
2.6857e-002 
7.5183e-001 

0.0167 
0.0250 
0.0500 

3.4236e-002 
5.3713e-002 
7.5183e-001 

 
 
Table A8 Pairwise comparison of best crossover operators 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
UNDX-PNX-1 
UNDX-BLX-0.7 
UNDX-SBX-1 
SPX-PNX-1 
UNDX-LX 
SPX-BLX-0.7 
SPX-SBX-1 
UNDX-SX-1.6 
UNDX-FRX-0.9 
SPX-LX 
SPX-SX-1.6 
PNX-1-FRX-0.9 
SPX-FRX-0.9 
SX-1.6-PNX-1 
BLX-0.7-FRX-0.9 
SX-1.6-BLX-0.7 
SBX-1-FRX-0.9 
SBX-1-SX-1.6 
LX-PNX-1 
UNDX-SPX 
LX-BLX-0.7 
LX-FRX-0.9 
SBX-1-LX 
LX-SX-1.6 
SBX-1-PNX-1 
SBX-1-BLX-0.7 
BLX-0.7-PNX-1 
SX1.6-FRX-0.9 

7.1005 
6.7132 
6.2613 
5.6158 
5.3576 
5.2285 
4.7767 
4.5185 
4.1957 
3.8730 
3.0338 
2.9047 
2.7111 
2.5820 
2.5174 
2.1947 
2.0656 
1.7428 
1.7428 
1.4846 
1.3555 
1.1619 
0.9037 
0.8391 
0.8391 
0.4518 
0.3873 
0.3227 

1.2432e-012 
1.9044e-011 
3.8172e-010 
1.9563e-008 
8.4322e-008 
1.7087e-007 
1.7821e-006 
6.2285e-006 
2.7199e-005 
1.0751e-004 
2.4146e-003 
3.6756e-003 
6.7063e-003 
9.8233e-003 
1.1821e-002 
2.8186e-002 
3.8867e-002 
8.1361e-002 
8.1361e-002 
1.3764e-001 
1.7524e-001 
2.4528e-001 
3.6616e-001 
4.0139e-001 
4.0139e-001 
6.5138e-001 
6.9854e-001 
7.4689e-001 

0.0018 
0.0019 
0.0019 
0.0020 
0.0021 
0.0022 
0.0023 
0.0024 
0.0025 
0.0026 
0.0028 
0.0029 
0.0031 
0.0033 
0.0036 
0.0038 
0.0042 
0.0045 
0.0050 
0.0056 
0.0063 
0.0071 
0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.0500 

3.4810e-011 
5.1418e-010 
9.9248e-009 
4.8906e-007 
2.0237e-006 
3.9299e-006 
3.9207e-005 
1.3080e-004 
5.4398e-004 
2.0427e-003 
4.3464e-002 
6.2485e-002 
1.0730e-001 
1.4735e-001 
1.6550e-001 
3.6642e-001 
4.6641e-001 
8.9497e-001 
8.9497e-001 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
1.0000e+000 
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Table A9 Pairwise comparison of multiple crossover operator 

Hypothesis ݖ ൌ ሺܴ଴ െ ܴ௜/ܵܧሻ p ߙ APV 
7-8 
6-8 
5-7 
5-6 
1-7 
1-6 
3-8 
2-8 
3-5 
4-8 
2-5 
1-3 
4-5 
4-7 
4-6 
1-2 
2-7 
2-6 
1-4 
3-7 
3-6 
1-8 
1-5 
3-4 
5-8 
2-3 
2-4 
6-7 

    4.6108 
    4.4263 
    4.1189 
    3.9344 
    3.5041 
    3.3197 
    3.2583 
    2.8894 
    2.7665 
    2.6436 
    2.3975 
    2.1517 
    2.1517 
    1.9672 
    1.7827 
    1.7827 
    1.7214 
    1.5369 
    1.5369 
    1.3524 
    1.1680 
    1.1066 
    0.6148 
    0.6148 
    0.4919 
    0.3690 
    0.2458 
    0.1845 

4.0115e-006 
 9.5862e-006 
 3.8066e-005 
 8.3393e-005 
 4.5807e-004 
 9.0126e-004 
 1.1207e-003 
 3.8601e-003 
 5.6666e-003 
 8.2037e-003 
 1.6507e-002 
 3.1421e-002 
 3.1421e-002 
 4.9158e-002 
 7.4630e-002 
 7.4630e-002 
 8.5176e-002 
 1.2431e-001 
 1.2431e-001 
 1.7623e-001 
 2.4282e-001 
 2.6845e-001 
 5.3871e-001 
 5.3871e-001 
 6.2281e-001 
 7.1215e-001 
 8.0583e-001 
 8.5363e-001 

    0.0018 
    0.0019 
    0.0019 
    0.0020 
    0.0021 
    0.0022 
    0.0023 
    0.0024 
    0.0025 
    0.0026 
    0.0028 
    0.0029 
    0.0031 
    0.0033 
    0.0036 
    0.0038 
    0.0042 
    0.0045 
    0.0050 
    0.0056 
    0.0063 
    0.0071 
    0.0083 
    0.0100 
    0.0125 
    0.0167 
    0.0250 
    0.0500 

1.1232e-004 
 2.5883e-004 
 9.8971e-004 
 2.0848e-003 
 1.0994e-002 
 2.0729e-002 
 2.4654e-002 
 8.1062e-002 
 1.1333e-001 
 1.5587e-001 
 2.9713e-001 
 5.3416e-001 
 5.3416e-001 
 7.3737e-001 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
 1.0000e+000 
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