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Abstract.  The moment-curvature relation for simple bending is a well-studied subject and the classical 
moment-curvature diagram is commonly found in literature. The influence of axial forces has generally been 
considered as compression onto symmetrically reinforced cross-sections, thus strain at the reference fiber 
never has been an issue. However, when dealing with integral structures, which are usually statically 
indeterminate in different degrees, these concepts are not sufficient. Their horizontal elements are often 
completely restrained, which, under imposed deformations, leads to moderate compressive or tensile axial 
forces. The authors propose to analyze conventional beam cross-sections with moment-curvature diagrams 
considering asymmetrically reinforced cross-sections under combined influence of bending and moderate 
axial force. In addition a new diagram is introduced that expands the common moment-curvature relation 
onto the strain variation at the reference fiber. A parametric study presented in this article reveals the 
significant influence of selected cross-section parameters. 
 

Keywords:  non-linear concrete; moment-curvature diagram; axial strain; creep; shrinkage; strain plane 

 
 
1. Introduction 
 

Integral edifices are statically indeterminate structures. If a horizontal structural element cannot 

expand or contract freely due to constraint, compatibility forces arise. In statically indeterminate 

concrete structures a compression force may develop due to cracking under instantaneous service 

load, since the quasi permanent moments are usually greater than the cracking moment, as shown 

by Pfeiffer (2004). Pfeiffer also pointed out the necessity to superimpose imposed deformations 

such as shrinkage, creep and temperature to the instantaneous strain in order to obtain reasonable 

forces for serviceability assessment. Commonly these problems are resolved at structural level, but 

in order to completely understand the physics and mechanics involved, it is fundamental to take a 

closer look at the cross-section behavior. The aim of this paper is to create a general understanding 

of a cross-section’s strain variation under serviceability conditions and to elaborate it 

systematically. Historically, imposed deformations were considered in crack width prediction 

models as shown by Falkner (1969) for axial imposed deformations on restrained tensile members 

and by Rostásy et al. (1976) for imposed curvature and axial strain. The disadvantage of this  
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(a) Instantaneous behavior, t0 (b) Long-term behavior, t∞ 

Fig. 1 Experimental results obtained by Jaccoud and Favre (1982) illustrating the curvature change from 

(a) t0 to (b) t∞ 

 

Tension or MM 21 Compression 

 
(a) (b) 

Fig. 2 The effect of (a) tension and (b) compression onto the moment-curvature relation according to 

Comite Europeen du Beton (CEB-FIB) (1985) 

 

 

approach is its lack to consider the structural interaction. The results of many experimental studies 

on continuous beams have been compiled by Leonhardt (1978) to predict their deflections using 

the classical moment-curvature relation. The influence of creep onto the moment-curvature 

relation has been shown by Jaccoud and Favre (1982). With their experiments they confirmed the 

rotation produced in the moment-curvature relation due to an increase of curvature caused by 

creep under sustained loading, as shown in Fig. 1. 

The effects of tension and compression axial forces onto the instantaneous moment-curvature 

relation, as published in Comité Europeén du Béton (CEB-FIB) (1985), are shown in Fig. 2. These 

basic diagrams not only provide with the simple scheme of the offset produced by axial force but 

also display the contribution of concrete’s tensile strength and tension stiffening. More explicit 

research on the concrete’s tensile collaboration has been contributed by Ng et al. (2010) and Lam 

et al. (2010). 

In his thesis Camara (1988) proposed simplified diagrams to consider the effect of shrinkage  
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(a) Shrinkage (b) Creep 

Fig. 3 The effect of (a) shrinkage and (b) creep onto the moment-curvature relation according to Camara 

(1988) 

 

 

Fig. 4 Simplified creep produced strain change in a reinforced concrete cross-section according to Murcia 

(1991) 

 

 

and creep of a reinforced concrete cross-section in cracked state onto the moment-curvature 

relation. While shrinkage produces a constant change of curvature, creep is linearly 

load-dependent and hence its effect results in a proportional increase of the curvature, as shown in 

Fig. 3. 

A simplified approximation of shrinkage and creep consideration to evaluate long-term 

deflections was proposed by Murcia (1991). Wherein, he considered the effect of both actions onto 

the strain plane at cross-section level. This concept allows evaluating the strain increment at the 

reference fiber in a simple and adequate way. In Fig. 4 the approach is illustrated for creep acting 

onto an asymmetrically reinforced cross-section. This has been validated by Marí et al. (2010) 

with benchmark tests using a database that contained 217 different experiments. It was Pfeiffer 

(2004) who proposed the use of εcs / 2 as a simplified strain increment at the reference fiber to take 

into account shrinkage in case of a cracked cross-section, assuming equally to Murcia and Marí 

that the strain plane pivots around the tensile steel fiber. Most researchers were focusing on the 

prediction of short and long-term deflections Ning et al. (2001), Pam et al. (2001), Au et al. (2005) 

and Kim (2007), whereas Pfeiffer’s innovative contribution was the superposition of instantaneous 

axial strains and long-term axial imposed deformations. Unfortunately he concentrated on axial 

strains and did not correlate these to the moment-curvature relation. In their work Kaklauskas and 

Gribniak (2011) stated that even the instantaneous moment-curvature relations are influenced by 

shrinkage and proposed an approach to obtain shrinkage-free moment-curvature relations without 

any consideration of positive instantaneous axial strains. 

The authors would like to propose a new perspective of the classic moment-curvature 

correlation and an extension of these diagrams, by displaying the evolution of the strain in the 

reference fiber, usually assumed as the center of the concrete gross cross-section, and relating it to  

M



=cs/d

M



=0

 II,0 II,cs  II,0
 II,cc

As2

As1

d'

d

xcc

b

s1

s2

c c,cc

x0

c,cc

s2 s2,cc

s1 s1,cc

  
s2,cc

h

 II,0  II,cc

517



 

 

 

 

 

 

T. Petschke, H. Corres, J.I. Ezeberry, A. Pérez and A. Recupero 

 
Fig. 5 Strain plane of a RC cross-section 

 

 
(a) Un-cracked cross-section (b) Cracked cross-section 

Fig. 6 Moment-curvature-strain relation for a cross-section in un-cracked and cracked state 

 

 

the cross-section’s curvature. In contrast to previous studies conducted by authors like Najdanovic 

(1987) the focus is on integral structures’ horizontal elements, which are commonly 

asymmetrically reinforced. These elements are designed for bending and their axial force 

solicitation is considered to be moderate. 

 

 

2. Methodology 
 

2.1 Strain at geometric center of the cross-section under simple bending 
 

In order to understand this complex non-linear phenomenon, a simplified study on the 

theoretical behavior of concrete cross-sections under quasi-permanent serviceability conditions has 

been carried out. In preparation, some simplified assumptions have been agreed on, such as linear 

behavior of concrete in compression limiting its maximum allowable stresses to 0.6•fck, neglecting 

any concrete’s tensile strength. Steel is assumed to be linear. The validation of these conventions is 

based on ordinary serviceability analysis. Neglecting the concrete’s tensile strength will provide 

clear display of the effects produced in moment-curvature-strain relations. The convention of signs 

is: negative for compressive stress and shortening strain, while positive for tensile stress and 

expanding strain. In Fig. 5 a cross-section is presented in un-cracked and cracked state. Neutral 
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fiber, x, and compression block depth, xc, coincide. Due to the reduction of the compression block 

the neutral fiber rises above the center of the un-cracked cross-section, increasing the strain in the 

reference fiber, 0 . Fig. 6 shows an example of an un-cracked and a cracked asymmetrically 

reinforced cross-section without axial force and displays the influence of the long-term effects 

onto the moment-curvature-strain relation. Two diagrams are displayed for each section, the 

moment-curvature relation and the strain-curvature relation, that way each moment relates directly 

to its strain by curvature. Fig. 6(a) shows, that in the un-cracked cross-section shrinkage will not 

have any influence onto the moment-curvature relation but will generate a constant offset at the 

reference fiber. The creep effect depends on the load thus creating a linear curvature increment. 

The strain at the reference fiber is not changed. Fig. 6(b) shows, that in cracked state this behavior 

changes. The most significant difference is the existence of a load dependent instantaneous strain 

at the reference fiber which is always positive. As shown in the scheme of Fig. 5, this is a product 

of cracking and the consequential adjustment of the neutral fiber. Shrinkage now not only 

produces a constant curvature increment in the moment-curvature correlation, but also a constant 

increment of the strain at the reference fiber due to the rotation of the strain plane around the 

tensile steel fiber according to Pfeiffer (2004). Assuming an adequate precision of the proposal 

made by Murcia (1991) creep also produces a rotation of the strain plane with its pivot at the 

tensile reinforcement fiber. Due to its load dependence it causes a linear variation in the 

moment-curvature and the strain-curvature relation. It should be mentioned that shrinkage acting 

on an asymmetrically reinforced cross-section without load influence leads, under the proposed 

material laws, to a completely cracked cross-section. In the moment-curvature diagram in Fig. 6(b) 

this is represented as a reference line. 

Temperature can act in two different ways: either as a constant or as a differential temperature 

variation. The former will exclusively produce a constant offset in the strain-curvature diagram. 

The latter is usually composed by a temperature imposed curvature and a temperature imposed 

constant increment of strain as described before, thus acting with its differential part only onto the 

moment-curvature relation. 

 

2.2 Strain at the reference fiber of a cross-section under bending and axial force 
 

As described in literature Comité Europeén du Béton (CEB-FIB) (1985) the moment-curvature 

relation follows, under the presence of a compressive axial force, State I until cracking and 

thereafter State II. For the presence of a tensile axial force the cross-section under small bending 

moments is completely cracked and its stiffness is equal to that of the reinforcement considering 

the difference between reference fiber and c.o.g. (center of gravity) of the reinforcement. When the 

moment finally introduces a compression block into the cross-section the curve runs parallel to 

State II. As explained previously for simple bending the effects of shrinkage and creep produce an 

offset and a linear change onto the moment-curvature relation. Both effects reflect in the same 

manner in the presence of an axial compressive or tensile force, as shown in Fig. 7. The 

instantaneous strain, under compressive axial force and bending, increases steadily after cracking 

and eventually changes from negative to positive sign. Creep and shrinkage introduce a negative 

linear and negative constant strain increment, respectively. Under tensile axial force and bending a 

similar behavior can be observed originating from a positive instantaneous strain at the reference 

fiber. 
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(a) Bending and axial compressive force (b) Bending and axial tensile force 

Fig. 7 Moment-curvature-strain relation for an asymmetrically reinforced cross-section under bending and 

axial force: (a) compressive axial force and (b) tensile axial force 

 

 

2.3 Influence of concrete’s tensile strength 
 

The influence of the concrete’s tensile strength will be explained by the example of the 

asymmetrically reinforced cross-section under instantaneous and long-term simple bending, as 

shown in Fig. 8. The tensile strength is considered during the analysis as an alteration of the steel 

stress-strain constitutive law, according to Comite Europeen du Beton (CEB-FIB) (1990). Initially 

the instantaneous moment-curvature relation follows the State I reference line, κI,0, due to the 

influence of the concrete’s tensile strength. After cracking it tends towards the State II reference 

line, κII,0, eventually running parallel to it with a constant offset described by tension stiffening. 

The long-term influence reduces slightly the tension stiffening effect. The instantaneous 

strain-curvature relation illustrates that positive strains begin to develop under the consideration of 

tensile strength when the cross-section starts to crack. Beforehand, small negative strains exist. 

They depend on the amount of reinforcement asymmetry, which defines the difference between 

the reference fiber at h/2 and neutral fiber at the ideal cross-section’s c.o.g. The long-term effects 

increase the negative strain of the un-cracked cross-section significantly but also reveal a 

development of paramount importance: the asymptotic tendency of the long-term strain, 

considering the concrete’s tensile strength, towards the long-term strain obtained without the 

consideration of the concrete’s tensile strength. Again, the offset is caused by tension stiffening. 

This shows the important influence of the concrete’s tensile collaboration, but also its 

involvement. In order to make the studied cross-section behavior perfectly intelligible, the authors 

chose to neglect the concrete ś tensile collaboration. 
 

 

3. Parametric study 
 

Based on the equilibrium and compatibility equations that can be found in the appendix, a 

routine was programmed. This algorithm written in MATLAB MathWorks (2002) considers the 
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Fig. 8 Moment-curvature-strain relation for a cross-section under the consideration of concrete’s tensile 

strength 

 

Table 1 Cross-section values as used in the parametric study 

 b [m] h [m] d [m] d’ [m]  ’ 
s1 0.60 0.60 0.55 0.05 0.0138 0.0009 

s2 0.60 0.60 0.55 0.05 0.0138 0.0028 

s3 0.60 0.60 0.55 0.05 0.0138 0.0081 

s4 0.60 0.60 0.55 0.05 0.0068 0.0009 

s5 0.60 0.60 0.55 0.05 0.0138 0.0009 

s6 0.60 0.60 0.55 0.05 0.0244 0.0009 

s7 0.40 0.90 0.85 0.05 0.0082 0.0009 

s8 0.60 0.60 0.55 0.05 0.0138 0.0009 

s9 0.85 0.45 0.40 0.05 0.0218 0.0009 

 
 

reference fiber at the concrete gross cross-section’s c.o.g. as described above. The tool allows 

studying the influence of different cross-section parameters. 

The authors chose to center their investigation onto the following parameters: The quantity of 

compressive reinforcement, the quantity of tensile reinforcement, the cross-section depth and the 

influence of different moderate axial forces in compression or tension. Therefore three 

symmetrically reinforced rectangular beam cross-sections with equal gross cross-section area and 

equal ultimate moment were proposed. 

In order to maintain clear visibility of the effects the concrete’s tensile strength has been 

omitted in this study as explained previously. The material laws and the limitations of the 

represented data in the graphs are as stated above. 

The concrete considered for this study has a characteristic compressive strength of fck = 40 MPa 

and a Young’s modulus of Ec = 36 GPa. The steel’s Young’s modulus is Es = 200 GPa. The 

shrinkage applied is εcs = -329·10
-6

 and the creep coefficient is  = 2.5. In Table 1 the 

characteristics of the cross-sections used during the parametric study are given. The variables 

modified throughout the study are marked in black. 
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Fig. 9 Influence of the compressive reinforcement quantity 

 

 

3.1 Compressive reinforcement influence 
 

The first parameter changed was the quantity of the compressive reinforcement as shown in 

Table 1 sections [s1; s2; s3]. The results are displayed according to the moment-curvature-strain 

relation proposed in this article. As can be seen in Fig. 9 the influence of the compressive 

reinforcement quantity onto the instantaneous moment-curvature-strain relation is minimal. For 

the long-term correlations it can be observed that the larger amount of compressive reinforcement 

steel quantity has a greater restraining effect onto creep deformations, as investigated by Mayer 

(1962), thus leading to a smaller linear curvature increment in the moment-curvature diagram and 

a smaller linear strain increment in the strain-curvature diagram. 

 

3.2 Tensile reinforcement influence 
 
The second parameter changed was the tensile reinforcement quantity as shown in Table 1 

sections [s4; s5; s6]. As can be seen in Fig 10. The influence of the tensile reinforcement quantity 

onto the moment-curvature-strain relation is important both for instantaneous and long-term 

loading. It can be observed that the larger amount of tensile steel quantity leads to less curvature, 

propagated by smaller strains in the tensile reinforcement and smaller strains in the extreme 

concrete compressive fiber. As a result, this is affecting the long-term behavior, since smaller 

stresses due to a larger compression block with smaller maximum strains lead to less creep effects. 

Again, the effect is exclusively visible for creep according to Mayer (1962). 

 

3.3 Cross-section depth influence 
 
The third parameter changed was the cross-section depth as shown in Table 1 sections 
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Fig. 10 Influence of the tensile reinforcement quantity 

 

 

Fig. 11 Influence of the cross-section depth 

 
 
[s7; s8; s9]. Along with the cross-section depth the width and the tensile steel quantity were 
changed in order to provide with similar cross-section areas and an equal ultimate moment. As can 
be seen in Fig. 11 the influence of the cross-section depth onto the moment-curvature-strain 

relation is important both for instantaneous and long-term loading. A smaller effective depth leads 
to higher strains ergo stresses and hence to a greater curvature. 
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(a) Short-term (b) Long-term 

Fig. 12 Influence of moderate axial forces 

 
 

3.4 Moderate axial force influence 
 

The fourth parameter included in this study was the action of a constant, instantaneous and 

moderate axial force, applied as compression or tension at the reference fiber of cross-section s1, 

as shown in Table 1. The axial force was applied prior to the moment which was then increased. 

For this analysis a new concept of reduced axial force is proposed: if in compression, the axial 

force is divided by the cross-section’s maximum compressive resistance )( cdRc fhbN   

accordingly )./( Rcc NN  If in tension, the axial force is divided by the cross-section’s 

maximum tensile resistance )( , ydtotsRt fAN   accordingly )./( Rtt NN  The proposed range of 

axial force is  =[-0.2; -0.1; 0; 0.1; 0.2]. 

Under instantaneous load there is a substantial influence of the axial forces onto the moment 

curvature relation, already described in Comite Europeen du Beton (CEB-FIB) (1985). The 

instantaneous strain receives a strain increment due to the axial force action, as shown in Fig. 12. 

The long-term behavior shows a remarkable effect: all the moment-curvature relations for 

different axial forces tend towards the behavior of simple bending, thus revealing an equal 

long-term bending stiffness in all these cases within the study’s boundaries. The long-term strains 

at the reference fiber receive constant increments through the axial forces and remain parallel. 
 

 

4. Conclusions 
 

During their research on integral structures and their statically indeterminate response the 

authors discovered the importance of strain and stiffness which determines the magnitude of 
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internal forces in such structural elements. This article is dedicated exclusively to the explanation 

of the concept of axial imposed deformations. 

The authors discovered that the classic moment-curvature diagrams provide with insufficient 

information to analyze the problem at cross-sectional level.  

The long-term effects, shrinkage and creep, are implicitly contained in the moment-curvature 

relation as shown by Camara (1988) and can be superimposed as a constant and a linear effect. 

The important aspect of the strain alteration at the reference fiber cannot be derived easily from 

the moment-curvature correlation, therefore a new complementary diagram is proposed to provide 

with a complete understanding of the effects. This diagram is linked by curvature on the abscissa 

to the classic moment-curvature diagram and it depicts the relevant strain on the ordinate.  

The basic equations of equilibrium and compatibility were used to program a routine in 

MATLAB MathWorks (2002) and a parametric study was carried out to examine the influence of 

compressive reinforcement quantity, tensile reinforcement quantity, cross-section depth and 

moderate axial force action onto asymmetrically reinforced concrete cross-sections. The 

parametric analysis shows that the least influential parameter, in the focus of this study, is the 

compressive reinforcement quantity.  

As a follow-up an in depth analysis of cross-section and structural stiffness will be conducted to 

complete the analysis of imposed deformation on integral structures. 
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Appendix 
 

In the following the equations used to develop the algorithm for the parametric study are 

described. The constitutive law for the reinforcement is as follows 

    s s s TE      (A.1) 

The concrete’s constitutive law needs a separate description for short and long-term behavior. 

Short-term 

  
if 0

0 if 0

c c c

c

E  

 

  

 
                           (A.2) 

Long-term: 

Shrinkage, εcs, is considered according to Eurocode -2 (2004). For creep, εcc, also the formulae 

of Eurocode -2 (2004) are applied. In particular, to obtain the imposed deformation produced by 

creep it is necessary to resolve the following equation developed by Trost (1967) to superimpose 

strains 

    
   

 
0

00
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1
1 , ,
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t

t
t t t t d

E E E 

   
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

 
      


     (A.3) 

To solve this problem Trost (1967) introduces the concept of an age adjusted Young’s modulus 

     
 

    00
0 0 01 , 1 , ,

o

t
t t t t t t t
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 
   


      

        

 (A.4) 

Where χ(t,to) is assumed to be 0.8 and constant as proposed by Peréz (1996). 

Therefore the sum of concrete strains can be written as follows 

    c c cs cc Tt                                    (A.5) 

       0 1 1c cs T

c c

t
E E

 
     


                         (A.6) 

Consequently the stress variation can be reported as 

  
 

 0

0

1
1

c
c cs T

E

E


    

 

 
        

   
                 (A.7) 

Compatibility equation 

The hypothesis of Navier and Bernoulli is assumed to be valid in this study thus implying a 

perfect bond between concrete and steel and a linear strain plane. Hence, the strain of each fiber 
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can be calculated according to the following formula 

   0( ) refy y Y                                (A.8) 

Equilibrium equation 

The equilibrium equations are as stated 

  
c s

c s

c c s sA A

c c s sA A

N dA dA

M y dA y dA

 

 

    

      
                      (A.9) 

Instantaneous behavior 

To solve the instantaneous behavior of a cross-section the compatibility Eq. (A.8) is introduced 

into the previously described equilibrium equations, thus transforming into 

  
, 0 0, 0 , 0 0

, 0 0, 0 , 0 0

h t t h t t

h t t h t t

EA EB N

EB EI M

 

 

   

   
                        (A.10) 

The solution of these equations is non-linear and requires an iteration process. These equations 

are the fundamental description of the instantaneous stress field which is the source of the 

long-term equation’s solution. 

Long-term behavior 

To describe the long-term behavior, the long-term stress variation (A.7) needs to be introduced 

into the instantaneous equilibrium Eq. (A.9) 
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(A.11) 

Consequently the long-term behavior can be written as 

 
, 0 , 0

, 0 , 0

h t h t cs cc T t

h t h t cs cc T t
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EB EI M M M M M
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               (A.12) 

This equation is a summation of the fictitious internal forces as listed below 

  0 , 0 0, 0 , 0 0t c t t c t tN EA EB k                          (A.13) 
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 (A.14) 

  cs c csN EA                                (A.15) 
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  T h T h TN EA EB    
                         

 (A.16) 

   0 , 0 0, 0 , 0 0t c t t c t tM EB EI    
                      

 (A.17) 
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 (A.18) 

  cs c csM EB  
                           

 (A.19) 

   T h TM EB                                (A.20) 
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